code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,) lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
346
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase__ = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ UpperCAmelCase__ = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ UpperCAmelCase__ = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ UpperCAmelCase__ = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ UpperCAmelCase__ = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Tuple ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=[1, 10, 100] , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3.0 ): if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__lowerCAmelCase ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(__lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): for candidate in candidates: _UpperCAmelCase = candidate + """\n""" + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(__lowerCAmelCase , *__lowerCAmelCase ) futures.append(__lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowerCAmelCase ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) _UpperCAmelCase , _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(__lowerCAmelCase ) ) correct.append(sum(__lowerCAmelCase ) ) _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = k _UpperCAmelCase = {f'''pass@{k}''': estimate_pass_at_k(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" def estimator(lowercase ,lowercase ,lowercase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(lowercase ,lowercase ): _UpperCAmelCase = itertools.repeat(lowercase ,len(lowercase ) ) else: assert len(lowercase ) == len(lowercase ) _UpperCAmelCase = iter(lowercase ) return np.array([estimator(int(lowercase ) ,int(lowercase ) ,lowercase ) for n, c in zip(lowercase ,lowercase )] )
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A : str = None __A : Union[str, Any] = logging.get_logger(__name__) __A : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : Union[str, Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __A : Optional[int] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } __A : List[str] = "▁" class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BigBirdTokenizer lowercase = ['input_ids', 'attention_mask'] lowercase = [] def __init__( self : Dict , lowerCamelCase : List[str]=None , lowerCamelCase : List[str]=None , lowerCamelCase : str="<unk>" , lowerCamelCase : int="<s>" , lowerCamelCase : Union[str, Any]="</s>" , lowerCamelCase : str="<pad>" , lowerCamelCase : int="[SEP]" , lowerCamelCase : Union[str, Any]="[MASK]" , lowerCamelCase : Optional[int]="[CLS]" , **lowerCamelCase : Optional[int] , ) -> int: lowerCAmelCase_ : Optional[int] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token lowerCAmelCase_ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token lowerCAmelCase_ : Dict = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token lowerCAmelCase_ : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token lowerCAmelCase_ : Optional[int] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = vocab_file lowerCAmelCase_ : Tuple = False if not self.vocab_file else True def __lowercase ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def __lowercase ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
120
'''simple docstring''' from math import ceil def UpperCamelCase_ ( A__ : int = 10_01 ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : int = 2 * i + 1 lowerCAmelCase_ : Tuple = 2 * i lowerCAmelCase_ : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
120
1
import argparse from collections import defaultdict def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" _snake_case = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_snake_case , '''r''' ) as f: _snake_case = f.readlines() _snake_case = F"""class {class_name}(""" _snake_case = F"""{4 * ' '}def {test_name}(""" _snake_case = F"""{8 * ' '}{correct_line.split()[0]}""" _snake_case = F"""{16 * ' '}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_snake_case ): _snake_case = True elif in_class and line.startswith(_snake_case ): _snake_case = True elif in_class and in_func and (line.startswith(_snake_case ) or line.startswith(_snake_case )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) _snake_case = False else: new_lines.append(_snake_case ) with open(_snake_case , '''w''' ) as f: for line in new_lines: f.write(_snake_case ) def snake_case_(_UpperCamelCase , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if fail is not None: with open(_snake_case , '''r''' ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_snake_case , '''r''' ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_snake_case ) for line in correct_lines: _snake_case = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __A = parser.parse_args() main(args.correct_filename, args.fail_filename)
352
from __future__ import annotations def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" _snake_case = get_failure_array(_UpperCamelCase ) # 2) Step through text searching for pattern _snake_case, _snake_case = 0, 0 # index into text, pattern while i < len(_UpperCamelCase ): if pattern[j] == text[i]: if j == (len(_UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _snake_case = failure[j - 1] continue i += 1 return False def snake_case_(_UpperCamelCase ) -> list[int]: """simple docstring""" _snake_case = [0] _snake_case = 0 _snake_case = 1 while j < len(_UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _snake_case = failure[i - 1] continue j += 1 failure.append(_UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) __A = '''abc1abc12''' __A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __A = '''ABABX''' __A = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __A = '''AAAB''' __A = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __A = '''abcdabcy''' __A = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __A = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
278
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : List[Any] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __lowerCamelCase ( __a :List[str] , __a :List[Any] , __a :Union[str, Any] , __a :List[Any] ) -> Dict: """simple docstring""" A__ = multiprocessing.Manager() A__ = manager.list() A__ = multiprocessing.Process(target=__a , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __lowerCamelCase ( __a :Optional[Any] , __a :Any , __a :List[Any] ) -> Union[str, Any]: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ = shutil.rmtree A__ = os.rmdir A__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ = {} with swallow_io(): with time_limit(__a ): exec(__a , __a ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. A__ = rmtree A__ = rmdir A__ = chdir @contextlib.contextmanager def __lowerCamelCase ( __a :List[str] ) -> Dict: """simple docstring""" def signal_handler(__a :List[Any] , __a :Optional[Any] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , __a ) signal.signal(signal.SIGALRM , __a ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = WriteOnlyStringIO() with contextlib.redirect_stdout(__a ): with contextlib.redirect_stderr(__a ): with redirect_stdin(__a ): yield @contextlib.contextmanager def __lowerCamelCase ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__a ): yield dirname class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A (io.StringIO ): '''simple docstring''' def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ) -> Dict: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int: """simple docstring""" raise OSError def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return False class A (contextlib._RedirectStream ): # type: ignore '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''stdin''' @contextlib.contextmanager def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]: """simple docstring""" if root == ".": yield return A__ = os.getcwd() os.chdir(__a ) try: yield except BaseException as exc: raise exc finally: os.chdir(__a ) def __lowerCamelCase ( __a :Union[str, Any]=None ) -> Dict: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ = None A__ = None import os A__ = """1""" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None import shutil A__ = None A__ = None A__ = None import subprocess A__ = None # type: ignore A__ = None import sys A__ = None A__ = None A__ = None A__ = None A__ = None
274
1
"""simple docstring""" def _snake_case ( UpperCamelCase : int , UpperCamelCase : int ): return int(input_a == input_a == 0 ) def _snake_case ( ): print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
362
"""simple docstring""" import math import sys def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Dict = """""" try: with open(UpperCamelCase , """rb""" ) as binary_file: UpperCAmelCase : str = binary_file.read() for dat in data: UpperCAmelCase : List[Any] = F"{dat:08b}" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Optional[int] = {"""0""": """0""", """1""": """1"""} UpperCAmelCase , UpperCAmelCase : Optional[int] = """""", """""" UpperCAmelCase : int = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase : Any = lexicon[curr_string] result += last_match_id UpperCAmelCase : Any = last_match_id + """0""" if math.loga(UpperCamelCase ).is_integer(): UpperCAmelCase : Optional[Any] = {} for curr_key in list(UpperCamelCase ): UpperCAmelCase : Dict = lexicon.pop(UpperCamelCase ) UpperCAmelCase : int = new_lex UpperCAmelCase : int = last_match_id + """1""" index += 1 UpperCAmelCase : List[str] = """""" return result def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Dict = 8 try: with open(UpperCamelCase , """wb""" ) as opened_file: UpperCAmelCase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase : List[str] = data_bits[counter:] UpperCAmelCase : Tuple = data_bits[counter + 1 :] return data_bits def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : int = read_file_binary(UpperCamelCase ) UpperCAmelCase : str = remove_prefix(UpperCamelCase ) UpperCAmelCase : Any = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
76
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , a : Optional[int] , a : str=13 , a : str=7 , a : Optional[Any]=True , a : List[Any]=True , a : str=True , a : str=True , a : Dict=99 , a : Dict=32 , a : Union[str, Any]=5 , a : Tuple=4 , a : List[str]=37 , a : Optional[int]="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : Any=5_12 , a : int=16 , a : List[Any]=2 , a : List[str]=0.02 , a : Any=4 , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =True lowerCamelCase : Dict =( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class a__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a ) __lowerCamelCase = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(a )[0] __lowerCamelCase = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , a ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a ) __lowerCamelCase = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(a )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
67
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : int = (1 - _cos) / 2 UpperCAmelCase_ : Optional[Any] = 1 - _cos UpperCAmelCase_ : int = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : List[str] = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = (1 + _cos) / 2 UpperCAmelCase_ : Optional[int] = -1 - _cos UpperCAmelCase_ : Union[str, Any] = 1 + alpha UpperCAmelCase_ : Optional[int] = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : str = sin(__lowerCamelCase ) UpperCAmelCase_ : Tuple = cos(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Any = _sin / 2 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Tuple = -ba UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Any = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = cos(__lowerCamelCase ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : str = -2 * _cos UpperCAmelCase_ : Any = 1 + alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : Union[str, Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 10 ** (gain_db / 40) UpperCAmelCase_ : List[Any] = 1 + alpha * big_a UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha * big_a UpperCAmelCase_ : str = 1 + alpha / big_a UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : str = tau * frequency / samplerate UpperCAmelCase_ : int = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : Tuple = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : List[str] = big_a * (pmc + aaa) UpperCAmelCase_ : int = 2 * big_a * mpc UpperCAmelCase_ : int = big_a * (pmc - aaa) UpperCAmelCase_ : Dict = ppmc + aaa UpperCAmelCase_ : Any = -2 * pmpc UpperCAmelCase_ : List[str] = ppmc - aaa UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : Optional[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : List[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Any = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : Any = big_a * (ppmc + aaa) UpperCAmelCase_ : Union[str, Any] = -2 * big_a * pmpc UpperCAmelCase_ : Dict = big_a * (ppmc - aaa) UpperCAmelCase_ : Optional[int] = pmc + aaa UpperCAmelCase_ : Union[str, Any] = 2 * mpc UpperCAmelCase_ : int = pmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
61
0
import requests from bsa import BeautifulSoup def lowercase (SCREAMING_SNAKE_CASE_ : str = "AAPL" ) -> List[Any]: SCREAMING_SNAKE_CASE = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__lowerCamelCase ).text , 'html.parser' ) SCREAMING_SNAKE_CASE = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
360
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = [0] * size SCREAMING_SNAKE_CASE = [0] * size @staticmethod def __A ( lowerCAmelCase__ ) -> int: return index | (index + 1) @staticmethod def __A ( lowerCAmelCase__ ) -> int: return (index & (index + 1)) - 1 def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = value while index < self.size: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_next(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE = 0 while left <= right: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) if left <= current_left: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.tree[right] ) SCREAMING_SNAKE_CASE = current_left else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
38
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def __UpperCAmelCase ( __UpperCamelCase ): if hor == 1_28: __lowercase : Any = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __lowercase : List[str] = (32, 1_28, 2_56) __lowercase : Optional[Any] = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: __lowercase : Tuple = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __lowercase : Tuple = (32, 64, 1_28, 2_56) __lowercase : Tuple = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') __lowercase : Tuple = torch.load(f"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) __lowercase : Dict = model.state_dict() __lowercase : Optional[Any] = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_55_36, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } __lowercase : int = UNetaDModel(**__UpperCamelCase ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowercase : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase : Dict = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(f"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , '''w''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( ): __lowercase : List[Any] = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 1_28, 2_56), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_55_36, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } __lowercase : List[Any] = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) __lowercase : Optional[Any] = model __lowercase : str = UNetaDModel(**__UpperCamelCase ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowercase : List[str] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase : Optional[int] = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
249
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ): __lowercase : Tuple = {} if train_file is not None: __lowercase : List[Any] = [train_file] if eval_file is not None: __lowercase : List[str] = [eval_file] if test_file is not None: __lowercase : List[Any] = [test_file] __lowercase : List[str] = datasets.load_dataset('''csv''' , data_files=__UpperCamelCase ) __lowercase : str = list(ds[list(files.keys() )[0]].features.keys() ) __lowercase : Union[str, Any] = features_name.pop(__UpperCamelCase ) __lowercase : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase : List[str] = {label: i for i, label in enumerate(__UpperCamelCase )} __lowercase : Optional[Any] = tokenizer.model_input_names __lowercase : Optional[Any] = {} if len(__UpperCamelCase ) == 1: for k in files.keys(): __lowercase : str = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) , batched=__UpperCamelCase , ) elif len(__UpperCamelCase ) == 2: for k in files.keys(): __lowercase : List[Any] = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' , ) , batched=__UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase : Dict = {k: v for k, v in ex.items() if k in input_names} __lowercase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase : Tuple = {k: v for k, v in ex.items() if k in input_names} __lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowercase : Dict = labelaid[ex[label_name]] yield (d, label) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase : str = ( tf.data.Dataset.from_generator( __UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : UpperCamelCase =field(metadata={"help": "Which column contains the label"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the training file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the development file"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "The path of the test file"} ) UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase =field( default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase_ : UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase =field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase =field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase ,__lowercase ,__lowercase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCamelCase ) -> Dict: __lowercase : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase : Optional[Any] = TFTrainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase : List[Any] = trainer.evaluate() __lowercase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__UpperCamelCase ) return results if __name__ == "__main__": main()
249
1
'''simple docstring''' import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _lowerCAmelCase ( lowercase=None ) -> Any: __lowerCAmelCase = argparse.ArgumentParser(add_help=lowercase , allow_abbrev=lowercase ) # The main config parser __lowerCAmelCase = config_command_parser(lowercase ) # The subparser to add commands to __lowerCAmelCase = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowercase , parents=[parent_parser] ) update_command_parser(lowercase , parents=[parent_parser] ) return config_parser def _lowerCAmelCase ( ) -> List[Any]: __lowerCAmelCase = get_config_parser() __lowerCAmelCase = config_parser.parse_args() if not hasattr(lowercase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
352
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : List[str] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""decision_transformer""" a : List[Any] =["""past_key_values"""] a : Dict ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=17,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
46
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a__ ( _UpperCamelCase : BertModel ,_UpperCamelCase : str ,_UpperCamelCase : str ): __lowerCamelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __lowerCamelCase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) __lowerCamelCase = model.state_dict() def to_tf_var_name(_UpperCamelCase : str ): for patt, repl in iter(_UpperCamelCase ): __lowerCamelCase = name.replace(_UpperCamelCase ,_UpperCamelCase ) return F"""bert/{name}""" def create_tf_var(_UpperCamelCase : np.ndarray ,_UpperCamelCase : str ,_UpperCamelCase : tf.Session ): __lowerCamelCase = tf.dtypes.as_dtype(tensor.dtype ) __lowerCamelCase = tf.get_variable(dtype=_UpperCamelCase ,shape=tensor.shape ,name=_UpperCamelCase ,initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __lowerCamelCase = to_tf_var_name(_UpperCamelCase ) __lowerCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __lowerCamelCase = torch_tensor.T __lowerCamelCase = create_tf_var(tensor=_UpperCamelCase ,name=_UpperCamelCase ,session=_UpperCamelCase ) tf.keras.backend.set_value(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = session.run(_UpperCamelCase ) print(F"""Successfully created {tf_name}: {np.allclose(_UpperCamelCase ,_UpperCamelCase )}""" ) __lowerCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(_UpperCamelCase ,os.path.join(_UpperCamelCase ,model_name.replace('''-''' ,'''_''' ) + '''.ckpt''' ) ) def a__ ( _UpperCamelCase : Union[str, Any]=None ): __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,required=_UpperCamelCase ,help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,help='''Directory in which to save tensorflow model''' ) __lowerCamelCase = parser.parse_args(_UpperCamelCase ) __lowerCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name ,state_dict=torch.load(args.pytorch_model_path ) ,cache_dir=args.cache_dir ,) convert_pytorch_checkpoint_to_tf(model=_UpperCamelCase ,ckpt_dir=args.tf_cache_dir ,model_name=args.model_name ) if __name__ == "__main__": main()
330
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = AltDiffusionPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _snake_case = 77 _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> List[str]: if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() torch.manual_seed(0 ) _snake_case = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _snake_case = RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) _snake_case = text_encoder _snake_case = AltDiffusionPipeline(**lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'A photo of an astronaut' _snake_case = alt_pipe(**lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> str: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _snake_case = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _snake_case = RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) _snake_case = text_encoder _snake_case = AltDiffusionPipeline(**lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = alt_pipe(**lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ) -> Tuple: # make sure here that pndm scheduler skips prk _snake_case = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = torch.manual_seed(0 ) _snake_case = alt_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> List[Any]: _snake_case = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) _snake_case = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = torch.manual_seed(0 ) _snake_case = alt_pipe([prompt] , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='numpy' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
351
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowerCAmelCase__ : Optional[int] = hex_num[0] == """-""" if is_negative: lowerCAmelCase__ : Any = hex_num[1:] try: lowerCAmelCase__ : Optional[int] = int(UpperCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowerCAmelCase__ : Optional[int] = """""" while int_num > 0: lowerCAmelCase__ : str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,**__UpperCAmelCase ) -> Tuple: super().__init__(**__UpperCAmelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> str: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[Any] = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : int = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowerCAmelCase__ : Optional[int] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="This is a photo of {}." ) -> int: lowerCAmelCase__ : str = load_image(__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.image_processor(images=[image] ,return_tensors=self.framework ) lowerCAmelCase__ : List[Any] = candidate_labels lowerCAmelCase__ : List[str] = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ : Optional[Any] = self.tokenizer(__UpperCAmelCase ,return_tensors=self.framework ,padding=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = [text_inputs] return inputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = model_inputs.pop("""candidate_labels""" ) lowerCAmelCase__ : Union[str, Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,__UpperCAmelCase ): lowerCAmelCase__ : int = text_inputs[0] else: # Batching case. lowerCAmelCase__ : Dict = text_inputs[0][0] lowerCAmelCase__ : Any = self.model(**__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Union[str, Any] = model_outputs.pop("""candidate_labels""" ) lowerCAmelCase__ : List[str] = model_outputs["""logits"""][0] if self.framework == "pt": lowerCAmelCase__ : List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ : Optional[Any] = probs.tolist() if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = [scores] elif self.framework == "tf": lowerCAmelCase__ : Any = stable_softmax(__UpperCAmelCase ,axis=-1 ) lowerCAmelCase__ : List[Any] = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCAmelCase__ : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase ,__UpperCAmelCase ) ,key=lambda __UpperCAmelCase : -x[0] ) ] return result
37
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __magic_name__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __magic_name__ = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __magic_name__ = "|".join(sys.argv[1:]) __magic_name__ = re.compile(rf'''^({joined_dirs}).*?\.py$''') __magic_name__ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
152
def _lowerCAmelCase ( A__: int = 1000 ): '''simple docstring''' UpperCAmelCase = 2**power UpperCAmelCase = str(A__ ) UpperCAmelCase = list(A__ ) UpperCAmelCase = 0 for i in list_num: sum_of_num += int(A__ ) return sum_of_num if __name__ == "__main__": __magic_name__ = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) __magic_name__ = solution(power) print("Sum of the digits is: ", result)
152
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : List[str] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "mvp" A_ = ["past_key_values"] A_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __a=5_0267 , __a=1024 , __a=12 , __a=4096 , __a=16 , __a=12 , __a=4096 , __a=16 , __a=0.0 , __a=0.0 , __a="gelu" , __a=1024 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=0.0 , __a=False , __a=True , __a=1 , __a=0 , __a=2 , __a=True , __a=2 , __a=2 , __a=False , __a=100 , __a=800 , **__a , ): '''simple docstring''' __a : Tuple = vocab_size __a : List[str] = max_position_embeddings __a : int = d_model __a : List[Any] = encoder_ffn_dim __a : List[Any] = encoder_layers __a : Any = encoder_attention_heads __a : Tuple = decoder_ffn_dim __a : List[str] = decoder_layers __a : List[str] = decoder_attention_heads __a : List[Any] = dropout __a : Any = attention_dropout __a : List[str] = activation_dropout __a : Optional[Any] = activation_function __a : List[Any] = init_std __a : Any = encoder_layerdrop __a : Optional[Any] = decoder_layerdrop __a : Dict = classifier_dropout __a : Union[str, Any] = use_cache __a : Any = encoder_layers __a : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __a : Tuple = use_prompt __a : Tuple = prompt_length __a : str = prompt_mid_dim super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , **__a , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __a ): __a : Optional[Any] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
27
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : Union[str, Any] = x_num * y_den + x_den * y_num __a : Optional[Any] = x_den * y_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 __a : int = x_num * y_num __a : Optional[Any] = x_den * y_num + x_num * y_den __a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : List[Any] = x_num * x_num * y_num * y_num __a : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
27
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _lowercase: int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowercase: str = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } _lowercase: str = { "unc-nlp/lxmert-base-uncased": 512, } _lowercase: Optional[int] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_INIT_CONFIGURATION __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = LxmertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ): """simple docstring""" super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase_ ) != tokenize_chinese_chars ): a = getattr(lowerCamelCase_ , normalizer_state.pop("type" ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**lowerCamelCase_ ) a = do_lower_case def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
368
import math from numpy import inf from scipy.integrate import quad def a( A : float ) -> float: """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(A , 0 , A , args=(A) )[0] def a( A : float , A : float ) -> float: """simple docstring""" return math.pow(A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
71
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def UpperCamelCase_ ( *__lowercase : Optional[Any] , **__lowercase : int ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): __lowerCamelCase : List[Any] =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : Any , __lowercase : List[Any] ): '''simple docstring''' __a = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __a = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def UpperCamelCase_ ( self : List[str] , __lowercase : Optional[int] , __lowercase : Dict ): '''simple docstring''' __a = vqa_pipeline(__lowercase , top_k=1 ) self.assertEqual( __lowercase , [ [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}], [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}], ] , ) @require_torch def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __a = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __a = """How many cats are there?""" __a = vqa_pipeline(image=__lowercase , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __lowercase , [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}, {"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}] ) __a = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __lowercase , [{"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}, {"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase )}] ) @slow @require_torch def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __a = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __a = """How many cats are there?""" __a = vqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __a = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __a = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass
302
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowerCamelCase :Tuple = '''path-to-your-trained-model''' lowerCamelCase :Optional[int] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowerCamelCase :Optional[int] = '''A photo of sks dog in a bucket''' lowerCamelCase :List[Any] = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
206
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = len(_lowerCamelCase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase__ : Union[str, Any] = 0 print(_lowerCamelCase , end=',' ) # Consider rest of the activities for j in range(_lowerCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowerCamelCase , end=',' ) lowerCamelCase__ : Dict = j if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = [1, 3, 0, 5, 8, 5] A_ : Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __snake_case = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' __snake_case = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = CHRF.CHAR_ORDER , UpperCamelCase_ = CHRF.WORD_ORDER , UpperCamelCase_ = CHRF.BETA , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , ): '''simple docstring''' UpperCamelCase__ :List[str] = len(references[0] ) if any(len(UpperCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) UpperCamelCase__ :Optional[Any] = [[refs[i] for refs in references] for i in range(UpperCamelCase_ )] UpperCamelCase__ :str = CHRF(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :int = sb_chrf.corpus_score(UpperCamelCase_ , UpperCamelCase_ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
97
from copy import deepcopy class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : list[int] | None = None , _SCREAMING_SNAKE_CASE : int | None = None )-> None: if arr is None and size is not None: lowerCAmelCase__ : str = size lowerCAmelCase__ : Optional[Any] = [0] * size elif arr is not None: self.init(_SCREAMING_SNAKE_CASE ) else: raise ValueError('''Either arr or size must be specified''' ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : list[int] )-> None: lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = deepcopy(_SCREAMING_SNAKE_CASE ) for i in range(1 , self.size ): lowerCAmelCase__ : Optional[Any] = self.next_(_SCREAMING_SNAKE_CASE ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase__( self : Optional[int] )-> list[int]: lowerCAmelCase__ : Any = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCAmelCase__ : Dict = self.next_(_SCREAMING_SNAKE_CASE ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int )-> int: return index + (index & (-index)) @staticmethod def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int )-> int: return index - (index & (-index)) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase__ : List[str] = self.next_(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> None: self.add(_SCREAMING_SNAKE_CASE , value - self.get(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : int )-> int: if right == 0: return 0 lowerCAmelCase__ : Any = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase__ : Dict = self.prev(_SCREAMING_SNAKE_CASE ) return result def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> int: return self.prefix(_SCREAMING_SNAKE_CASE ) - self.prefix(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : int )-> int: return self.query(_SCREAMING_SNAKE_CASE , index + 1 ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : int )-> int: value -= self.tree[0] if value < 0: return -1 lowerCAmelCase__ : Any = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase__ : List[Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
131
0
import mpmath # for roots of unity import numpy as np class lowercase : '''simple docstring''' def __init__(self , __a=None , __a=None ) -> Any: """simple docstring""" UpperCAmelCase__ = list(poly_a or [0] )[:] UpperCAmelCase__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCAmelCase__ = self.__multiply() def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(__a ) <= 1: return dft[0] # UpperCAmelCase__ = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase__ = [[] for i in range(__a )] UpperCAmelCase__ = self.root**next_ncol # First half of next step UpperCAmelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__a ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__a ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase__ = new_dft UpperCAmelCase__ = next_ncol // 2 return dft[0] def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.__dft('A' ) UpperCAmelCase__ = self.__dft('B' ) UpperCAmelCase__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase__ = 2 while next_ncol <= self.c_max_length: UpperCAmelCase__ = [[] for i in range(__a )] UpperCAmelCase__ = self.root ** (next_ncol // 2) UpperCAmelCase__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase__ = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ) -> str: """simple docstring""" UpperCAmelCase__ = 'A = ' + ' + '.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase__ = 'B = ' + ' + '.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase__ = 'A*B = ' + ' + '.join( F"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return F"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=9_9 , __magic_name__=3_2 , __magic_name__=2 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=1_6 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ): lowerCamelCase : Union[str, Any] = parent lowerCamelCase : List[str] = 1_3 lowerCamelCase : Union[str, Any] = 7 lowerCamelCase : int = True lowerCamelCase : Optional[int] = True lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True lowerCamelCase : Union[str, Any] = 9_9 lowerCamelCase : List[str] = 3_2 lowerCamelCase : Optional[Any] = 2 lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : str = 3_7 lowerCamelCase : Union[str, Any] = """gelu""" lowerCamelCase : str = 0.1 lowerCamelCase : List[str] = 0.1 lowerCamelCase : str = 5_1_2 lowerCamelCase : int = 1_6 lowerCamelCase : List[str] = 2 lowerCamelCase : Optional[Any] = 0.02 lowerCamelCase : Optional[Any] = 3 lowerCamelCase : List[Any] = 4 lowerCamelCase : Dict = None def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Optional[int] = None if self.use_input_mask: lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : Optional[Any] = None lowerCamelCase : Any = None lowerCamelCase : int = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Dict = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__magic_name__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Union[str, Any] = TFRoFormerModel(config=__magic_name__ ) lowerCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCamelCase : int = [input_ids, input_mask] lowerCamelCase : Any = model(__magic_name__ ) lowerCamelCase : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : str = True lowerCamelCase : Tuple = TFRoFormerForCausalLM(config=__magic_name__ ) lowerCamelCase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase : Tuple = model(__magic_name__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Optional[int] = TFRoFormerForMaskedLM(config=__magic_name__ ) lowerCamelCase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase : Dict = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Dict = self.num_labels lowerCamelCase : Optional[int] = TFRoFormerForSequenceClassification(config=__magic_name__ ) lowerCamelCase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase : Dict = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Any = self.num_choices lowerCamelCase : str = TFRoFormerForMultipleChoice(config=__magic_name__ ) lowerCamelCase : List[str] = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : Dict = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : int = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCamelCase : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : List[Any] = self.num_labels lowerCamelCase : List[str] = TFRoFormerForTokenClassification(config=__magic_name__ ) lowerCamelCase : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase : int = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : str = TFRoFormerForQuestionAnswering(config=__magic_name__ ) lowerCamelCase : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase : Any = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[int] = config_and_inputs lowerCamelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : str = False def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase__ ( self ): lowerCamelCase : str = TFRoFormerModelTester(self ) lowerCamelCase : Optional[int] = ConfigTester(self , config_class=__magic_name__ , hidden_size=3_7 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(__magic_name__ ) @require_tf class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Any = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowerCamelCase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Optional[Any] = model(__magic_name__ )[0] # TODO Replace vocab size lowerCamelCase : Optional[Any] = 5_0_0_0_0 lowerCamelCase : Union[str, Any] = [1, 6, vocab_size] self.assertEqual(output.shape , __magic_name__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCamelCase : Union[str, Any] = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) @require_tf class A__ ( unittest.TestCase): _UpperCAmelCase : List[str] = 1E-4 def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = tf.constant([[4, 1_0]] ) lowerCamelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCamelCase : Optional[Any] = emba(input_ids.shape ) lowerCamelCase : Tuple = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , atol=self.tolerance ) def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowerCamelCase : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) lowerCamelCase : List[str] = emba.weight[:3, :5] tf.debugging.assert_near(__magic_name__ , __magic_name__ , atol=self.tolerance ) @require_tf class A__ ( unittest.TestCase): _UpperCAmelCase : Optional[int] = 1E-4 def UpperCamelCase__ ( self ): # 2,12,16,64 lowerCamelCase : Union[str, Any] = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowerCamelCase : Dict = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowerCamelCase : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) lowerCamelCase : List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] lowerCamelCase , lowerCamelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase : Union[str, Any] = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowerCamelCase : str = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __magic_name__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __magic_name__ , atol=self.tolerance )
287
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCamelCase ={ """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class A__ ( unittest.TestCase): @classmethod def UpperCamelCase__ ( cls ): lowerCamelCase : int = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def UpperCamelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowerCamelCase : Any = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__magic_name__ , repo_id="""test-config""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCamelCase : Optional[Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowerCamelCase : Optional[int] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __magic_name__ , repo_id="""valid_org/test-config-org""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCamelCase : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def UpperCamelCase__ ( self ): CustomConfig.register_for_auto_class() lowerCamelCase : Optional[Any] = CustomConfig(attribute=4_2 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowerCamelCase : List[str] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 4_2 ) class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): lowerCamelCase : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase : Optional[int] = c.n_embd + 1 # int lowerCamelCase : Optional[int] = c.resid_pdrop + 1.0 # float lowerCamelCase : Tuple = not c.scale_attn_weights # bool lowerCamelCase : Any = c.summary_type + """foo""" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__magic_name__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(__magic_name__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(__magic_name__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(__magic_name__ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCamelCase__ ( self ): lowerCamelCase : str = PretrainedConfig() lowerCamelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __magic_name__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowerCamelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(__magic_name__ , __magic_name__ )] if len(__magic_name__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F''' {", ".join(__magic_name__ )}.''' ) def UpperCamelCase__ ( self ): with self.assertRaises(__magic_name__ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowerCamelCase : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ): # A mock response for an HTTP head request to emulate server down lowerCamelCase : Dict = mock.Mock() lowerCamelCase : Optional[int] = 5_0_0 lowerCamelCase : List[Any] = {} lowerCamelCase : Tuple = HTTPError lowerCamelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__magic_name__ ) as mock_head: lowerCamelCase : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ): # This test is for deprecated behavior and can be removed in v5 lowerCamelCase : List[str] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = AutoConfig.from_pretrained("""bert-base-cased""" ) lowerCamelCase : Optional[Any] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__magic_name__ ) lowerCamelCase : str = 2 json.dump(configuration.to_dict() , open(os.path.join(__magic_name__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase : Any = ["""config.42.0.0.json"""] lowerCamelCase : Optional[Any] = 7_6_8 configuration.save_pretrained(__magic_name__ ) shutil.move(os.path.join(__magic_name__ , """config.4.0.0.json""" ) , os.path.join(__magic_name__ , """config.42.0.0.json""" ) ) lowerCamelCase : int = AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCamelCase__ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowerCamelCase : str = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowerCamelCase : Tuple = """v4.0.0""" lowerCamelCase , lowerCamelCase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( __magic_name__ , return_unused_kwargs=__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__magic_name__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase : Tuple = """v3.0.0""" lowerCamelCase : Any = old_transformers.models.auto.AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
287
1
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = MgpstrTokenizer UpperCAmelCase : List[str] = False UpperCAmelCase : Optional[int] = {} UpperCAmelCase : List[str] = False def __snake_case ( self ) -> int: super().setUp() # fmt: off lowerCAmelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A_ ) + """\n""" ) def __snake_case ( self , **A_ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __snake_case ( self , A_ ) -> Dict: lowerCAmelCase = """tester""" lowerCAmelCase = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __snake_case ( self ) -> Optional[int]: pass def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCAmelCase = tokenizer.encode([special_token] , add_special_tokens=A_ ) self.assertEqual(len(A_ ) , 1 ) lowerCAmelCase = tokenizer.decode(A_ , skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase, lowerCAmelCase = self.get_input_output_texts(A_ ) lowerCAmelCase = tokenizer.tokenize(A_ ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(A_ ) lowerCAmelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ) , 0 ) lowerCAmelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(text_a.replace(""" """ , """""" ) , A_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __snake_case ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __snake_case ( self ) -> Tuple: pass
187
'''simple docstring''' class __snake_case: '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase = {} # Mapping from char to TrieNode lowerCAmelCase = False def __snake_case ( self , A_ ) -> None: for word in words: self.insert(A_ ) def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self for char in word: if char not in curr.nodes: lowerCAmelCase = TrieNode() lowerCAmelCase = curr.nodes[char] lowerCAmelCase = True def __snake_case ( self , A_ ) -> bool: lowerCAmelCase = self for char in word: if char not in curr.nodes: return False lowerCAmelCase = curr.nodes[char] return curr.is_leaf def __snake_case ( self , A_ ) -> None: def _delete(A_ , A_ , A_ ) -> bool: if index == len(A_ ): # If word does not exist if not curr.is_leaf: return False lowerCAmelCase = False return len(curr.nodes ) == 0 lowerCAmelCase = word[index] lowerCAmelCase = curr.nodes.get(A_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCAmelCase = _delete(A_ , A_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A_ , 0 ) def _snake_case ( _SCREAMING_SNAKE_CASE : TrieNode , _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" if node.is_leaf: print(_SCREAMING_SNAKE_CASE , end=""" """ ) for key, value in node.nodes.items(): print_words(_SCREAMING_SNAKE_CASE , word + key ) def _snake_case ( ) -> bool: """simple docstring""" lowerCAmelCase = """banana bananas bandana band apple all beast""".split() lowerCAmelCase = TrieNode() root.insert_many(_SCREAMING_SNAKE_CASE ) # print_words(root, "") assert all(root.find(_SCREAMING_SNAKE_CASE ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool ) -> None: """simple docstring""" print(str(_SCREAMING_SNAKE_CASE ) , """works!""" if passes else """doesn't work :(""" ) def _snake_case ( ) -> None: """simple docstring""" assert test_trie() def _snake_case ( ) -> None: """simple docstring""" print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
187
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , '''num_encoder_blocks''' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]=1_3 , lowerCAmelCase_ : Union[str, Any]=6_4 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : List[Any]=[2, 2, 2, 2] , lowerCAmelCase_ : Tuple=[8, 4, 2, 1] , lowerCAmelCase_ : Any=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ : str=[1, 4, 8, 1_6] , lowerCAmelCase_ : Any=[1, 2, 4, 8] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : str=None , ): """simple docstring""" _A: Union[str, Any] = parent _A: Tuple = batch_size _A: Union[str, Any] = image_size _A: Union[str, Any] = num_channels _A: int = num_encoder_blocks _A: int = sr_ratios _A: List[Any] = depths _A: str = hidden_sizes _A: int = downsampling_rates _A: Optional[int] = num_attention_heads _A: Dict = is_training _A: Union[str, Any] = use_labels _A: List[Any] = hidden_act _A: List[str] = hidden_dropout_prob _A: int = attention_probs_dropout_prob _A: Union[str, Any] = initializer_range _A: List[Any] = num_labels _A: str = scope def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: List[Any] = None if self.use_labels: _A: Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A: Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : str ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Optional[int] = SegformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Any = model(lowerCAmelCase_ ) _A: List[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ): """simple docstring""" _A: int = self.num_labels _A: Union[str, Any] = SegformerForSemanticSegmentation(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _A: Tuple = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Dict = 1 _A: List[Any] = SegformerForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertGreater(result.loss , 0.0 ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: int = self.prepare_config_and_inputs() _A , _A , _A: Dict = config_and_inputs _A: List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __UpperCamelCase : Union[str, Any] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = True __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = SegformerModelTester(self ) _A: int = SegformerConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase_ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def __magic_name__ ( self : Any ): """simple docstring""" pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def __magic_name__ ( self : int ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: str = model_class(lowerCAmelCase_ ) _A: Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: str = [*signature.parameters.keys()] _A: int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A: Optional[int] = True for model_class in self.all_model_classes: _A: Union[str, Any] = True _A: Optional[int] = False _A: Any = True _A: int = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Dict = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Any = outputs.attentions _A: Tuple = sum(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A: List[Any] = True _A: List[Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Optional[int] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # verify the first attentions (first block, first layer) _A: Union[str, Any] = (self.model_tester.image_size // 4) ** 2 _A: List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _A: int = (self.model_tester.image_size // 3_2) ** 2 _A: Union[str, Any] = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _A: Tuple = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _A: Union[str, Any] = True _A: Tuple = True _A: Union[str, Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Optional[int] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _A: List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # verify the first attentions (first block, first layer) _A: str = (self.model_tester.image_size // 4) ** 2 _A: List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __magic_name__ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): _A: Dict = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: str = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: List[Any] = outputs.hidden_states _A: Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _A , _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Any = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: Union[str, Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() _A: str = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_ ): continue _A: List[str] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _A: Optional[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _A: Any = model(**lowerCAmelCase_ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : int ): """simple docstring""" pass @slow def __magic_name__ ( self : Dict ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Any = SegformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> Dict: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : List[str] ): """simple docstring""" # only resize + normalize _A: List[Any] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_ ) _A: Tuple = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowerCAmelCase_ ) _A: Tuple = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) _A: Any = encoded_inputs.pixel_values.to(lowerCAmelCase_ ) with torch.no_grad(): _A: str = model(lowerCAmelCase_ ) _A: Optional[Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: str = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : int ): """simple docstring""" # only resize + normalize _A: List[str] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_ ) _A: Any = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(lowerCAmelCase_ ) _A: Tuple = prepare_img() _A: Optional[int] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) _A: Union[str, Any] = encoded_inputs.pixel_values.to(lowerCAmelCase_ ) with torch.no_grad(): _A: List[Any] = model(lowerCAmelCase_ ) _A: Union[str, Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Any = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1e-1 ) ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" # only resize + normalize _A: List[str] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_ ) _A: Optional[Any] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowerCAmelCase_ ) _A: Dict = prepare_img() _A: Dict = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) _A: Optional[int] = encoded_inputs.pixel_values.to(lowerCAmelCase_ ) with torch.no_grad(): _A: List[Any] = model(lowerCAmelCase_ ) _A: Optional[Any] = outputs.logits.detach().cpu() _A: Any = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0_0, 3_0_0)] ) _A: Any = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase_ ) _A: str = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ ) _A: str = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase_ )
121
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ ( a , a , a=8 ) -> List[Any]: _A: int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A: str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ ( a , a=5_12 , a=5_12 ) -> Dict: _A: Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _A: Tuple = np.array(pil_image.convert('''RGB''' ) ) _A: List[str] = arr.astype(np.floataa ) / 127.5 - 1 _A: Tuple = np.transpose(a , [2, 0, 1] ) _A: Any = torch.from_numpy(a ).unsqueeze(0 ) return image class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) _A: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _A: Union[str, Any] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) _A: str = max(num_inference_steps - init_timestep , 0 ) _A: str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}""" ) _A: Optional[int] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _A: Optional[int] = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] _A: Optional[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) else: _A: Optional[int] = self.movq.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) _A: int = self.movq.config.scaling_factor * init_latents _A: Optional[Any] = torch.cat([init_latents] , dim=0 ) _A: Any = init_latents.shape _A: Optional[Any] = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents _A: Union[str, Any] = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = init_latents return latents def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) _A: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Any=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A: int = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A: List[Any] = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. _A: Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self : List[Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Any = self._execution_device _A: Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Any = torch.cat(lowerCAmelCase_ , dim=0 ) _A: int = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _A: Any = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: str = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(lowerCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _A: List[str] = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in image] , dim=0 ) _A: Tuple = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_ ) _A: Optional[Any] = self.movq.encode(lowerCAmelCase_ )['''latents'''] _A: Optional[int] = latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _A , _A: List[Any] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A: Optional[int] = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) _A: Any = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: str = {'''image_embeds''': image_embeds} _A: Optional[int] = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: _A , _A: str = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A: int = noise_pred.chunk(2 ) _A , _A: int = variance_pred.chunk(2 ) _A: Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A: List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A: Any = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing _A: Tuple = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _A: int = image * 0.5 + 0.5 _A: Any = image.clamp(0 , 1 ) _A: Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: Union[str, Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
121
1
"""simple docstring""" from __future__ import annotations import math def __A ( a_ :int , a_ :int , a_ :bool , a_ :list[int] , a_ :float) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''') if not scores: raise ValueError('''Scores cannot be empty''') if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_) , ) ) def __A ( ) -> None: __a : List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] __a : Dict = math.log(len(snake_case_) , 2) print(F"""Optimal value : {minimax(0 , 0 , snake_case_ , snake_case_ , snake_case_)}""") if __name__ == "__main__": import doctest doctest.testmod() main()
368
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
0
'''simple docstring''' def _a( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _a( ): '''simple docstring''' print(sum_of_series(1, 1, 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
365
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
0
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''scipy'''] def __init__( self : int , *_A : str , **_A : Any ): """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *_A : int , **_A : Any ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCAmelCase__ ( cls : int , *_A : Tuple , **_A : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
import doctest from collections import deque import numpy as np class lowerCAmelCase : def __init__( self : List[Any] ) -> None: lowerCamelCase__ : List[str] = [2, 1, 2, -1] lowerCamelCase__ : int = [1, 2, 3, 4] def A_ ( self : Optional[int] ) -> list[float]: lowerCamelCase__ : Dict = len(self.first_signal ) lowerCamelCase__ : int = len(self.second_signal ) lowerCamelCase__ : int = max(UpperCAmelCase , UpperCAmelCase ) # create a zero matrix of max_length x max_length lowerCamelCase__ : Dict = [[0] * max_length for i in range(UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = deque(self.second_signal ) rotated_signal.rotate(UpperCAmelCase ) for j, item in enumerate(UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal lowerCamelCase__ : Any = np.matmul(np.transpose(UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
45
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCAmelCase ( pl.LightningModule ): def __init__( self : List[str] , UpperCAmelCase : Optional[Any] ) -> int: super().__init__() lowerCamelCase__ : List[str] = model lowerCamelCase__ : Dict = 2 lowerCamelCase__ : Dict = nn.Linear(self.model.config.hidden_size , self.num_labels ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: # load longformer model from model identifier lowerCamelCase__ : List[str] = LongformerModel.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Dict = LightningModel(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model lowerCamelCase__ : Dict = LongformerForQuestionAnswering.from_pretrained(_UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
45
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->None: """simple docstring""" warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() # fmt: off a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) a = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } a = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = self.get_tokenizer() a = self.get_image_processor() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
0
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) UpperCamelCase_ : Optional[Any] = logging.getLogger(__name__) UpperCamelCase_ : List[Any] = {'''facebook/bart-base''': BartForConditionalGeneration} UpperCamelCase_ : Dict = {'''facebook/bart-base''': BartTokenizer} def __a ( ) -> Any: """simple docstring""" _snake_case = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=_UpperCamelCase , default=_UpperCamelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=_UpperCamelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=_UpperCamelCase , default=_UpperCamelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=_UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_UpperCamelCase , ) parser.add_argument( "--config_name" , type=_UpperCamelCase , default=_UpperCamelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=_UpperCamelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=_UpperCamelCase , default=_UpperCamelCase , help="Where to store the final ONNX file." ) _snake_case = parser.parse_args() return args def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Tuple="cpu" ) -> Dict: """simple docstring""" _snake_case = model_dict[model_name].from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) _snake_case = tokenizer_dict[model_name].from_pretrained(_UpperCamelCase ) if model_name in ["facebook/bart-base"]: _snake_case = 0 _snake_case = None _snake_case = 0 return huggingface_model, tokenizer def __a ( _UpperCamelCase: Dict , _UpperCamelCase: str , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int] ) -> Tuple: """simple docstring""" model.eval() _snake_case = None _snake_case = torch.jit.script(BARTBeamSearchGenerator(_UpperCamelCase ) ) with torch.no_grad(): _snake_case = "My friends are cool but they eat too many carbs." _snake_case = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="pt" ).to(model.device ) _snake_case = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_UpperCamelCase , max_length=_UpperCamelCase , early_stopping=_UpperCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCamelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCamelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=_UpperCamelCase , ) logger.info("Model exported to {}".format(_UpperCamelCase ) ) _snake_case = remove_dup_initializers(os.path.abspath(_UpperCamelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(_UpperCamelCase ) ) _snake_case = onnxruntime.InferenceSession(_UpperCamelCase ) _snake_case = ort_sess.run( _UpperCamelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(_UpperCamelCase ), "max_length": np.array(_UpperCamelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def __a ( ) -> Optional[int]: """simple docstring""" _snake_case = parse_args() _snake_case = 5 _snake_case = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _snake_case = torch.device(args.device ) _snake_case , _snake_case = load_model_tokenizer(args.model_name_or_path , _UpperCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(_UpperCamelCase ) if args.max_length: _snake_case = args.max_length if args.num_beams: _snake_case = args.num_beams if args.output_file_path: _snake_case = args.output_file_path else: _snake_case = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
142
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def __a ( _UpperCamelCase: int ) -> str: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _snake_case = precision _snake_case = ceil(precision / 14 ) _snake_case = 426_880 * Decimal(10_005 ).sqrt() _snake_case = 1 _snake_case = 13_591_409 _snake_case = Decimal(_UpperCamelCase ) for k in range(1 , _UpperCamelCase ): _snake_case = factorial(6 * k ) // (factorial(3 * k ) * factorial(_UpperCamelCase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase_ : Any = 50 print(F'The first {n} digits of pi is: {pi(n)}')
142
1
import requests from bsa import BeautifulSoup def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : int = BeautifulSoup(requests.get(_UpperCAmelCase , params=_UpperCAmelCase ).content , """html.parser""" ) lowercase : int = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) lowercase : Union[str, Any] = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": lowercase : Tuple = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
20
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , a_ : List[Any]="</s>" , a_ : str="<unk>" , a_ : Tuple="<pad>" , a_ : List[Any]=1_25 , a_ : Any=None , **a_ : Tuple , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : Optional[Any] = [F'<extra_id_{i}>' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase : Optional[Any] = len(set(filter(lambda a_ : bool('''extra_id''' in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __UpperCAmelCase : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token __UpperCAmelCase : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token __UpperCAmelCase : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token super().__init__( eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) __UpperCAmelCase : Dict = extra_ids __UpperCAmelCase : Any = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase : Optional[int] = len(self.special_tokens_encoder ) __UpperCAmelCase : Union[str, Any] = len(a_ ) for i, token in enumerate(a_ ): __UpperCAmelCase : Union[str, Any] = self.vocab_size + i - n __UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__ ( self : Tuple ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__ ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a_ )) + [1] return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def snake_case__ ( self : Any , a_ : List[int] ): '''simple docstring''' if len(a_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self : Optional[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._add_eos_if_not_present(a_ ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase : List[str] = self._add_eos_if_not_present(a_ ) return token_ids_a + token_ids_a def snake_case__ ( self : List[Any] , a_ : str ): '''simple docstring''' __UpperCAmelCase : str = [chr(a_ ) for i in text.encode('''utf-8''' )] return tokens def snake_case__ ( self : Optional[Any] , a_ : int ): '''simple docstring''' if token in self.special_tokens_encoder: __UpperCAmelCase : Union[str, Any] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase : Optional[Any] = self.added_tokens_encoder[token] elif len(a_ ) != 1: __UpperCAmelCase : int = self.unk_token_id else: __UpperCAmelCase : List[str] = ord(a_ ) + self._num_special_tokens return token_id def snake_case__ ( self : Union[str, Any] , a_ : Optional[int] ): '''simple docstring''' if index in self.special_tokens_decoder: __UpperCAmelCase : Dict = self.special_tokens_decoder[index] else: __UpperCAmelCase : List[Any] = chr(index - self._num_special_tokens ) return token def snake_case__ ( self : int , a_ : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = b'''''' for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase : Optional[int] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __UpperCAmelCase : List[str] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __UpperCAmelCase : Tuple = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __UpperCAmelCase : int = token.encode('''utf-8''' ) else: __UpperCAmelCase : Any = bytes([ord(a_ )] ) bstring += tok_string __UpperCAmelCase : Dict = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__ ( self : Tuple , a_ : str , a_ : Optional[str] = None ): '''simple docstring''' return ()
226
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __a (UpperCamelCase_): '''simple docstring''' def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _a ( self ) -> str: """simple docstring""" with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _a ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _a ( self ) -> Tuple: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE__ : Any = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _a ( self ) -> List[Any]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _a ( self ) -> Any: """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE__ : Union[str, Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=_a ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE__ : Optional[int] = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , _a ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple = pa.BufferReader(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , pa.Buffer ) else pa.memory_map(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.ipc.open_stream(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple = pa.BufferOutputStream() SCREAMING_SNAKE_CASE__ : List[str] = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE__ : int = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.BufferOutputStream() SCREAMING_SNAKE_CASE__ : List[Any] = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=__lowerCAmelCase , features=__lowerCAmelCase ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE__ : Tuple = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE__ : str = pa.ipc.open_stream(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : pa.Table = f.read_all() SCREAMING_SNAKE_CASE__ : Any = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowerCAmelCase ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="""split_name""" , check_duplicates=__lowerCAmelCase , ) as writer: with pytest.raises(__lowerCAmelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="""split_name""" , check_duplicates=__lowerCAmelCase , ) as writer: with pytest.raises(__lowerCAmelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : int = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="""split_name""" , check_duplicates=__lowerCAmelCase , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = pa.BufferOutputStream() SCREAMING_SNAKE_CASE__ : Optional[int] = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE__ : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Dict = pa.BufferOutputStream() SCREAMING_SNAKE_CASE__ : List[str] = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE__ : Dict = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = pa.BufferOutputStream() SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE__ : List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """test.arrow""" ) with ArrowWriter(path=__lowerCAmelCase , schema=pa.schema(__lowerCAmelCase ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(__lowerCAmelCase , 1 ) def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: if pa.types.is_list(__lowerCAmelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if isinstance(lst[0] , __lowerCAmelCase ): change_first_primitive_element_in_list(lst[0] , __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : List[str] = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : Any = pa.array(TypedSequence(__lowerCAmelCase , optimized_int_type=__lowerCAmelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: # in range SCREAMING_SNAKE_CASE__ : List[str] = pa.array(OptimizedTypedSequence(__lowerCAmelCase , col=__lowerCAmelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE__ : int = copy.deepcopy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.array(OptimizedTypedSequence(__lowerCAmelCase , col=__lowerCAmelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=__lowerCAmelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = """mock://dataset-train.arrow""" with ArrowWriter(path=__lowerCAmelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__lowerCAmelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowerCAmelCase ) def _lowercase ( ) -> str: SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.BufferOutputStream() with ParquetWriter(stream=__lowerCAmelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE__ : pa.Table = pq.read_table(__lowerCAmelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: import PIL.Image SCREAMING_SNAKE_CASE__ : List[str] = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCAmelCase , format="""png""" ) SCREAMING_SNAKE_CASE__ : str = pa.BufferOutputStream() with ParquetWriter( stream=__lowerCAmelCase , features=Features({"""image""": Image()} ) , embed_local_files=__lowerCAmelCase ) as writer: writer.write({"""image""": image_path} ) writer.finalize() SCREAMING_SNAKE_CASE__ : str = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE__ : pa.Table = pq.read_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , __lowerCAmelCase ) with open(__lowerCAmelCase , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowercase ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any = pa.schema([pa.field("""col_1""" , pa.string() , nullable=__lowerCAmelCase )] ) SCREAMING_SNAKE_CASE__ : List[str] = pa.BufferOutputStream() with ArrowWriter(stream=__lowerCAmelCase ) as writer: writer._build_writer(inferred_schema=__lowerCAmelCase ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
56
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=False , _a=True , _a="None" , _a=3 , _a=4 , _a=None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : str = seq_length SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : str = use_token_type_ids SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = num_choices SCREAMING_SNAKE_CASE__ : List[str] = relative_attention SCREAMING_SNAKE_CASE__ : str = position_biased_input SCREAMING_SNAKE_CASE__ : List[str] = pos_att_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Tuple: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() SCREAMING_SNAKE_CASE__ : Any = 300 return config def _a ( self , _a ) -> List[str]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = DebertaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , token_type_ids=_a )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForMaskedLM(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = DebertaForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_a ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForTokenClassification(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :str = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :str = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Union[str, Any] = False def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = DebertaModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_a ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_a ) @slow def _a ( self ) -> Optional[int]: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Dict = DebertaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _a ( self ) -> Any: """simple docstring""" pass @slow def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
56
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / """file.csv""" __SCREAMING_SNAKE_CASE : Union[str, Any] = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = tmp_path / """malformed_file.csv""" __SCREAMING_SNAKE_CASE : Union[str, Any] = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / """csv_with_image.csv""" __SCREAMING_SNAKE_CASE : List[str] = textwrap.dedent( F"\\n image\n {image_file}\n " ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / """csv_with_label.csv""" __SCREAMING_SNAKE_CASE : List[Any] = textwrap.dedent( """\ label good bad good """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : int = tmp_path / """csv_with_int_list.csv""" __SCREAMING_SNAKE_CASE : Union[str, Any] = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Optional[int] = Csv() __SCREAMING_SNAKE_CASE : Optional[int] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCamelCase , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): with open(_lowerCamelCase , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = f.read().splitlines()[1] __SCREAMING_SNAKE_CASE : List[Any] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = csv._generate_tables([[csv_file_with_image]] ) __SCREAMING_SNAKE_CASE : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() __SCREAMING_SNAKE_CASE : str = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): with open(_lowerCamelCase , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : str = f.read().splitlines()[1:] __SCREAMING_SNAKE_CASE : Any = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) __SCREAMING_SNAKE_CASE : str = csv._generate_tables([[csv_file_with_label]] ) __SCREAMING_SNAKE_CASE : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() __SCREAMING_SNAKE_CASE : Any = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_lowerCamelCase ) for label in labels] def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda _lowerCamelCase : [int(_lowerCamelCase ) for i in x.split()]} ) __SCREAMING_SNAKE_CASE : str = csv._generate_tables([[csv_file_with_int_list]] ) __SCREAMING_SNAKE_CASE : Dict = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) __SCREAMING_SNAKE_CASE : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
112
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
"""simple docstring""" import numpy as np from PIL import Image def lowercase ( a__ : np.ndarray , a__ : int , a__ : int ) -> np.ndarray: _UpperCamelCase = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 # compute the shape of the output matrix _UpperCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _UpperCamelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _UpperCamelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCamelCase = 0 _UpperCamelCase = 0 return updated_arr def lowercase ( a__ : np.ndarray , a__ : int , a__ : int ) -> np.ndarray: _UpperCamelCase = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 # compute the shape of the output matrix _UpperCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _UpperCamelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _UpperCamelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCamelCase = 0 _UpperCamelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image UpperCAmelCase = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
369
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): snake_case__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = TextaTextGenerationPipeline(model=__UpperCamelCase , tokenizer=__UpperCamelCase ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Union[str, Any]: _UpperCamelCase = generator('''Something there''' ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ANY(__UpperCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) _UpperCamelCase = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) _UpperCamelCase = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) with self.assertRaises(__UpperCamelCase ): generator(4 ) @require_torch def _UpperCamelCase ( self : List[str] ) -> List[str]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] ) _UpperCamelCase = 3 _UpperCamelCase = generator( '''Something there''' , num_return_sequences=__UpperCamelCase , num_beams=__UpperCamelCase , ) _UpperCamelCase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = generator('''This is a test''' , do_sample=__UpperCamelCase , num_return_sequences=2 , return_tensors=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) _UpperCamelCase = generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCamelCase , ) self.assertEqual( __UpperCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] )
54
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : Optional[int] = 500000 _lowerCamelCase , _lowerCamelCase : List[str] = os.path.split(__file__) _lowerCamelCase : Any = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ , **lowercase_ ) -> List[str]: """simple docstring""" A__ = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ , **lowercase_ ) -> Dict: """simple docstring""" A__ = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: A__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) A__ = generate_example_dataset( os.path.join(__a , '''dataset.arrow''' ) , __a , num_examples=__a ) A__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__a ) def tokenize(lowercase_ ): return tokenizer(examples['''text'''] ) A__ = map(__a ) A__ = map(__a , batched=__a ) A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''numpy''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''pandas''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) A__ = map(__a , function=__a , batched=__a ) A__ = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , '''wb''' ) as f: f.write(json.dumps(__a ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
14
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
0
"""simple docstring""" def _snake_case ( _snake_case : list[int] ) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(_snake_case , (list, tuple) ) or not all( isinstance(_snake_case , _snake_case ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _A = _A = _A = numbers[0] for i in range(1 , len(_snake_case ) ): # update the maximum and minimum subarray products _A = numbers[i] if number < 0: _A , _A = min_till_now, max_till_now _A = max(_snake_case , max_till_now * number ) _A = min(_snake_case , min_till_now * number ) # update the maximum product found till now _A = max(_snake_case , _snake_case ) return max_prod
371
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _snake_case ( _snake_case : int = 8 ) -> str: '''simple docstring''' _A = ascii_letters + digits + punctuation return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' i -= len(_snake_case ) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(_snake_case , quotient + remainder ) + random(_snake_case , _snake_case ) + random(_snake_case , _snake_case ) ) _A = list(_snake_case ) shuffle(_snake_case ) return "".join(_snake_case ) # random is a generalised function for letters, characters and numbers def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Any , _snake_case : str ) -> Dict: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : str , _snake_case : int = 8 ) -> bool: '''simple docstring''' if len(_snake_case ) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password ) _A = any(char in ascii_lowercase for char in password ) _A = any(char in digits for char in password ) _A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = int(input('Please indicate the max length of your password: ' ).strip() ) _A = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_snake_case ) ) print( 'Alternative Password generated:' , alternative_password_generator(_snake_case , _snake_case ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
271
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """spiece.model"""} lowercase__ = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } lowercase__ = { """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class __lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' a_ : Optional[int] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , a_ : List[Any] , a_ : Optional[Any]=False , a_ : int=False , a_ : Any=False , a_ : Dict=None , a_ : Optional[int]=None , a_ : List[str]=None , a_ : List[str]=None , a_ : str = None , **a_ : List[Any] , ): lowerCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ : Tuple = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) lowerCAmelCase_ : Dict = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase_ : Optional[Any] = "<|endoftext|>" if eos_token is None else eos_token lowerCAmelCase_ : Optional[int] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase_ : Dict = unk_token if pad_token is None else pad_token lowerCAmelCase_ : List[Any] = eos_token if bos_token is None else bos_token else: lowerCAmelCase_ : int = "<pad>" if pad_token is None else pad_token lowerCAmelCase_ : List[Any] = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) lowerCAmelCase_ : Optional[int] = do_lower_case lowerCAmelCase_ : Optional[Any] = remove_space lowerCAmelCase_ : Dict = keep_accents lowerCAmelCase_ : Optional[Any] = vocab_file lowerCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase_ : Tuple = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase_ : Optional[int] = re.compile( f'''[{"".join(map(a_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : Tuple ): lowerCAmelCase_ : str = self.__dict__.copy() lowerCAmelCase_ : str = None return state def __setstate__( self : Union[str, Any] , a_ : Tuple ): lowerCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ : Optional[Any] = {} lowerCAmelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase ( self : Optional[int] ): return len(self.sp_model ) def lowerCamelCase ( self : Optional[Any] , a_ : Dict ): lowerCAmelCase_ : List[str] = self.non_printing_characters_re.sub("" , a_ ) # Normalize whitespaces lowerCAmelCase_ : Any = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization lowerCAmelCase_ : Tuple = unicodedata.normalize("NFC" , a_ ) return text def lowerCamelCase ( self : Optional[int] , a_ : List[str] , **a_ : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = self.preprocess_text(a_ ) return self.sp_model.encode(a_ , out_type=a_ ) def lowerCamelCase ( self : List[str] , a_ : int ): return self.sp_model.PieceToId(a_ ) def lowerCamelCase ( self : str , a_ : Optional[int] ): return self.sp_model.IdToPiece(a_ ) @staticmethod def lowerCamelCase ( a_ : int ): return out_string def lowerCamelCase ( self : Tuple , a_ : List[str] ): lowerCAmelCase_ : str = [] lowerCAmelCase_ : Optional[Any] = "" lowerCAmelCase_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = [] else: current_sub_tokens.append(a_ ) lowerCAmelCase_ : List[Any] = False out_string += self.sp_model.decode(a_ ) return out_string def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : str = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase ( self : List[Any] , a_ : Any , a_ : Union[str, Any] = None ): if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Dict = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: lowerCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def lowerCamelCase ( self : int , a_ : Any , a_ : Tuple = False ): if isinstance(a_ , a_ ): lowerCAmelCase_ : Dict = self.preprocess_text(a_ ) lowerCAmelCase_ : Optional[int] = self.sp_model.encode(a_ ) else: lowerCAmelCase_ : Any = [self.preprocess_text(a_ ) for t in text] lowerCAmelCase_ : Tuple = self.sp_model.encode(a_ ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase_ : List[str] = torch.tensor(a_ ) return token_ids def lowerCamelCase ( self : Union[str, Any] , a_ : str ): return self.sp_model.decode(a_ ) def lowerCamelCase ( self : Optional[Any] , a_ : Dict ): lowerCAmelCase_ : Dict = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCAmelCase_ : Dict = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(a_ ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=a_ )
241
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=2 , lowercase=99 , lowercase=0 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=12 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase="last" , lowercase=None , lowercase=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_lengths lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = gelu_activation lowerCAmelCase = sinusoidal_embeddings lowerCAmelCase = causal lowerCAmelCase = asm lowerCAmelCase = n_langs lowerCAmelCase = vocab_size lowerCAmelCase = n_special lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = summary_type lowerCAmelCase = use_proj lowerCAmelCase = scope def _snake_case ( self ) -> int: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_input_lengths: lowerCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCAmelCase = FlaubertModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , lengths=lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = FlaubertWithLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: lowerCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Dict: lowerCAmelCase = FlaubertForQuestionAnswering(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , p_mask=lowercase , ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = FlaubertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = FlaubertForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = self.num_choices lowerCAmelCase = FlaubertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , lowercase , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _snake_case ( self ) -> List[str]: lowerCAmelCase = FlaubertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , emb_dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase ) @slow def _snake_case ( self ) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = FlaubertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _snake_case ( self ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase = True lowerCAmelCase = model_class(config=lowercase ) lowerCAmelCase = self._prepare_for_class(lowercase , lowercase ) lowerCAmelCase = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """traced_model.pt""" ) ) lowerCAmelCase = torch.jit.load(os.path.join(lowercase , """traced_model.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
46
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : Tuple = LayoutLMTokenizer lowercase : List[str] = LayoutLMTokenizerFast lowercase : List[str] = True lowercase : str = True def a_ ( self ): super().setUp() UpperCamelCase : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a_ ( self , **SCREAMING_SNAKE_CASE_ ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = """UNwant\u00E9d,running""" UpperCamelCase : Dict = """unwanted, running""" return input_text, output_text def a_ ( self ): UpperCamelCase : int = self.tokenizer_class(self.vocab_file ) UpperCamelCase : Any = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [7, 4, 5, 10, 8, 9] ) def a_ ( self ): pass
27
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase ( nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ): super().__init__() UpperCamelCase : int = nn.ModuleList( [ TransformeraDModel( num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCamelCase : Optional[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCamelCase : List[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCamelCase : int = [1, 0] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ): UpperCamelCase : Dict = hidden_states UpperCamelCase : Optional[Any] = [] UpperCamelCase : List[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCamelCase : str = self.transformer_index_for_condition[i] UpperCamelCase : Any = self.transformers[transformer_index]( SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCamelCase : List[str] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
27
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A__ ( UpperCAmelCase_ ): return x + 2 class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = 'x = 3' _UpperCamelCase : Any = {} _UpperCamelCase : Optional[Any] = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result == 3 self.assertDictEqual(lowerCamelCase__ ,{'x': 3} ) _UpperCamelCase : str = 'x = y' _UpperCamelCase : str = {'y': 5} _UpperCamelCase : Any = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{'x': 5, 'y': 5} ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Any = 'y = add_two(x)' _UpperCamelCase : Tuple = {'x': 3} _UpperCamelCase : List[Any] = evaluate(lowerCamelCase__ ,{'add_two': add_two} ,state=lowerCamelCase__ ) assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: _UpperCamelCase : int = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : int = 'x = 3' _UpperCamelCase : Optional[int] = {} _UpperCamelCase : Any = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result == 3 self.assertDictEqual(lowerCamelCase__ ,{'x': 3} ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' _UpperCamelCase : List[str] = {'x': 3} _UpperCamelCase : Optional[Any] = evaluate(lowerCamelCase__ ,{'add_two': add_two} ,state=lowerCamelCase__ ) self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'y': 5} ) self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : str = 'x = 3\ny = 5' _UpperCamelCase : Dict = {} _UpperCamelCase : Optional[int] = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'y': 5} ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = 'text = f\'This is x: {x}.\'' _UpperCamelCase : Tuple = {'x': 3} _UpperCamelCase : int = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'text': 'This is x: 3.'} ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' _UpperCamelCase : List[Any] = {'x': 3} _UpperCamelCase : str = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'y': 2} ) _UpperCamelCase : Optional[Any] = {'x': 8} _UpperCamelCase : Optional[Any] = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{'x': 8, 'y': 5} ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : str = 'test_list = [x, add_two(x)]' _UpperCamelCase : Any = {'x': 3} _UpperCamelCase : int = evaluate(lowerCamelCase__ ,{'add_two': add_two} ,state=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,[3, 5] ) self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'test_list': [3, 5]} ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : str = 'y = x' _UpperCamelCase : List[str] = {'x': 3} _UpperCamelCase : Dict = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result == 3 self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'y': 3} ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : List[str] = 'test_list = [x, add_two(x)]\ntest_list[1]' _UpperCamelCase : Any = {'x': 3} _UpperCamelCase : int = evaluate(lowerCamelCase__ ,{'add_two': add_two} ,state=lowerCamelCase__ ) assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'test_list': [3, 5]} ) _UpperCamelCase : Any = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' _UpperCamelCase : Union[str, Any] = {'x': 3} _UpperCamelCase : int = evaluate(lowerCamelCase__ ,{'add_two': add_two} ,state=lowerCamelCase__ ) assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'x = 0\nfor i in range(3):\n x = i' _UpperCamelCase : str = {} _UpperCamelCase : Union[str, Any] = evaluate(lowerCamelCase__ ,{'range': range} ,state=lowerCamelCase__ ) assert result == 2 self.assertDictEqual(lowerCamelCase__ ,{'x': 2, 'i': 2} )
83
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case_ : Tuple = random.Random() def A__ ( UpperCAmelCase_ , UpperCAmelCase_=1.0 , UpperCAmelCase_=None , UpperCAmelCase_=None ): if rng is None: _UpperCamelCase : Dict = global_rng _UpperCamelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase ): def __init__( self : Tuple ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=7 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : int=2000 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Union[str, Any]=16000 ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Optional[int]=True ,): '''simple docstring''' _UpperCamelCase : Optional[int] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : List[str] = min_seq_length _UpperCamelCase : Optional[int] = max_seq_length _UpperCamelCase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCamelCase : List[str] = feature_size _UpperCamelCase : List[str] = padding_value _UpperCamelCase : List[Any] = sampling_rate _UpperCamelCase : Dict = return_attention_mask _UpperCamelCase : Tuple = do_normalize def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Tuple=False ): '''simple docstring''' def _flatten(lowerCamelCase__ : Optional[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: _UpperCamelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCamelCase : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _UpperCamelCase : int = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = WavaVecaFeatureExtractor def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCamelCase__ ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ,axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase : int = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Tuple = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCamelCase : Tuple = feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values _UpperCamelCase : Any = feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) # Test batched _UpperCamelCase : Union[str, Any] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values _UpperCamelCase : Optional[int] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCamelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCamelCase : str = np.asarray(lowerCamelCase__ ) _UpperCamelCase : List[str] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values _UpperCamelCase : int = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] _UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = feat_extract(lowerCamelCase__ ,padding=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='np' ) _UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : List[str] = range(800 ,1400 ,200 ) _UpperCamelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] _UpperCamelCase : Optional[Any] = ['longest', 'max_length', 'do_not_pad'] _UpperCamelCase : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : List[str] = feat_extract(lowerCamelCase__ ,max_length=lowerCamelCase__ ,padding=lowerCamelCase__ ) _UpperCamelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Union[str, Any] = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=1000 ,padding='max_length' ,return_tensors='np' ) _UpperCamelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : int = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=1000 ,padding='longest' ,return_tensors='np' ) _UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Any = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=2000 ,padding='longest' ,return_tensors='np' ) _UpperCamelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase_ ( self : Any ): '''simple docstring''' import torch _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = np.random.rand(100 ).astype(np.floataa ) _UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCamelCase : Optional[int] = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCamelCase : Tuple = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _UpperCamelCase : Optional[int] = WavaVecaConfig.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == 'layer' )
83
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowercase__ ( _UpperCAmelCase ): A__ : Dict ="""MCTCTFeatureExtractor""" A__ : List[Any] ="""AutoTokenizer""" def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.feature_extractor SCREAMING_SNAKE_CASE__ = False def __call__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('raw_speech' ) else: SCREAMING_SNAKE_CASE__ = kwargs.pop('audio' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = kwargs.pop('sampling_rate' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = kwargs.pop('text' , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = args[0] SCREAMING_SNAKE_CASE__ = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE__ = encodings['input_ids'] return inputs def A_ ( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = kwargs.pop('input_features' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = kwargs.pop('labels' , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = args[0] SCREAMING_SNAKE_CASE__ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor.pad(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if labels is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer.pad(UpperCAmelCase_ , **UpperCAmelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE__ = labels['input_ids'] return input_features def A_ ( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @contextmanager def A_ ( self : Optional[Any] ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.tokenizer yield SCREAMING_SNAKE_CASE__ = self.feature_extractor SCREAMING_SNAKE_CASE__ = False
169
from __future__ import annotations from statistics import mean def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes SCREAMING_SNAKE_CASE__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = -1 for i in range(UpperCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE__ = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case = 4 __snake_case = [2, 5, 3, 7] __snake_case = [0, 0, 0, 0] __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
169
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A( a , unittest.TestCase ): snake_case_ = KandinskyVaaPriorPipeline snake_case_ = ['''prompt'''] snake_case_ = ['''prompt''', '''negative_prompt'''] snake_case_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __a = PriorTransformer(**_snake_case ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=_snake_case , do_normalize=_snake_case , do_resize=_snake_case , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=_snake_case , clip_sample_range=10.0 , ) __a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> Dict: '''simple docstring''' if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = pipe(**self.get_dummy_inputs(_snake_case ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = torch_device == '''cpu''' __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=_snake_case , relax_max_difference=_snake_case , test_mean_pixel_difference=_snake_case , ) @skip_mps def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = torch_device == '''cpu''' __a = False self._test_attention_slicing_forward_pass( test_max_difference=_snake_case , test_mean_pixel_difference=_snake_case , )
6
def __UpperCamelCase ( lowerCAmelCase__ : str ): if n_term == "": return [] __a : list = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f"1/{temp + 1}" if series else '''1''' ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
216
0
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A : Any = logging.getLogger(__name__) def _lowerCamelCase ( _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase = 10 , _UpperCamelCase = 2 ): '''simple docstring''' def get_dataset(_UpperCamelCase ): __lowerCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowerCAmelCase = get_dataset(_UpperCamelCase ) __lowerCAmelCase = get_dataset(_UpperCamelCase ) __lowerCAmelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) __lowerCAmelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = [] for epoch in range(_UpperCamelCase ): # Train quickly model.train() for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = torch.nn.functional.mse_loss(_UpperCamelCase , _UpperCamelCase ) accelerator.backward(_UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) def snake_case ( self , __a ): return x * self.a + self.b class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=__a , automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() # Train baseline __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial __lowerCAmelCase = os.path.join(__a , "initial" ) accelerator.save_state(__a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) accelerator.load_state(__a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) __lowerCAmelCase = train(2 , __a , __a , __a , __a ) # Save everything __lowerCAmelCase = os.path.join(__a , "checkpoint" ) accelerator.save_state(__a ) # Load everything back in and make sure all states work accelerator.load_state(__a ) test_rands += train(1 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial accelerator.save_state() ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__a ) __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) __lowerCAmelCase = train(2 , __a , __a , __a , __a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = torch.tensor([1, 2, 3] ) __lowerCAmelCase = torch.tensor([2, 3, 4] ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(net.parameters() ) __lowerCAmelCase = Accelerator() with self.assertRaises(__a ) as ve: accelerator.register_for_checkpointing(__a , __a , __a , __a ) __lowerCAmelCase = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = torch.optim.lr_scheduler.StepLR(__a , step_size=1 , gamma=0.9_9 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a , __a ) # Save initial accelerator.save_state() __lowerCAmelCase = scheduler.state_dict() train(3 , __a , __a , __a , __a , __a ) self.assertNotEqual(__a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(__a , scheduler.state_dict() ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a , total_limit=2 ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase = accelerator.prepare(__a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def snake_case ( self ): __lowerCAmelCase = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": A : List[Any] = "/tmp/accelerate/state_checkpointing" A : Any = DummyModel() A : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3) A : Tuple = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A : Dict = dummy_dataloaders() A : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A : Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A : int = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A : List[Any] = group["params"][0].device break assert param_device.type == accelerator.device.type A : Any = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: A : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: A : Dict = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
359
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
0
import logging from transformers import PretrainedConfig _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''bertabs''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=5_1_2 , lowercase=6 , lowercase=5_1_2 , lowercase=8 , lowercase=5_1_2 , lowercase=0.2 , lowercase=6 , lowercase=7_6_8 , lowercase=8 , lowercase=2_0_4_8 , lowercase=0.2 , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = vocab_size A_ : Union[str, Any] = max_pos A_ : List[str] = enc_layers A_ : Tuple = enc_hidden_size A_ : List[Any] = enc_heads A_ : str = enc_ff_size A_ : Optional[Any] = enc_dropout A_ : Dict = dec_layers A_ : Optional[Any] = dec_hidden_size A_ : int = dec_heads A_ : Any = dec_ff_size A_ : List[str] = dec_dropout
140
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _UpperCAmelCase = """sshleifer/bart-tiny-random""" _UpperCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self ): """simple docstring""" return AutoConfig.from_pretrained(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : int = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : str = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : List[str] = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(lowercase ): create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=lowercase , d=lowercase )
140
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def lowerCamelCase__ ( A : np.ndarray ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def lowerCamelCase__ ( A : np.ndarray ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def lowerCamelCase__ ( A : np.ndarray , A : np.ndarray ): '''simple docstring''' UpperCAmelCase = np.zeros_like(A ) UpperCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image _lowercase : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" _lowercase : str = np.array(Image.open(lena_path)) # kernel to be applied _lowercase : str = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _lowercase : List[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _lowercase : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
91
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : str = logging.get_logger(__name__) _lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _lowercase : Union[str, Any] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : str = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = ["input_ids", "attention_mask"] __magic_name__ : List[Any] = GPTaTokenizer def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Tuple , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''add_bos_token''' , lowerCAmelCase ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case_ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """albert""" def __init__( self :Union[str, Any] , lowercase_ :List[str]=3_00_00 , lowercase_ :Any=1_28 , lowercase_ :Dict=40_96 , lowercase_ :List[Any]=12 , lowercase_ :Any=1 , lowercase_ :str=64 , lowercase_ :List[str]=1_63_84 , lowercase_ :Any=1 , lowercase_ :Any="gelu_new" , lowercase_ :str=0 , lowercase_ :str=0 , lowercase_ :List[Any]=5_12 , lowercase_ :str=2 , lowercase_ :Any=0.02 , lowercase_ :List[str]=1E-12 , lowercase_ :List[str]=0.1 , lowercase_ :str="absolute" , lowercase_ :Optional[int]=0 , lowercase_ :Union[str, Any]=2 , lowercase_ :Union[str, Any]=3 , **lowercase_ :List[str] , ) -> Any: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = embedding_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_hidden_groups UpperCAmelCase = num_attention_heads UpperCAmelCase = inner_group_num UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = position_embedding_type class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def UpperCAmelCase__ ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
78
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('Input value must be an \'int\' type' ) lowercase : str = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
255
0
from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ : int ): if num <= 0: __lowercase : List[Any] = F"{num}: Invalid input, please enter a positive integer." raise ValueError(lowerCAmelCase_ ) __lowercase : int = [True] * (num + 1) __lowercase : Dict = [] __lowercase : str = 2 __lowercase : List[str] = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: __lowercase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable snake_case_ : Union[str, Any] = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
'''simple docstring''' from math import pi def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
83
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record SCREAMING_SNAKE_CASE : Union[str, Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" SCREAMING_SNAKE_CASE : List[str] = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" SCREAMING_SNAKE_CASE : List[str] = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: return float((preds == labels).mean() ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="binary" ) -> str: _lowercase : Any = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ , average=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Dict = {} for id_pred, label in zip(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : Optional[int] = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' _lowercase : Union[str, Any] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _lowercase : int = [(pred, label)] _lowercase , _lowercase : Optional[int] = [], [] for question, preds_labels in question_map.items(): _lowercase , _lowercase : Tuple = zip(*lowerCamelCase_ ) _lowercase : Dict = fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ , average='macro' ) fas.append(lowerCamelCase_ ) _lowercase : Any = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase_ ) ) ems.append(lowerCamelCase_ ) _lowercase : List[str] = float(sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) ) _lowercase : List[str] = sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) _lowercase : Tuple = float(fa_score(y_true=lowerCamelCase_ , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def UpperCamelCase ( self) -> Dict: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]') return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), codebase_urls=[], reference_urls=[], format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None, ) def UpperCamelCase ( self) -> Any: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64'), "query": datasets.Value('int64'), }, "prediction_text": datasets.Value('string'), }, "references": { "idx": { "passage": datasets.Value('int64'), "query": datasets.Value('int64'), }, "answers": datasets.Sequence(datasets.Value('string')), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64'), "paragraph": datasets.Value('int64'), "question": datasets.Value('int64'), }, "prediction": datasets.Value('int64'), }, "references": datasets.Value('int64'), } else: return { "predictions": datasets.Value('int64'), "references": datasets.Value('int64'), } def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(A_, A_)} elif self.config_name == "cb": return acc_and_fa(A_, A_, fa_avg='macro') elif self.config_name == "record": _lowercase : Optional[int] = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] _lowercase : Union[str, Any] = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(A_, A_)[0] elif self.config_name == "multirc": return evaluate_multirc(A_, A_) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(A_, A_)} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]')
371
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : List[str] = CTRLTokenizer lowercase_ : Union[str, Any] = False lowercase_ : Optional[int] = False def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : List[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowercase : List[Any] = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : Optional[int] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowercase : Union[str, Any] = {'unk_token': '<unk>'} _lowercase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase)) def UpperCamelCase ( self, **lowerCamelCase) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = 'adapt react readapt apt' _lowercase : Tuple = 'adapt react readapt apt' return input_text, output_text def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase : List[str] = 'adapt react readapt apt' _lowercase : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowercase : Optional[Any] = tokenizer.tokenize(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = tokens + [tokenizer.unk_token] _lowercase : int = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase), lowerCamelCase)
84
0
"""simple docstring""" import os import sys import unittest __magic_name__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __magic_name__ = os.path.join(git_repo_path, "src", "diffusers") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = find_backend(""" if not is_torch_available():""") self.assertEqual(lowerCAmelCase__ , """torch""") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __SCREAMING_SNAKE_CASE = find_backend(""" if not (is_torch_available() and is_transformers_available()):""") self.assertEqual(lowerCAmelCase__ , """torch_and_transformers""") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __SCREAMING_SNAKE_CASE = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""") self.assertEqual(lowerCAmelCase__ , """torch_and_transformers_and_onnx""") def snake_case_ ( self): __SCREAMING_SNAKE_CASE = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , lowerCAmelCase__) self.assertIn("""torch_and_transformers""" , lowerCAmelCase__) self.assertIn("""flax_and_transformers""" , lowerCAmelCase__) self.assertIn("""torch_and_transformers_and_onnx""" , lowerCAmelCase__) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""]) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""]) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""]) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""]) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""]) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = create_dummy_object("""CONSTANT""" , """'torch'""") self.assertEqual(lowerCAmelCase__ , """\nCONSTANT = None\n""") __SCREAMING_SNAKE_CASE = create_dummy_object("""function""" , """'torch'""") self.assertEqual( lowerCAmelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""") __SCREAMING_SNAKE_CASE = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __SCREAMING_SNAKE_CASE = create_dummy_object("""FakeClass""" , """'torch'""") self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __SCREAMING_SNAKE_CASE = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]}) self.assertEqual(dummy_files["""torch"""] , lowerCAmelCase__)
100
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = BertJapaneseTokenizer a_ = False a_ = True def lowercase ( self : Optional[Any] ) -> List[str]: super().setUp() __lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple ) -> str: __lowerCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。' __lowerCAmelCase = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase ( self : List[Any] , lowerCAmelCase_ : str ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def lowercase ( self : List[str] ) -> Optional[int]: pass # TODO add if relevant def lowercase ( self : Optional[Any] ) -> Optional[Any]: pass # TODO add if relevant def lowercase ( self : Union[str, Any] ) -> Any: pass # TODO add if relevant def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(lowerCAmelCase_ ) __lowerCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowerCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : List[Any] ) -> int: try: __lowerCAmelCase = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : Tuple ) -> Optional[Any]: try: __lowerCAmelCase = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = MecabTokenizer(do_lower_case=lowerCAmelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: try: __lowerCAmelCase = MecabTokenizer( do_lower_case=lowerCAmelCase_ , normalize_text=lowerCAmelCase_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = MecabTokenizer(normalize_text=lowerCAmelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(lowerCAmelCase_ ) __lowerCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowerCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_sudachi def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = SudachiTokenizer(do_lower_case=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = SudachiTokenizer(normalize_text=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase ( self : int ) -> str: __lowerCAmelCase = SudachiTokenizer(trim_whitespace=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(lowerCAmelCase_ ) __lowerCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowerCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_jumanpp def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = JumanppTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = JumanppTokenizer(normalize_text=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = JumanppTokenizer(trim_whitespace=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase ( self : Any ) -> Any: __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] __lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase ( self : List[Any] ) -> Tuple: __lowerCAmelCase = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) __lowerCAmelCase = tokenizer.subword_tokenizer __lowerCAmelCase = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(lowerCAmelCase_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) __lowerCAmelCase = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(lowerCAmelCase_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase ( self : int ) -> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) __lowerCAmelCase = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = BertJapaneseTokenizer a_ = False def lowercase ( self : Optional[Any] ) -> Tuple: super().setUp() __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase ( self : str , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple ) -> Optional[int]: __lowerCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。' __lowerCAmelCase = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase ( self : Dict ) -> str: pass # TODO add if relevant def lowercase ( self : Any ) -> str: pass # TODO add if relevant def lowercase ( self : List[Any] ) -> int: pass # TODO add if relevant def lowercase ( self : str ) -> str: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) __lowerCAmelCase = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( lowerCAmelCase_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = i __lowerCAmelCase = CharacterTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase ( self : int ) -> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) __lowerCAmelCase = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = 'cl-tohoku/bert-base-japanese' __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) __lowerCAmelCase = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
284
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : str = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class a ( _lowerCamelCase ): snake_case_ = "luke" def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=5_0267 , lowercase_ : Union[str, Any]=50_0000 , lowercase_ : List[Any]=768 , lowercase_ : Dict=256 , lowercase_ : List[Any]=12 , lowercase_ : Optional[int]=12 , lowercase_ : Dict=3072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : List[Any]=2 , lowercase_ : int=0.02 , lowercase_ : Any=1e-12 , lowercase_ : List[Any]=True , lowercase_ : Any=None , lowercase_ : str=1 , lowercase_ : Dict=0 , lowercase_ : Optional[int]=2 , **lowercase_ : Optional[int] , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ = vocab_size snake_case_ = entity_vocab_size snake_case_ = hidden_size snake_case_ = entity_emb_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_entity_aware_attention snake_case_ = classifier_dropout
72
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Union[str, Any] = get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Tuple: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving model to {ckpt_dir}" ) snake_case_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__UpperCAmelCase, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Model saved to {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> str: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) snake_case_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCAmelCase, storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), planner=DefaultLoadPlanner(), ) snake_case_ = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Dict: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(__UpperCAmelCase, __UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: snake_case_ = os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Union[str, Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), ) snake_case_ = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) snake_case_ = FSDP.optim_state_dict_to_load(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) optimizer.load_state_dict(__UpperCAmelCase )
72
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() a = logging.get_logger(__name__) a = 'The Nymphenburg Palace is a beautiful palace in Munich!' def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' _A = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } _A = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _A = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=_snake_case , output_all_encodings=_snake_case , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , _snake_case ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _A = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab _A = os.path.join(get_home_dir() , 'models' ) _A = _load_vocab(_snake_case , _snake_case , _snake_case , cls=_snake_case ) _A = nlp.model.BERTModel( _snake_case , len(_snake_case ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=_snake_case , use_token_type_embed=_snake_case , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=_snake_case , use_decoder=_snake_case , ) original_bort.load_parameters(_snake_case , cast_dtype=_snake_case , ignore_extra=_snake_case ) _A = original_bort._collect_params_with_prefix() # Build our config 🤗 _A = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(_snake_case ), } _A = BertConfig.from_dict(_snake_case ) _A = BertForMaskedLM(_snake_case ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_snake_case : List[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_snake_case : str , _snake_case : int ): _A = hf_param.shape _A = to_torch(params[gluon_param] ) _A = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param _A = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) _A = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) _A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) _A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _A = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _A = hf_bort_model.bert.encoder.layer[i] # self attention _A = layer.attention.self _A = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) _A = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) _A = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) _A = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) _A = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) _A = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output _A = layer.attention.output _A = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) _A = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) _A = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) _A = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate _A = layer.intermediate _A = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) _A = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output _A = layer.output _A = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) _A = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) _A = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) _A = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _A = RobertaTokenizer.from_pretrained('roberta-base' ) _A = tokenizer.encode_plus(_snake_case )['input_ids'] # Get gluon output _A = mx.nd.array([input_ids] ) _A = original_bort(inputs=_snake_case , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_snake_case ) _A = BertModel.from_pretrained(_snake_case ) hf_bort_model.eval() _A = tokenizer.encode_plus(_snake_case , return_tensors='pt' ) _A = hf_bort_model(**_snake_case )[0] _A = output_gluon[0].asnumpy() _A = output_hf[0].detach().numpy() _A = np.max(np.abs(hf_layer - gluon_layer ) ).item() _A = np.allclose(_snake_case , _snake_case , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , _snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
315
"""simple docstring""" import math import sys def A__ ( UpperCamelCase ): A = "" try: with open(UpperCamelCase , "rb" ) as binary_file: A = binary_file.read() for dat in data: A = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = {"0": "0", "1": "1"} A, A = "", "" A = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): A = {} for curr_key in list(UpperCamelCase ): A = lexicon.pop(UpperCamelCase ) A = new_lex A = last_match_id + "1" index += 1 A = "" return result def A__ ( UpperCamelCase , UpperCamelCase ): A = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def A__ ( UpperCamelCase , UpperCamelCase ): A = read_file_binary(UpperCamelCase ) A = remove_prefix(UpperCamelCase ) A = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
292
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCAmelCase ( _lowerCamelCase ): @staticmethod @abstractmethod def lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError()
160
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = CanineTokenizer __lowercase = False def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase ( self ): """simple docstring""" return CanineTokenizer.from_pretrained('google/canine-s' ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) _snake_case = 10_24 return tokenizer @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off _snake_case = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertIn('token_type_ids' , lowerCAmelCase_ ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] _snake_case = tokenizer( text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _snake_case = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _snake_case = chr(0XE_0_0_7 ) additional_special_tokens.append(lowerCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _snake_case = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn(lowerCAmelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case , _snake_case = self.get_clean_sequence(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_5 _snake_case = chr(lowerCAmelCase_ ) tokenizer.add_special_tokens({'cls_token': special_token} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) _snake_case = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , input_encoded + special_token_id ) _snake_case = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = chr(0XE_0_0_5 ) _snake_case = chr(0XE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) @require_tokenizers def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase_ ) tokenizer.from_pretrained(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) _snake_case = [new_token_a] _snake_case = [new_token_a] with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained(lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _snake_case = 0XE_0_0_7 _snake_case = chr(lowerCAmelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = [AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ )] _snake_case = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = 'hello world' if self.space_between_special_tokens: _snake_case = '[CLS] hello world [SEP]' else: _snake_case = input _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase_ , [output, output.lower()] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _snake_case = 'a' _snake_case = ord(lowerCAmelCase_ ) for attr in attributes_list: setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass
160
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[Any] = ['image_processor', 'tokenizer'] UpperCAmelCase__ : int = 'BlipImageProcessor' UpperCAmelCase__ : Tuple = ('BertTokenizer', 'BertTokenizerFast') def __init__( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.image_processor def __call__( self: str , UpperCamelCase_: ImageInput = None , UpperCamelCase_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Union[bool, str, TruncationStrategy] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: int = 0 , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[str, TensorType]] = None , **UpperCamelCase_: List[str] , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __lowerCamelCase = self.tokenizer __lowerCamelCase = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: __lowerCamelCase = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: __lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCAmelCase__ ( self: Optional[int] , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Tuple ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
12
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase ( self : int , __a : List[Any]=0 ) -> Optional[int]: """simple docstring""" __lowercase : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(__a ) ) __lowercase : Any = np.random.RandomState(__a ) __lowercase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[Any] = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**__a ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) # warmup pass to apply optimizations __lowercase : Optional[int] = pipe(**self.get_dummy_inputs() ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = self.get_dummy_inputs() __lowercase : int = pipe(**__a ).images __lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Optional[int] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = self.get_dummy_inputs() __lowercase : Union[str, Any] = pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Union[str, Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = self.get_dummy_inputs() __lowercase : Dict = pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Dict = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = ort.SessionOptions() __lowercase : Dict = False return options def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Union[str, Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowercase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = """A fantasy landscape, trending on artstation""" __lowercase : int = np.random.RandomState(0 ) __lowercase : List[str] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="""np""" , ) __lowercase : Any = output.images __lowercase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : Optional[int] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Any = init_image.resize((768, 512) ) __lowercase : int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Union[str, Any] = """A fantasy landscape, trending on artstation""" __lowercase : Any = np.random.RandomState(0 ) __lowercase : Optional[Any] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type="""np""" , ) __lowercase : str = output.images __lowercase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : Union[str, Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
233
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=8 ) -> List[str]: lowerCamelCase__ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase__ : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : VQModel , ) -> Dict: super().__init__() self.register_modules( unet=UpperCAmelCase , scheduler=UpperCAmelCase , movq=UpperCAmelCase , ) lowerCamelCase__ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A_ ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> int: if latents is None: lowerCamelCase__ : Union[str, Any] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase__ : Any = latents.to(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A_ ( self : List[str] , UpperCAmelCase : int=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ : Optional[int] = torch.device(F"""cuda:{gpu_id}""" ) lowerCamelCase__ : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : Optional[Any]=0 ) -> Any: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCamelCase__ : str = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase__ , lowerCamelCase__ : Tuple = cpu_offload_with_hook(UpperCAmelCase , UpperCAmelCase , prev_module_hook=UpperCAmelCase ) # We'll offload the last model manually. lowerCamelCase__ : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A_ ( self : str ) -> Tuple: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase ) def __call__( self : str , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 100 , UpperCAmelCase : float = 4.0 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = self._execution_device lowerCamelCase__ : Union[str, Any] = guidance_scale > 1.0 if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = torch.cat(UpperCAmelCase , dim=0 ) lowerCamelCase__ : Dict = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Any = torch.cat(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ : List[Any] = image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowerCamelCase__ : Optional[int] = negative_image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowerCamelCase__ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase ) self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase ) lowerCamelCase__ : int = self.scheduler.timesteps lowerCamelCase__ : str = self.unet.config.in_channels lowerCamelCase__ , lowerCamelCase__ : Dict = downscale_height_and_width(UpperCAmelCase , UpperCAmelCase , self.movq_scale_factor ) # create initial latent lowerCamelCase__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : List[str] = {'image_embeds': image_embeds} lowerCamelCase__ : Union[str, Any] = self.unet( sample=UpperCAmelCase , timestep=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , added_cond_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : int = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase__ , lowerCamelCase__ : int = noise_pred.chunk(2 ) lowerCamelCase__ , lowerCamelCase__ : int = variance_pred.chunk(2 ) lowerCamelCase__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ , lowerCamelCase__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Optional[Any] = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase , )[0] # post-processing lowerCamelCase__ : List[str] = self.movq.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCamelCase__ : Dict = image * 0.5 + 0.5 lowerCamelCase__ : List[Any] = image.clamp(0 , 1 ) lowerCamelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase__ : Any = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : List[str] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
"""simple docstring""" import numpy as np from PIL import Image def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Any = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 return updated_arr def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Any = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image a :str = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
132
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
0
'''simple docstring''' from __future__ import annotations import bisect def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ) -> int: if hi < 0: _SCREAMING_SNAKE_CASE = len(__A ) while lo < hi: _SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _SCREAMING_SNAKE_CASE = mid + 1 else: _SCREAMING_SNAKE_CASE = mid return lo def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ) -> int: if hi < 0: _SCREAMING_SNAKE_CASE = len(__A ) while lo < hi: _SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _SCREAMING_SNAKE_CASE = mid + 1 else: _SCREAMING_SNAKE_CASE = mid return lo def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ) -> None: sorted_collection.insert(bisect_left(__A , __A , __A , __A ) , __A ) def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ) -> None: sorted_collection.insert(bisect_right(__A , __A , __A , __A ) , __A ) def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int ) -> int | None: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(__A ) - 1 while left <= right: _SCREAMING_SNAKE_CASE = left + (right - left) // 2 _SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _SCREAMING_SNAKE_CASE = midpoint - 1 else: _SCREAMING_SNAKE_CASE = midpoint + 1 return None def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int ) -> int | None: _SCREAMING_SNAKE_CASE = bisect.bisect_left(__A , __A ) if index != len(__A ) and sorted_collection[index] == item: return index return None def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int , __A : int , __A : int ) -> int | None: if right < left: return None _SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__A , __A , __A , midpoint - 1 ) else: return binary_search_by_recursion(__A , __A , midpoint + 1 , __A ) if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by comma:\n').strip() lowerCamelCase_ = sorted(int(item) for item in user_input.split(',')) lowerCamelCase_ = int(input('Enter a single number to be found in the list:\n')) lowerCamelCase_ = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
365
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''deberta-v2''' def __init__( self : str , __lowerCamelCase : Union[str, Any]=1_2_8_1_0_0 , __lowerCamelCase : Optional[int]=1_5_3_6 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Tuple=6_1_4_4 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=5_1_2 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : int=1e-7 , __lowerCamelCase : Any=False , __lowerCamelCase : Any=-1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any="gelu" , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = max_relative_positions _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(__lowerCamelCase ) == str: _SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split("|" )] _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kwargs.get("pooler_hidden_size" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = pooler_dropout _SCREAMING_SNAKE_CASE = pooler_hidden_act class lowercase_ ( A ): """simple docstring""" @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return 1_2 def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : "PreTrainedTokenizerBase" = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=__lowerCamelCase , framework=__lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
111
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = StableUnCLIPPipeline __UpperCamelCase = TEXT_TO_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __UpperCamelCase = False def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) UpperCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str , lowercase_ :Dict=0 ) -> List[str]: if str(lowercase_ ).startswith('mps' ): UpperCAmelCase = torch.manual_seed(lowercase_ ) else: UpperCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Any ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase = pipe('anime turle' , generator=lowercase_ , output_type='np' ) UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
78
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Optional[int] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } UpperCAmelCase : List[str] = { "google/rembert": 2_56, } UpperCAmelCase : List[str] = "▁" class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Dict = VOCAB_FILES_NAMES UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Tuple = RemBertTokenizer def __init__( self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ) -> Any: '''simple docstring''' lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = False if not self.vocab_file else True def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error("""Vocabulary path ({}) should be a directory""".format(A ) ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
252
0
"""simple docstring""" # flake8: noqa # Lint as: python3 __A = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
254
"""simple docstring""" __A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __A (_SCREAMING_SNAKE_CASE ) ->list[list[int]]: """simple docstring""" lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) * [False] lowerCAmelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Dict = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: lowerCAmelCase__ :Union[str, Any] = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
254
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __A = logging.get_logger(__name__) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
293
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = StableDiffusionXLImgaImgPipeline __magic_name__ :List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __magic_name__ :Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} __magic_name__ :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ :str = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ :Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) lowerCAmelCase__ :str = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) lowerCAmelCase__ :int = CLIPTextModel(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :Any = CLIPTextModelWithProjection(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :int = self.get_dummy_components() lowerCAmelCase__ :List[str] = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = sd_pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase__ :List[str] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.get_dummy_components() lowerCAmelCase__ :str = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds lowerCAmelCase__ :int = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 3 * ['this is a negative prompt'] lowerCAmelCase__ :Tuple = negative_prompt lowerCAmelCase__ :str = 3 * [inputs['prompt']] lowerCAmelCase__ :Optional[Any] = sd_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 3 * ['this is a negative prompt'] lowerCAmelCase__ :str = 3 * [inputs.pop('prompt' )] ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :List[str] = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) lowerCAmelCase__ :Optional[int] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ :int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
293
1
from collections import defaultdict from math import ceil, sqrt def lowerCamelCase_ ( lowerCAmelCase: int = 1_00_00_00 , lowerCAmelCase: int = 10 )-> int: _snake_case : defaultdict = defaultdict(lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _snake_case : Tuple = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _snake_case : Any = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
260
from __future__ import annotations lowerCAmelCase_ = """#""" class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any ): '''simple docstring''' _snake_case : dict = {} def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = self._trie for char in text: if char not in trie: _snake_case : int = {} _snake_case : int = trie[char] _snake_case : Optional[Any] = True def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[int] = self._trie for char in prefix: if char in trie: _snake_case : Optional[Any] = trie[char] else: return [] return self._elements(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : dict ): '''simple docstring''' _snake_case : int = [] for c, v in d.items(): _snake_case : Dict = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase )] result.extend(UpperCamelCase ) return tuple(UpperCamelCase ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCamelCase_ ( lowerCAmelCase: str )-> tuple: _snake_case : List[Any] = trie.find_word(lowerCAmelCase ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( )-> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
260
1
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _SCREAMING_SNAKE_CASE ( _lowercase : int = 8 ) ->str: '''simple docstring''' a : List[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowercase ) for _ in range(_lowercase ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : int ) ->str: '''simple docstring''' i -= len(_lowercase ) a : List[str] = i // 3 a : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) a : int = ( chars_incl + random(_lowercase , quotient + remainder ) + random(_lowercase , _lowercase ) + random(_lowercase , _lowercase ) ) a : List[str] = list(_lowercase ) shuffle(_lowercase ) return "".join(_lowercase ) # random is a generalised function for letters, characters and numbers def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : int ) ->str: '''simple docstring''' return "".join(secrets.choice(_lowercase ) for _ in range(_lowercase ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : int ) ->List[str]: '''simple docstring''' pass # Put your code here... def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : Optional[int] ) ->int: '''simple docstring''' pass # Put your code here... def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Optional[Any] ) ->Any: '''simple docstring''' pass # Put your code here... def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : int = 8 ) ->bool: '''simple docstring''' if len(_lowercase ) < min_length: # Your Password must be at least 8 characters long return False a : List[str] = any(char in ascii_uppercase for char in password ) a : Optional[int] = any(char in ascii_lowercase for char in password ) a : List[str] = any(char in digits for char in password ) a : int = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _SCREAMING_SNAKE_CASE ( ) ->Union[str, Any]: '''simple docstring''' a : Dict = int(input("Please indicate the max length of your password: " ).strip() ) a : str = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowercase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowercase , _lowercase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
105
"""simple docstring""" import os from datetime import datetime as dt from github import Github _A = [ """good first issue""", """feature request""", """wip""", ] def a__ ( ) -> str: UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Dict = g.get_repo("""huggingface/accelerate""" ) UpperCAmelCase__ : str = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = comments[0] if len(lowerCAmelCase ) > 0 else None UpperCAmelCase__ : Optional[Any] = dt.utcnow() UpperCAmelCase__ : List[str] = (current_time - issue.updated_at).days UpperCAmelCase__ : Optional[int] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
171
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '▁' UpperCAmelCase__ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} UpperCAmelCase__ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } UpperCAmelCase__ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } UpperCAmelCase__ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } UpperCAmelCase__ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class lowerCAmelCase__ ( A_ ): __a = ["input_ids"] __a = VOCAB_FILES_NAMES __a = PRETRAINED_INIT_CONFIGURATION __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PRETRAINED_VOCAB_FILES_MAP __a = RESOURCE_FILES_NAMES def __init__( self : str , _lowerCamelCase : str , _lowerCamelCase : Any=None , _lowerCamelCase : Any=False , _lowerCamelCase : List[Any]="utf8" , _lowerCamelCase : List[Any]="[UNK]" , _lowerCamelCase : List[str]="[SEP]" , _lowerCamelCase : List[str]="[PAD]" , _lowerCamelCase : List[str]="[CLS]" , _lowerCamelCase : Any="[MASK]" , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : str , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , vocab_file=_lowerCamelCase , encoding=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) _snake_case = do_lower_case _snake_case = sentencepiece_model_ckpt _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _snake_case = self.load_vocab(filepath=_lowerCamelCase ) else: _snake_case = {self.sp_model.id_to_piece(_lowerCamelCase ): id for id in range(self.sp_model.get_piece_size() )} _snake_case = {v: k for k, v in self.vocab.items()} def lowercase ( self : List[Any] , _lowerCamelCase : Optional[Any] ): if text is None: return None _snake_case = self.tokenize(_lowerCamelCase ) _snake_case , _snake_case = '''''', [] for i, ch in enumerate(_lowerCamelCase ): if ch in self.SP_CHAR_MAPPING: _snake_case = self.SP_CHAR_MAPPING.get(_lowerCamelCase ) else: _snake_case = unicodedata.normalize('''NFKC''' , _lowerCamelCase ) if self.is_whitespace(_lowerCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCamelCase ) ) _snake_case , _snake_case , _snake_case = normalized_text, [], 0 if self.do_lower_case: _snake_case = text.lower() for token in split_tokens: if token[:1] == "▁": _snake_case = token[1:] _snake_case = text[offset:].index(_lowerCamelCase ) + offset _snake_case = start + len(_lowerCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _snake_case = end return token_mapping @property def lowercase ( self : Union[str, Any] ): return len(self.vocab ) def lowercase ( self : str ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ): _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : str , _lowerCamelCase : List[str] ): _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase ( self : Any , _lowerCamelCase : List[Any] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCamelCase , _lowerCamelCase ) for c in text) ) def lowercase ( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Dict=False , _lowerCamelCase : Tuple=64 , _lowerCamelCase : Tuple=0.1 ): if self.sp_model_kwargs.get('''enable_sampling''' ) is True: _snake_case = True if self.sp_model_kwargs.get('''alpha''' ) is not None: _snake_case = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: _snake_case = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: _snake_case = self.sp_model.EncodeAsPieces(_lowerCamelCase ) else: _snake_case = self.sp_model.SampleEncodeAsPieces(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = [] for pi, piece in enumerate(_lowerCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCamelCase ) and pi != 0: new_pieces.append(_lowerCamelCase ) continue else: continue _snake_case = 0 for i, chunk in enumerate(_lowerCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCamelCase ) or self.is_punct(_lowerCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCamelCase ) _snake_case = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _snake_case = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _snake_case = i if len(_lowerCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase ( self : Optional[int] , _lowerCamelCase : List[Any] ): _snake_case = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def lowercase ( self : int , _lowerCamelCase : Tuple ): _snake_case = self.convert_ids_to_tokens(_lowerCamelCase ) _snake_case = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def lowercase ( self : Optional[int] , _lowerCamelCase : Union[str, Any] ): return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): return self.reverse_vocab.get(_lowerCamelCase , self.unk_token ) def lowercase ( self : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase ( self : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase ( self : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Dict=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Dict , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCamelCase ) + 1) + [1] * (len(_lowerCamelCase ) + 3) def lowercase ( self : Optional[Any] , _lowerCamelCase : Dict ): if "\u4e00" <= char <= "\u9fff": return True return False def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase ( self : Optional[int] , _lowerCamelCase : Tuple ): if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase ( self : str , _lowerCamelCase : Tuple ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCamelCase ) == 1: _snake_case = unicodedata.category(_lowerCamelCase ) if cat == "Zs": return True return False def lowercase ( self : str , _lowerCamelCase : Union[str, Any] ): _snake_case = {} with io.open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_lowerCamelCase ): _snake_case = line.rstrip('''\n''' ) _snake_case = int(_lowerCamelCase ) return token_to_idx def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): _snake_case = 0 if os.path.isdir(_lowerCamelCase ): _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _snake_case = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) _snake_case = token_index writer.write(token + '''\n''' ) index += 1 _snake_case = os.path.join(_lowerCamelCase , '''sentencepiece.bpe.model''' ) with open(_lowerCamelCase , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (vocab_file,)
40
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase__ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCAmelCase ( __lowerCamelCase : str ) -> str: re.sub('''<n>''' , '''''' , __lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCamelCase ) )
40
1
"""simple docstring""" def __A ( a_ :list) -> list: __a : int = len(a_) for _ in range(a_): for i in range(_ % 2 , arr_size - 1 , 2): if arr[i + 1] < arr[i]: __a , __a : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": A = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
160
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
160
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = (DDPMParallelScheduler,) def _snake_case ( self ,**a_ ) -> Dict: _UpperCAmelCase : List[Any] = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**a_ ) return config def _snake_case ( self ) -> str: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=a_ ) def _snake_case ( self ) -> List[str]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=a_ ,beta_end=a_ ) def _snake_case ( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a_ ) def _snake_case ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a_ ) def _snake_case ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=a_ ) def _snake_case ( self ) -> Any: self.check_over_configs(thresholding=a_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a_ ,prediction_type=a_ ,sample_max_value=a_ ,) def _snake_case ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def _snake_case ( self ) -> Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : List[Any] = scheduler_class(**a_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**a_ ) _UpperCAmelCase : int = len(a_ ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter _UpperCAmelCase : List[str] = self.dummy_sample_deter + 0.1 _UpperCAmelCase : Optional[Any] = self.dummy_sample_deter - 0.1 _UpperCAmelCase : Union[str, Any] = samplea.shape[0] _UpperCAmelCase : Dict = torch.stack([samplea, samplea, samplea] ,dim=0 ) _UpperCAmelCase : List[str] = torch.arange(a_ )[0:3, None].repeat(1 ,a_ ) _UpperCAmelCase : Any = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _UpperCAmelCase : List[Any] = scheduler.batch_step_no_noise(a_ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) _UpperCAmelCase : str = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**a_ ) _UpperCAmelCase : int = len(a_ ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter _UpperCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(a_ ) ): # 1. predict noise residual _UpperCAmelCase : Dict = model(a_ ,a_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Optional[Any] = scheduler.step(a_ ,a_ ,a_ ,generator=a_ ).prev_sample _UpperCAmelCase : int = pred_prev_sample _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase : Tuple = scheduler_class(**a_ ) _UpperCAmelCase : List[str] = len(a_ ) _UpperCAmelCase : Tuple = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(a_ ) ): # 1. predict noise residual _UpperCAmelCase : List[Any] = model(a_ ,a_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[Any] = scheduler.step(a_ ,a_ ,a_ ,generator=a_ ).prev_sample _UpperCAmelCase : Any = pred_prev_sample _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : List[Any] = scheduler_class(**a_ ) _UpperCAmelCase : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=a_ ) _UpperCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(a_ ): if i == len(a_ ) - 1: _UpperCAmelCase : List[Any] = -1 else: _UpperCAmelCase : int = timesteps[i + 1] _UpperCAmelCase : Dict = scheduler.previous_timestep(a_ ) _UpperCAmelCase : str = prev_t.item() self.assertEqual(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**a_ ) _UpperCAmelCase : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(a_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**a_ ) _UpperCAmelCase : List[str] = [100, 87, 50, 1, 0] _UpperCAmelCase : Tuple = len(a_ ) with self.assertRaises(a_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=a_ ,timesteps=a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**a_ ) _UpperCAmelCase : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( a_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=a_ )
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a__( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase="None" , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = relative_attention lowerCAmelCase = position_biased_input lowerCAmelCase = pos_att_type lowerCAmelCase = scope def a_ ( self): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_config() lowerCAmelCase = 300 return config def a_ ( self , __lowerCAmelCase): """simple docstring""" self.parent.assertListEqual(list(result.loss.size()) , []) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = DebertaModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase)[0] lowerCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase)[0] lowerCAmelCase = model(__lowerCAmelCase)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = DebertaForMaskedLM(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = DebertaForSequenceClassification(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = DebertaForTokenClassification(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = DebertaForQuestionAnswering(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def a_ ( self): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ : Tuple = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Optional[Any] = False def a_ ( self): """simple docstring""" lowerCAmelCase = DebertaModelTester(self) lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37) def a_ ( self): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCAmelCase) @slow def a_ ( self): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = DebertaModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) @require_torch @require_sentencepiece @require_tokenizers class a__( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""") def a_ ( self): """simple docstring""" pass @slow def a_ ( self): """simple docstring""" lowerCAmelCase = DebertaModel.from_pretrained("""microsoft/deberta-base""") lowerCAmelCase = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase)[0] # compare the actual values for a slice. lowerCAmelCase = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4) , f"{output[:, 1:4, 1:4]}")
272
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a_ : str = logging.get_logger(__name__) a_ : Tuple = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """layoutlmv3""" def __init__( self , __magic_name__=5_02_65 , __magic_name__=7_68 , __magic_name__=12 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_12 , __magic_name__=2 , __magic_name__=0.0_2 , __magic_name__=1e-5 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__=10_24 , __magic_name__=1_28 , __magic_name__=1_28 , __magic_name__=True , __magic_name__=32 , __magic_name__=1_28 , __magic_name__=64 , __magic_name__=2_56 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=2_24 , __magic_name__=3 , __magic_name__=16 , __magic_name__=None , **__magic_name__ , ) -> Dict: super().__init__( vocab_size=__magic_name__ , hidden_size=__magic_name__ , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , intermediate_size=__magic_name__ , hidden_act=__magic_name__ , hidden_dropout_prob=__magic_name__ , attention_probs_dropout_prob=__magic_name__ , max_position_embeddings=__magic_name__ , type_vocab_size=__magic_name__ , initializer_range=__magic_name__ , layer_norm_eps=__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ , ) _a = max_ad_position_embeddings _a = coordinate_size _a = shape_size _a = has_relative_attention_bias _a = rel_pos_bins _a = max_rel_pos _a = has_spatial_attention_bias _a = rel_ad_pos_bins _a = max_rel_ad_pos _a = text_embed _a = visual_embed _a = input_size _a = num_channels _a = patch_size _a = classifier_dropout class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = version.parse("""1.12""" ) @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def __UpperCAmelCase ( self ) -> float: return 1e-5 @property def __UpperCAmelCase ( self ) -> int: return 12 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 3 , __magic_name__ = 40 , __magic_name__ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , __magic_name__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = processor.tokenizer.num_special_tokens_to_add(__magic_name__ ) _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence _a = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _a = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _a = self._generate_dummy_images(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = dict( processor( __magic_name__ , text=__magic_name__ , boxes=__magic_name__ , return_tensors=__magic_name__ , ) ) return inputs
168
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _SCREAMING_SNAKE_CASE : Optional[Any] = False @skip_mps class _snake_case ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = StableDiffusionAttendAndExcitePipeline lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : int = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) lowerCAmelCase_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCAmelCase__ ( cls ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls ) -> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase__ , ) snake_case_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) snake_case_ = CLIPTextModel(lowerCamelCase__ ) snake_case_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase__ ( self , a__ , a__=0 ) -> List[str]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("mps" ): snake_case_ = torch.manual_seed(lowerCamelCase__ ) else: snake_case_ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) snake_case_ = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) snake_case_ = self.get_dummy_inputs(lowerCamelCase__ ) snake_case_ = pipe(**lowerCamelCase__ ).images snake_case_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) snake_case_ = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) snake_case_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1e-3 ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls ) -> Any: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls ) -> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = torch.manual_seed(51 ) snake_case_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to("cuda" ) snake_case_ = '''a painting of an elephant with glasses''' snake_case_ = [5, 7] snake_case_ = pipe( prompt=lowerCamelCase__ , token_indices=lowerCamelCase__ , guidance_scale=7.5 , generator=lowerCamelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
357
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _SCREAMING_SNAKE_CASE : List[Any] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _SCREAMING_SNAKE_CASE : Any = "▁" class _snake_case ( lowercase_ ): lowerCAmelCase_ : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Tuple = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ) -> None: '''simple docstring''' snake_case_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) snake_case_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case_ = len(self.sp_model ) - 1 snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def lowerCAmelCase__ ( self , a__ ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = "" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(a__ ) snake_case_ = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self ) -> Dict: '''simple docstring''' snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a__ ) -> str: '''simple docstring''' snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
92
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : int _UpperCAmelCase : int class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int ): '''simple docstring''' _snake_case = [[] for _ in range(lowercase )] _snake_case = size def __getitem__( self : Any , lowercase : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def A ( self : int ): '''simple docstring''' return self._size def A ( self : Any , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase , lowercase ) ) def A ( self : int , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = deque([start_vertex] ) _snake_case = [None] * self.size _snake_case = 0 while queue: _snake_case = queue.popleft() _snake_case = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _snake_case = current_distance + edge.weight _snake_case = distances[edge.destination_vertex] if ( isinstance(lowercase , lowercase ) and new_distance >= dest_vertex_distance ): continue _snake_case = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
282
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
from typing import Any class _lowercase : def __init__( self : Optional[Any] , snake_case : Any ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = data UpperCamelCase_ : Any = None def __repr__( self : int ) -> str: """simple docstring""" return f"Node({self.data})" class _lowercase : def __init__( self : str ) -> int: """simple docstring""" UpperCamelCase_ : int = None def __iter__( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = self.head while node: yield node.data UpperCamelCase_ : Dict = node.next def __len__( self : int ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self : List[Any] ) -> str: """simple docstring""" return "->".join([str(snake_case ) for item in self] ) def __getitem__( self : Union[str, Any] , snake_case : int ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Any , snake_case : int , snake_case : Any ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCamelCase_ : int = self.head for _ in range(snake_case ): UpperCamelCase_ : Union[str, Any] = current.next UpperCamelCase_ : Any = data def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Any ) -> None: """simple docstring""" self.insert_nth(0 , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : int , snake_case : Any ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCamelCase_ : Union[str, Any] = Node(snake_case ) if self.head is None: UpperCamelCase_ : Union[str, Any] = new_node elif index == 0: UpperCamelCase_ : int = self.head # link new_node to head UpperCamelCase_ : List[str] = new_node else: UpperCamelCase_ : List[str] = self.head for _ in range(index - 1 ): UpperCamelCase_ : Union[str, Any] = temp.next UpperCamelCase_ : Dict = temp.next UpperCamelCase_ : Optional[Any] = new_node def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> None: # print every node data """simple docstring""" print(self ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCamelCase_ : str = self.head # default first node if index == 0: UpperCamelCase_ : List[Any] = self.head.next else: UpperCamelCase_ : Dict = self.head for _ in range(index - 1 ): UpperCamelCase_ : Tuple = temp.next UpperCamelCase_ : List[Any] = temp.next UpperCamelCase_ : Dict = temp.next.next return delete_node.data def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> bool: """simple docstring""" return self.head is None def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: """simple docstring""" UpperCamelCase_ : str = None UpperCamelCase_ : int = self.head while current: # Store the current node's next node. UpperCamelCase_ : Tuple = current.next # Make the current node's next point backwards UpperCamelCase_ : Tuple = prev # Make the previous node be the current node UpperCamelCase_ : List[Any] = current # Make the current node the next node (to progress iteration) UpperCamelCase_ : Dict = next_node # Return prev in order to put the head at the end UpperCamelCase_ : Union[str, Any] = prev def __lowercase ( ): UpperCamelCase_ : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(lowerCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowerCamelCase ) == i linked_list.insert_nth(lowerCamelCase , i + 1 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowerCamelCase ) == 9 assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase_ : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(-8 , 1 ) ) def __lowercase ( ): UpperCamelCase_ : List[str] = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] UpperCamelCase_ : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(lowerCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase_ : List[Any] = linked_list.delete_head() assert result == -9 assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase_ : Tuple = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase_ : Optional[Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCamelCase ) assert ( str(lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowercase ( ): from doctest import testmod testmod() UpperCamelCase_ : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(lowerCamelCase ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) UpperCamelCase_ : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(lowerCamelCase ) print(F"length of linked_list is : {len(lowerCamelCase )}" ) if __name__ == "__main__": main()
50
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowercase: List[Any] = logging.get_logger(__name__) def a( A : List[Any] , A : Optional[int] , A : int ) -> List[Any]: """simple docstring""" a = WavaVecaForSequenceClassification.from_pretrained(A , config=A ) a = downstream_dict["projector.weight"] a = downstream_dict["projector.bias"] a = downstream_dict["model.post_net.linear.weight"] a = downstream_dict["model.post_net.linear.bias"] return model def a( A : int , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = WavaVecaForAudioFrameClassification.from_pretrained(A , config=A ) a = downstream_dict["model.linear.weight"] a = downstream_dict["model.linear.bias"] return model def a( A : int , A : int , A : Optional[Any] ) -> Optional[int]: """simple docstring""" a = WavaVecaForXVector.from_pretrained(A , config=A ) a = downstream_dict["connector.weight"] a = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] a = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] a = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a = downstream_dict["objective.W"] return model @torch.no_grad() def a( A : Optional[Any] , A : List[str] , A : List[str] , A : List[Any] ) -> List[Any]: """simple docstring""" a = torch.load(A , map_location="cpu" ) a = checkpoint["Downstream"] a = WavaVecaConfig.from_pretrained(A ) a = WavaVecaFeatureExtractor.from_pretrained( A , return_attention_mask=A , do_normalize=A ) a = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a = convert_classification(A , A , A ) elif arch.endswith("ForAudioFrameClassification" ): a = convert_diarization(A , A , A ) elif arch.endswith("ForXVector" ): a = convert_xvector(A , A , A ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: a = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(A ) hf_model.save_pretrained(A ) if __name__ == "__main__": _lowercase: str = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") _lowercase: List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
227
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowercase: Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _lowercase: List[str] = json.load(f) @require_torch class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return FSMTTokenizer.from_pretrained(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = F'''facebook/wmt19-{pair}''' a = self.get_tokenizer(lowerCamelCase_ ) a = self.get_model(lowerCamelCase_ ) a = bleu_data[pair]["src"] a = bleu_data[pair]["tgt"] a = tokenizer(lowerCamelCase_ , return_tensors="pt" , truncation=lowerCamelCase_ , padding="longest" ).to(lowerCamelCase_ ) a = model.generate( input_ids=batch.input_ids , num_beams=8 , ) a = tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) a = calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) print(lowerCamelCase_ ) self.assertGreaterEqual(scores["bleu"] , lowerCamelCase_ )
227
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __UpperCAmelCase :List[str] = logging.get_logger(__name__) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = CLIPConfig SCREAMING_SNAKE_CASE : int = ["CLIPEncoderLayer"] def __init__( self : Optional[int] , snake_case : CLIPConfig ) -> List[Any]: super().__init__(snake_case ) __UpperCAmelCase : Any = CLIPVisionModelWithProjection(config.vision_config ) __UpperCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) __UpperCAmelCase : str = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple , snake_case : int=0.5 , snake_case : Optional[Any]=0.5 ) -> int: __UpperCAmelCase : Optional[int] = self.vision_model(snake_case )[0] __UpperCAmelCase : Any = self.p_head(snake_case ) __UpperCAmelCase : int = nsfw_detected.flatten() __UpperCAmelCase : Dict = nsfw_detected > p_threshold __UpperCAmelCase : Tuple = nsfw_detected.tolist() if any(snake_case ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(snake_case ): if nsfw_detected_: __UpperCAmelCase : int = np.zeros(images[idx].shape ) __UpperCAmelCase : Any = self.w_head(snake_case ) __UpperCAmelCase : Tuple = watermark_detected.flatten() __UpperCAmelCase : str = watermark_detected > w_threshold __UpperCAmelCase : str = watermark_detected.tolist() if any(snake_case ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(snake_case ): if watermark_detected_: __UpperCAmelCase : int = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
240
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a : """simple docstring""" SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : Tuple[int] def lowerCamelCase__ ( self : Any ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase__ ( self : Union[str, Any] ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Any ) -> torch.Tensor: __UpperCAmelCase : Dict = torch.arange(self.height * self.width ) __UpperCAmelCase : Dict = torch.stack( [ pixel_indices % self.width, torch.div(snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def lowerCamelCase__ ( self : Any ) -> int: __UpperCAmelCase , *__UpperCAmelCase : str = self.shape __UpperCAmelCase : Dict = int(np.prod(snake_case ) ) __UpperCAmelCase : Tuple = self.get_image_coords() __UpperCAmelCase : List[Any] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __UpperCAmelCase : Any = self.get_camera_rays(snake_case ) __UpperCAmelCase : List[str] = rays.view(snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCamelCase__ ( self : Union[str, Any] , snake_case : torch.Tensor ) -> torch.Tensor: __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase : List[str] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __UpperCAmelCase : List[str] = coords.view(snake_case , -1 , 2 ) __UpperCAmelCase : Optional[Any] = self.resolution() __UpperCAmelCase : Tuple = self.fov() __UpperCAmelCase : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 __UpperCAmelCase : Union[str, Any] = fracs * torch.tan(fov / 2 ) __UpperCAmelCase : str = fracs.view(snake_case , -1 , 2 ) __UpperCAmelCase : Any = ( self.z.view(snake_case , 1 , 3 ) + self.x.view(snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(snake_case , 1 , 3 ) * fracs[:, :, 1:] ) __UpperCAmelCase : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(snake_case , *snake_case , 2 , 3 ) def lowerCamelCase__ ( self : Any , snake_case : int , snake_case : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case , height=snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __UpperCAmelCase : Dict = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __UpperCAmelCase : Any = -z * 4 __UpperCAmelCase : Dict = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) __UpperCAmelCase : List[str] = np.cross(_lowercase , _lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , width=_lowercase , height=_lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowercase )) , )
240
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''focalnet''' def __init__(self , UpperCAmelCase=2_2_4 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=9_6 , UpperCAmelCase=False , UpperCAmelCase=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[2, 2, 2, 2] , UpperCAmelCase=[3, 3, 3, 3] , UpperCAmelCase="gelu" , UpperCAmelCase=4.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=False , UpperCAmelCase=1e-4 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=3_2 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Dict: super().__init__(**UpperCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =embed_dim _lowercase =use_conv_embed _lowercase =hidden_sizes _lowercase =depths _lowercase =focal_levels _lowercase =focal_windows _lowercase =hidden_act _lowercase =mlp_ratio _lowercase =hidden_dropout_prob _lowercase =drop_path_rate _lowercase =use_layerscale _lowercase =layerscale_value _lowercase =use_post_layernorm _lowercase =use_post_layernorm_in_modulation _lowercase =normalize_modulator _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =encoder_stride _lowercase =['''stem'''] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] _lowercase , _lowercase =get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
5
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : Any = logging.get_logger(__name__) A : Optional[Any] = '▁' A : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} A : Optional[Any] = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } A : Optional[Any] = { 'xlm-roberta-base': 5_1_2, 'xlm-roberta-large': 5_1_2, 'xlm-roberta-large-finetuned-conll02-dutch': 5_1_2, 'xlm-roberta-large-finetuned-conll02-spanish': 5_1_2, 'xlm-roberta-large-finetuned-conll03-english': 5_1_2, 'xlm-roberta-large-finetuned-conll03-german': 5_1_2, } class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case = None , **_snake_case , ) -> None: '''simple docstring''' __a = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) __a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __a = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __a = 1 __a = len(self.sp_model ) + self.fairseq_offset __a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> int: '''simple docstring''' __a = self.__dict__.copy() __a = None __a = self.sp_model.serialized_model_proto() return state def __setstate__( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> List[int]: '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[Any]: '''simple docstring''' __a = ''''''.join(_snake_case ).replace(_snake_case , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __a = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
366
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
0
"""simple docstring""" import os def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Optional[Any] = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = os.path.join(__UpperCAmelCase , """triangle.txt""" ) with open(__UpperCAmelCase ) as f: lowerCAmelCase__ : List[str] = f.readlines() lowerCAmelCase__ : Optional[Any] = [] for line in triangle: lowerCAmelCase__ : Dict = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(__UpperCAmelCase ) ) a.append(__UpperCAmelCase ) for i in range(1 , len(__UpperCAmelCase ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ : Dict = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ : Tuple = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCAmelCase , __UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
242
"""simple docstring""" from string import ascii_uppercase _A = {str(ord(c) - 5_5): c for c in ascii_uppercase} def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowerCAmelCase__ : int = """""" lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 while div != 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = divmod(__UpperCAmelCase , __UpperCAmelCase ) if base >= 11 and 9 < mod < 36: lowerCAmelCase__ : Dict = ALPHABET_VALUES[str(__UpperCAmelCase )] else: lowerCAmelCase__ : Union[str, Any] = str(__UpperCAmelCase ) new_value += actual_value lowerCAmelCase__ : Optional[Any] = num // base lowerCAmelCase__ : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__UpperCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 3_7): for num in range(1_0_0_0): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
242
1
"""simple docstring""" from timeit import timeit __SCREAMING_SNAKE_CASE ={ "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Any = 0 lowercase_ : str = len(lowerCamelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = len(lowerCamelCase__ ) // 2 lowercase_ : str = len(lowerCamelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowerCamelCase__ ) ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): if len(lowerCamelCase__ ) <= 2: return True if s[0] == s[len(lowerCamelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowercase__( __SCREAMING_SNAKE_CASE : str ): return s == s[::-1] def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Optional[Any] = F'''all({name}(key) is value for key, value in test_data.items())''' lowercase_ : int = F'''from __main__ import test_data, {name}''' lowercase_ : List[str] = 50_00_00 lowercase_ : List[str] = timeit(stmt=lowerCamelCase__ , setup=lowerCamelCase__ , number=lowerCamelCase__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
350
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase__ = """src/diffusers""" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla UpperCAmelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") UpperCAmelCase__ = """ {0} = None """ UpperCAmelCase__ = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ UpperCAmelCase__ = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = _re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def __UpperCAmelCase ( ): """simple docstring""" with open(os.path.join(lowercase ,"""__init__.py""" ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking _UpperCAmelCase = 0 _UpperCAmelCase = {} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: _UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase ,lowercase ) else: return DUMMY_CLASS.format(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase=None ): """simple docstring""" if backend_specific_objects is None: _UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): _UpperCAmelCase = """[""" + """, """.join(f'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" _UpperCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase ,lowercase ) for o in objects] ) _UpperCAmelCase = dummy_file return dummy_files def __UpperCAmelCase ( lowercase=False ): """simple docstring""" _UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCAmelCase = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. _UpperCAmelCase = os.path.join(lowercase ,"""utils""" ) _UpperCAmelCase = { backend: os.path.join(lowercase ,f'''dummy_{short_names.get(lowercase ,lowercase )}_objects.py''' ) for backend in dummy_files.keys() } _UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.read() else: _UpperCAmelCase = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(lowercase ,lowercase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'''diffusers.utils.dummy_{short_names.get(lowercase ,lowercase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
from __future__ import annotations snake_case = tuple[int, int, int] snake_case = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase snake_case = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- snake_case = """EGZWVONAHDCLFQMSIPJBYUKXTR""" snake_case = """FOBHMDKEXQNRAULPGSJVTYICZW""" snake_case = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- snake_case = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- snake_case = """RMDJXFUWGISLHVTCQNKYPBEZOA""" snake_case = """SGLCPQWZHKXAREONTFBVIYJUDM""" snake_case = """HVSICLTYKQUBXDWAJZOMFGPREN""" snake_case = """RZWQHFMVDBKICJLNTUXAGYPSOE""" snake_case = """LFKIJODBEGAMQPXVUHYSTCZRWN""" snake_case = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if (unique_rotsel := len(set(lowercase ) )) < 3: SCREAMING_SNAKE_CASE : Tuple = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(lowercase ) # Checks if rotor positions are valid SCREAMING_SNAKE_CASE : Any = rotpos if not 0 < rotorposa <= len(lowercase ): SCREAMING_SNAKE_CASE : Tuple = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(lowercase ) if not 0 < rotorposa <= len(lowercase ): SCREAMING_SNAKE_CASE : List[str] = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowercase ) if not 0 < rotorposa <= len(lowercase ): SCREAMING_SNAKE_CASE : Any = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowercase ) # Validates string and returns dict SCREAMING_SNAKE_CASE : List[str] = _plugboard(lowercase ) return rotpos, rotsel, pbdict def lowerCamelCase__ ( lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE : int = F'''Plugboard setting isn\'t type string ({type(lowercase )})''' raise TypeError(lowercase ) elif len(lowercase ) % 2 != 0: SCREAMING_SNAKE_CASE : List[str] = F'''Odd number of symbols ({len(lowercase )})''' raise Exception(lowercase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique SCREAMING_SNAKE_CASE : Any = set() for i in pbstring: if i not in abc: SCREAMING_SNAKE_CASE : Any = F'''\'{i}\' not in list of symbols''' raise Exception(lowercase ) elif i in tmppbl: SCREAMING_SNAKE_CASE : List[str] = F'''Duplicate symbol ({i})''' raise Exception(lowercase ) else: tmppbl.add(lowercase ) del tmppbl # Created the dictionary SCREAMING_SNAKE_CASE : List[Any] = {} for j in range(0 , len(lowercase ) - 1 , 2 ): SCREAMING_SNAKE_CASE : Optional[Any] = pbstring[j + 1] SCREAMING_SNAKE_CASE : Dict = pbstring[j] return pb def lowerCamelCase__ ( lowercase , lowercase , lowercase = (rotora, rotora, rotora) , lowercase = "" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = text.upper() SCREAMING_SNAKE_CASE : Optional[int] = _validator( lowercase , lowercase , plugb.upper() ) SCREAMING_SNAKE_CASE : Any = rotor_position SCREAMING_SNAKE_CASE : List[str] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 SCREAMING_SNAKE_CASE : Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: SCREAMING_SNAKE_CASE : str = plugboard[symbol] # rotor ra -------------------------- SCREAMING_SNAKE_CASE : int = abc.index(lowercase ) + rotorposa SCREAMING_SNAKE_CASE : Dict = rotora[index % len(lowercase )] # rotor rb -------------------------- SCREAMING_SNAKE_CASE : str = abc.index(lowercase ) + rotorposa SCREAMING_SNAKE_CASE : str = rotora[index % len(lowercase )] # rotor rc -------------------------- SCREAMING_SNAKE_CASE : Tuple = abc.index(lowercase ) + rotorposa SCREAMING_SNAKE_CASE : List[Any] = rotora[index % len(lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher SCREAMING_SNAKE_CASE : Optional[int] = reflector[symbol] # 2nd rotors SCREAMING_SNAKE_CASE : List[Any] = abc[rotora.index(lowercase ) - rotorposa] SCREAMING_SNAKE_CASE : Tuple = abc[rotora.index(lowercase ) - rotorposa] SCREAMING_SNAKE_CASE : List[str] = abc[rotora.index(lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: SCREAMING_SNAKE_CASE : Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(lowercase ): SCREAMING_SNAKE_CASE : List[str] = 0 rotorposa += 1 if rotorposa >= len(lowercase ): SCREAMING_SNAKE_CASE : List[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowercase ) return "".join(lowercase ) if __name__ == "__main__": snake_case = """This is my Python script that emulates the Enigma machine from WWII.""" snake_case = (1, 1, 1) snake_case = """pictures""" snake_case = (rotora, rotora, rotora) snake_case = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _lowerCAmelCase = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_snake_case ) , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_snake_case ) , x.transpose() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , np.asarray(transpose(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(_snake_case , axes=(1, 2, 0) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.reshape(_snake_case , (4, 3) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.reshape(_snake_case , (12, 5) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.asarray(reshape(_snake_case , (4, 3) ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.asarray(reshape(_snake_case , (12, 5) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.squeeze(_snake_case ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.squeeze(_snake_case , axis=2 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.asarray(squeeze(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.asarray(squeeze(_snake_case , axis=2 ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.expand_dims(_snake_case , axis=1 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.asarray(expand_dims(_snake_case , axis=1 ) ) ) )
82
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __a = logging.getLogger(__name__) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Union[str, Any] = """token-classification""" def __init__( self: Any , snake_case: Tuple ) -> List[Any]: if type(snake_case ) == dict: snake_case_ :Optional[int] = Namespace(**snake_case ) snake_case_ :Optional[int] = import_module("""tasks""" ) try: snake_case_ :Any = getattr(snake_case , hparams.task_type ) snake_case_ :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) snake_case_ :Any = self.token_classification_task.get_labels(hparams.labels ) snake_case_ :str = CrossEntropyLoss().ignore_index super().__init__(snake_case , len(self.labels ) , self.mode ) def lowerCAmelCase_ ( self: Dict , **snake_case: List[Any] ) -> Any: return self.model(**snake_case ) def lowerCAmelCase_ ( self: str , snake_case: Tuple , snake_case: List[Any] ) -> Optional[int]: snake_case_ :List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": snake_case_ :List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids snake_case_ :Optional[Any] = self(**snake_case ) snake_case_ :List[str] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCAmelCase_ ( self: int ) -> Dict: snake_case_ :List[Any] = self.hparams for mode in ["train", "dev", "test"]: snake_case_ :Optional[int] = self._feature_file(snake_case ) if os.path.exists(snake_case ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , snake_case ) snake_case_ :Optional[int] = torch.load(snake_case ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) snake_case_ :Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , snake_case ) snake_case_ :Any = self.token_classification_task.convert_examples_to_features( snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=snake_case , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , snake_case ) torch.save(snake_case , snake_case ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: int , snake_case: int , snake_case: bool = False ) -> DataLoader: snake_case_ :int = self._feature_file(snake_case ) logger.info("""Loading features from cached file %s""" , snake_case ) snake_case_ :str = torch.load(snake_case ) snake_case_ :Dict = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case_ :str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: snake_case_ :List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: snake_case_ :List[str] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) snake_case_ :Any = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(snake_case , snake_case , snake_case , snake_case ) , batch_size=snake_case ) def lowerCAmelCase_ ( self: List[str] , snake_case: Dict , snake_case: Union[str, Any] ) -> List[str]: """Compute validation""" "" snake_case_ :List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": snake_case_ :Dict = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids snake_case_ :Dict = self(**snake_case ) snake_case_, snake_case_ :Dict = outputs[:2] snake_case_ :Union[str, Any] = logits.detach().cpu().numpy() snake_case_ :List[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase_ ( self: List[Any] , snake_case: int ) -> Tuple: snake_case_ :Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() snake_case_ :Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) snake_case_ :Tuple = np.argmax(snake_case , axis=2 ) snake_case_ :List[str] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) snake_case_ :Optional[Any] = dict(enumerate(self.labels ) ) snake_case_ :Dict = [[] for _ in range(out_label_ids.shape[0] )] snake_case_ :Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) snake_case_ :str = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(snake_case , snake_case ), """precision""": precision_score(snake_case , snake_case ), """recall""": recall_score(snake_case , snake_case ), """f1""": fa_score(snake_case , snake_case ), } snake_case_ :List[Any] = dict(results.items() ) snake_case_ :Union[str, Any] = results return ret, preds_list, out_label_list def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Dict ) -> Optional[Any]: # when stable snake_case_, snake_case_, snake_case_ :Tuple = self._eval_end(snake_case ) snake_case_ :str = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[int] ) -> Any: # updating to test_epoch_end instead of deprecated test_end snake_case_, snake_case_, snake_case_ :Any = self._eval_end(snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 snake_case_ :Optional[int] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase_ ( snake_case: Any , snake_case: int ) -> Dict: # Add NER specific options BaseTransformer.add_model_specific_args(snake_case , snake_case ) parser.add_argument( """--task_type""" , default="""NER""" , type=snake_case , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=snake_case , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=snake_case , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __a = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __a = NERTransformer.add_model_specific_args(parser, os.getcwd()) __a = parser.parse_args() __a = NERTransformer(args) __a = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __a = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __a = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
66
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( __UpperCamelCase )-> list[list[float]]: UpperCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__UpperCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase ,UpperCamelCase = matrix[1][1], matrix[0][0] UpperCamelCase ,UpperCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__UpperCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__UpperCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase = array(__UpperCamelCase ) for i in range(3 ): for j in range(3 ): UpperCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase = array(__UpperCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__UpperCamelCase ) # Calculate the inverse of the matrix return [[float(d(__UpperCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
183
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list: UpperCamelCase = word.split() def justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: UpperCamelCase = max_width - width UpperCamelCase = len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase = [] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = 0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width UpperCamelCase ,UpperCamelCase = [word], len(__UpperCamelCase ) UpperCamelCase = max_width - width - len(__UpperCamelCase ) answer.append(""" """.join(__UpperCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
183
1
"""simple docstring""" from __future__ import annotations _lowercase = [True] * 1_00_00_01 _lowercase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): _lowercase = False i += 1 def _snake_case ( snake_case__ : int ): return seive[n] def _snake_case ( snake_case__ : int ): return any(digit in '02468' for digit in str(snake_case__ ) ) def _snake_case ( snake_case__ : int = 100_0000 ): A = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(snake_case__ ) and not contains_an_even_digit(snake_case__ ): A = str(snake_case__ ) A = [int(str_num[j:] + str_num[:j] ) for j in range(len(snake_case__ ) )] if all(is_prime(snake_case__ ) for i in list_nums ): result.append(snake_case__ ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(F"""{len(find_circular_primes()) = }""")
74
"""simple docstring""" class _lowerCamelCase : def __init__(self , __a ) -> None: UpperCamelCase = len(__a ) UpperCamelCase = [0] * len_array if len_array > 0: UpperCamelCase = array[0] for i in range(1 , __a ): UpperCamelCase = self.prefix_sum[i - 1] + array[i] def snake_case_ (self , __a , __a ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case_ (self , __a ) -> bool: UpperCamelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
153
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int=2 , snake_case__ : Optional[Any]=True , snake_case__ : str=False , snake_case__ : Dict=1_0 , snake_case__ : List[Any]=3 , snake_case__ : List[Any]=3_2 * 8 , snake_case__ : int=3_2 * 8 , snake_case__ : Dict=4 , snake_case__ : Dict=6_4 , ): '''simple docstring''' lowercase :List[str] = parent lowercase :Tuple = batch_size lowercase :Tuple = is_training lowercase :List[Any] = use_auxiliary_loss lowercase :List[Any] = num_queries lowercase :str = num_channels lowercase :Tuple = min_size lowercase :Optional[int] = max_size lowercase :List[Any] = num_labels lowercase :Optional[int] = hidden_dim lowercase :Union[str, Any] = hidden_dim def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case__ ) lowercase :Dict = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case__ ) lowercase :str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case__ ) > 0.5 ).float() lowercase :Dict = (torch.rand((self.batch_size, self.num_labels) , device=snake_case__ ) > 0.5).long() lowercase :List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Tuple = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase :Optional[Any] = self.num_queries lowercase :Any = self.num_labels lowercase :int = [1, 1, 1, 1] lowercase :Union[str, Any] = self.num_channels lowercase :str = 6_4 lowercase :Optional[int] = 1_2_8 lowercase :Tuple = self.hidden_dim lowercase :Union[str, Any] = self.hidden_dim lowercase :Optional[int] = self.hidden_dim return config def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = self.prepare_config_and_inputs() lowercase :Optional[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __snake_case ( self : Any , snake_case__ : Any , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = output.encoder_hidden_states lowercase :int = output.pixel_decoder_hidden_states lowercase :List[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , config.decoder_layers ) def __snake_case ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any]=False ): '''simple docstring''' with torch.no_grad(): lowercase :Tuple = MaskaFormerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[Any] = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowercase :Optional[int] = model(snake_case__ , output_hidden_states=snake_case__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case__ , snake_case__ ) def __snake_case ( self : int , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Any , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Optional[int] = MaskaFormerForUniversalSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() def comm_check_on_output(snake_case__ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase :Any = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowercase :Dict = model(snake_case__ ) comm_check_on_output(snake_case__ ) lowercase :List[Any] = model( pixel_values=snake_case__ , pixel_mask=snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) comm_check_on_output(snake_case__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __A : List[str] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} __A : Union[str, Any] = False __A : str = False __A : Optional[int] = False __A : str = False def __snake_case ( self : int ): '''simple docstring''' lowercase :Tuple = MaskaFormerModelTester(self ) lowercase :List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def __snake_case ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def __snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def __snake_case ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __snake_case ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self : Optional[int] ): '''simple docstring''' pass def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[str] = model_class(snake_case__ ) lowercase :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Union[str, Any] = [*signature.parameters.keys()] lowercase :List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase :Dict = MaskaFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __snake_case ( self : Any ): '''simple docstring''' lowercase :List[Any] = (self.model_tester.min_size,) * 2 lowercase :Optional[int] = { '''pixel_values''': torch.randn((2, 3, *size) , device=snake_case__ ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=snake_case__ ), '''class_labels''': torch.zeros(2 , 1_0 , device=snake_case__ ).long(), } lowercase :Tuple = self.model_tester.get_config() lowercase :str = MaskaFormerForUniversalSegmentation(snake_case__ ).to(snake_case__ ) lowercase :Dict = model(**snake_case__ ) self.assertTrue(outputs.loss is not None ) def __snake_case ( self : int ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[str] = model_class(snake_case__ ).to(snake_case__ ) lowercase :int = model(**snake_case__ , output_attentions=snake_case__ ) self.assertTrue(outputs.attentions is not None ) def __snake_case ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase :Tuple = self.all_model_classes[1] lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() lowercase :Any = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowercase :str = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ).loss loss.backward() def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[Any] = self.all_model_classes[1] lowercase :Any = self.model_tester.prepare_config_and_inputs() lowercase :Optional[Any] = True lowercase :Union[str, Any] = True lowercase :Any = model_class(snake_case__ ).to(snake_case__ ) model.train() lowercase :Tuple = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) lowercase :int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase :Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase :str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase :Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase = 1E-4 def lowerCamelCase () -> Tuple: lowercase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @slow class __magic_name__ ( unittest.TestCase ): @cached_property def __snake_case ( self : Optional[Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case ( self : Any ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case__ ) lowercase :Any = self.default_image_processor lowercase :int = prepare_img() lowercase :int = image_processor(snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) lowercase :List[str] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowercase :Any = model(**snake_case__ ) lowercase :Dict = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowercase :Optional[Any] = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowercase :Any = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowercase :int = self.default_image_processor lowercase :List[Any] = prepare_img() lowercase :Optional[int] = image_processor(snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) lowercase :List[str] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowercase :Union[str, Any] = model(**snake_case__ ) # masks_queries_logits lowercase :List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase :Optional[Any] = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] lowercase :Union[str, Any] = torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits lowercase :List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase :List[str] = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowercase :List[str] = self.default_image_processor lowercase :Union[str, Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowercase :Any = inputs['''pixel_values'''].to(snake_case__ ) lowercase :List[Any] = [el.to(snake_case__ ) for el in inputs['''mask_labels''']] lowercase :Optional[Any] = [el.to(snake_case__ ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase :Dict = model(**snake_case__ ) self.assertTrue(outputs.loss is not None )
356
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "layoutlmv3" def __init__( self : int , snake_case__ : Any=5_0_2_6_5 , snake_case__ : int=7_6_8 , snake_case__ : Dict=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Union[str, Any]=3_0_7_2 , snake_case__ : Tuple="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : int=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : Optional[int]=1 , snake_case__ : Any=0 , snake_case__ : Optional[int]=2 , snake_case__ : int=1_0_2_4 , snake_case__ : str=1_2_8 , snake_case__ : Tuple=1_2_8 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any=1_2_8 , snake_case__ : List[Any]=6_4 , snake_case__ : List[Any]=2_5_6 , snake_case__ : Any=True , snake_case__ : Optional[Any]=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=2_2_4 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : str=None , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) lowercase :Optional[int] = max_ad_position_embeddings lowercase :Tuple = coordinate_size lowercase :Any = shape_size lowercase :Union[str, Any] = has_relative_attention_bias lowercase :Optional[Any] = rel_pos_bins lowercase :Tuple = max_rel_pos lowercase :Any = has_spatial_attention_bias lowercase :Any = rel_ad_pos_bins lowercase :str = max_rel_ad_pos lowercase :int = text_embed lowercase :Optional[int] = visual_embed lowercase :str = input_size lowercase :List[str] = num_channels lowercase :str = patch_size lowercase :Any = classifier_dropout class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = version.parse("1.12" ) @property def __snake_case ( self : Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __snake_case ( self : int ): '''simple docstring''' return 1e-5 @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return 1_2 def __snake_case ( self : str , snake_case__ : "ProcessorMixin" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 4_0 , snake_case__ : int = 4_0 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase :Dict = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase :Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) lowercase :List[str] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence lowercase :Tuple = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase :List[str] = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase :List[Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :Dict = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
172
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _A ( A__ , A__ , A__ = 1 / sqrt(2 ) ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = (1 - _cos) / 2 __lowercase = 1 - _cos __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( A__ , A__ , A__ = 1 / sqrt(2 ) ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = (1 + _cos) / 2 __lowercase = -1 - _cos __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( A__ , A__ , A__ = 1 / sqrt(2 ) ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = _sin / 2 __lowercase = 0 __lowercase = -ba __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( A__ , A__ , A__ = 1 / sqrt(2 ) ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = 1 - alpha __lowercase = -2 * _cos __lowercase = 1 + alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _A ( A__ , A__ , A__ , A__ = 1 / sqrt(2 ) , ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = 10 ** (gain_db / 40) __lowercase = 1 + alpha * big_a __lowercase = -2 * _cos __lowercase = 1 - alpha * big_a __lowercase = 1 + alpha / big_a __lowercase = -2 * _cos __lowercase = 1 - alpha / big_a __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( A__ , A__ , A__ , A__ = 1 / sqrt(2 ) , ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = 10 ** (gain_db / 40) __lowercase = (big_a + 1) - (big_a - 1) * _cos __lowercase = (big_a + 1) + (big_a - 1) * _cos __lowercase = (big_a - 1) - (big_a + 1) * _cos __lowercase = (big_a - 1) + (big_a + 1) * _cos __lowercase = 2 * sqrt(A__ ) * alpha __lowercase = big_a * (pmc + aaa) __lowercase = 2 * big_a * mpc __lowercase = big_a * (pmc - aaa) __lowercase = ppmc + aaa __lowercase = -2 * pmpc __lowercase = ppmc - aaa __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A ( A__ , A__ , A__ , A__ = 1 / sqrt(2 ) , ): """simple docstring""" __lowercase = tau * frequency / samplerate __lowercase = sin(A__ ) __lowercase = cos(A__ ) __lowercase = _sin / (2 * q_factor) __lowercase = 10 ** (gain_db / 40) __lowercase = (big_a + 1) - (big_a - 1) * _cos __lowercase = (big_a + 1) + (big_a - 1) * _cos __lowercase = (big_a - 1) - (big_a + 1) * _cos __lowercase = (big_a - 1) + (big_a + 1) * _cos __lowercase = 2 * sqrt(A__ ) * alpha __lowercase = big_a * (ppmc + aaa) __lowercase = -2 * big_a * pmpc __lowercase = big_a * (ppmc - aaa) __lowercase = pmc + aaa __lowercase = 2 * mpc __lowercase = pmc - aaa __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
104
'''simple docstring''' import torch from torch import nn class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=False ): super().__init__() __lowercase = n_token __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [n_token] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowercase = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) __lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowercase = nn.ModuleList() __lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) else: self.out_projs.append(lowercase__ ) self.out_layers.append(nn.Linear(lowercase__ ,lowercase__ ) ) else: for i in range(len(self.cutoffs ) ): __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) self.out_layers.append(nn.Linear(lowercase__ ,r_idx - l_idx ) ) __lowercase = keep_order def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ): if proj is None: __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowercase = nn.functional.linear(lowercase__ ,proj.t().contiguous() ) __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n __lowercase = hidden[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) __lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: __lowercase = labels != -1_0_0 __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = ( -nn.functional.log_softmax(lowercase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowercase = nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) if labels is None: __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = 0 __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowercase = (labels >= l_idx) & (labels < r_idx) __lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowercase = labels.index_select(0 ,lowercase__ ) - l_idx __lowercase = head_logprob.index_select(0 ,lowercase__ ) __lowercase = hidden.index_select(0 ,lowercase__ ) else: __lowercase = hidden if i == 0: if labels is not None: __lowercase = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowercase = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,lowercase__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ): if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = head_logprob[:, -i] + tail_logprob_i __lowercase = logprob_i return out
104
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "width_multiplier" ) ) class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=64 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__="swish" , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=10 , UpperCamelCase__=None , UpperCamelCase__=0.25 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , ) -> Any: '''simple docstring''' snake_case : str = parent snake_case : Dict = batch_size snake_case : Union[str, Any] = image_size snake_case : Union[str, Any] = patch_size snake_case : Tuple = num_channels snake_case : Union[str, Any] = make_divisible(512 * width_multiplier , divisor=8 ) snake_case : int = hidden_act snake_case : List[Any] = conv_kernel_size snake_case : Optional[Any] = output_stride snake_case : str = classifier_dropout_prob snake_case : int = use_labels snake_case : int = is_training snake_case : str = num_labels snake_case : List[Any] = initializer_range snake_case : List[Any] = scope snake_case : List[str] = width_multiplier snake_case : str = ffn_dropout snake_case : Dict = attn_dropout def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Dict = None snake_case : List[Any] = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case : Any = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : Tuple = MobileViTVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : Any = self.num_labels snake_case : List[Any] = MobileViTVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : Any = self.num_labels snake_case : Optional[Any] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case ,snake_case : Optional[int] = config_and_inputs snake_case : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Dict = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Tuple = MobileViTVaModelTester(self ) snake_case : Optional[int] = MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowerCamelCase ( self ) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case ,snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCamelCase__ ) snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[Any] = [*signature.parameters.keys()] snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): snake_case : List[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : str = outputs.hidden_states snake_case : List[Any] = 5 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case : str = 2 for i in range(len(UpperCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case ,snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Tuple = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = MobileViTVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ) -> str: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : List[Any] = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( UpperCamelCase__ ) snake_case : Optional[int] = self.default_image_processor snake_case : int = prepare_img() snake_case : Tuple = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : str = model(**UpperCamelCase__ ) # verify the logits snake_case : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Union[str, Any] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case : Dict = model.to(UpperCamelCase__ ) snake_case : Optional[Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case : Optional[int] = prepare_img() snake_case : str = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Union[str, Any] = model(**UpperCamelCase__ ) snake_case : str = outputs.logits # verify the logits snake_case : int = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCamelCase__ ) snake_case : Optional[Any] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : str = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case : int = model.to(UpperCamelCase__ ) snake_case : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case : Tuple = prepare_img() snake_case : List[str] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Optional[int] = model(**UpperCamelCase__ ) snake_case : List[str] = outputs.logits.detach().cpu() snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] ) snake_case : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) snake_case : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) snake_case : Dict = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
112
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __snake_case = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def __lowerCAmelCase ( lowercase : Optional[int] ) -> List[str]: """simple docstring""" snake_case : Optional[Any] = list(s_dict.keys() ) for key in keys: snake_case : Any = R".*/layers_(\d+)" snake_case : Tuple = key if re.match(lowercase , lowercase ): snake_case : List[str] = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowercase ) snake_case : Union[str, Any] = R"(encoder|decoder)\/" if re.match(lowercase , lowercase ): snake_case : Any = re.match(lowercase , lowercase ).groups() if groups[0] == "encoder": snake_case : Union[str, Any] = re.sub(R"/mlp/" , R"/1/mlp/" , lowercase ) snake_case : int = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowercase ) elif groups[0] == "decoder": snake_case : str = re.sub(R"/mlp/" , R"/2/mlp/" , lowercase ) snake_case : List[str] = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowercase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: snake_case : int = new_key.replace(lowercase , lowercase ) print(F'{key} -> {new_key}' ) snake_case : Optional[Any] = s_dict.pop(lowercase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case : int = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: snake_case : Tuple = s_dict[key].shape[0] snake_case : int = s_dict[key] for idx in range(lowercase ): snake_case : List[str] = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowercase ) return s_dict __snake_case = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def __lowerCAmelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> int: """simple docstring""" import regex as re with open(lowercase , "r" ) as f: snake_case : List[str] = f.read() snake_case : Tuple = re.findall(R"(.*) = ([0-9.]*)" , lowercase ) snake_case : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": snake_case : Tuple = float(lowercase ) if "." in value else int(lowercase ) snake_case : List[str] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowercase )[0] snake_case : List[Any] = str(activation[1] ) snake_case : Optional[Any] = num_experts snake_case : List[Any] = SwitchTransformersConfig(**lowercase ) return config def __lowerCAmelCase ( lowercase : Tuple , lowercase : Tuple , lowercase : Union[str, Any]=None , lowercase : Any="./" , lowercase : int=8 ) -> Dict: """simple docstring""" print(F'Loading flax weights from : {flax_checkpoint_path}' ) snake_case : Union[str, Any] = checkpoints.load_tax_checkpoint(lowercase ) if gin_file is not None: snake_case : List[str] = convert_gin_to_config(lowercase , lowercase ) else: snake_case : str = SwitchTransformersConfig.from_pretrained(lowercase ) snake_case : Any = SwitchTransformersForConditionalGeneration(lowercase ) snake_case : Optional[Any] = flax_params["target"] snake_case : Optional[int] = flatten_dict(lowercase , sep="/" ) snake_case : Optional[Any] = rename_keys(lowercase ) snake_case : List[str] = unflatten_dict(lowercase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowercase , lowercase ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") __snake_case = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
112
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def a_ ( __lowercase : str ) -> str: # vision encoder if "img_encoder.pos_embed" in name: _snake_case = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: _snake_case = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: _snake_case = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: _snake_case = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: _snake_case = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: _snake_case = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: _snake_case = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: _snake_case = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: _snake_case = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: _snake_case = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: _snake_case = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: _snake_case = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: _snake_case = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: _snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _snake_case = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: _snake_case = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: _snake_case = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: _snake_case = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: _snake_case = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: _snake_case = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: _snake_case = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Tuple: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case = key.split('.' ) _snake_case , _snake_case = int(key_split[2] ), int(key_split[4] ) _snake_case = config.vision_config.hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case = key.split('.' ) _snake_case = int(key_split[3] ) _snake_case = config.text_config.hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[ dim : dim * 2, : ] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = rename_key(__lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _snake_case = val.squeeze_() else: _snake_case = val return orig_state_dict def a_ ( ) -> str: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : List[str] , __lowercase : List[str]="groupvit-gcc-yfcc" , __lowercase : Union[str, Any]=False ) -> List[str]: _snake_case = GroupViTConfig() _snake_case = GroupViTModel(__lowercase ).eval() _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] _snake_case = convert_state_dict(__lowercase , __lowercase ) _snake_case , _snake_case = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__lowercase ) == 0) # verify result _snake_case = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) _snake_case = prepare_img() _snake_case = processor(text=['a photo of a cat', 'a photo of a dog'] , images=__lowercase , padding=__lowercase , return_tensors='pt' ) with torch.no_grad(): _snake_case = model(**__lowercase ) if model_name == "groupvit-gcc-yfcc": _snake_case = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _snake_case = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , __lowercase , atol=1E-3 ) processor.save_pretrained(__lowercase ) model.save_pretrained(__lowercase ) print('Successfully saved processor and model to' , __lowercase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(__lowercase , organization='nielsr' ) model.push_to_hub(__lowercase , organization='nielsr' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) _lowerCamelCase : Tuple = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
282
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : list[int] ): '''simple docstring''' _snake_case = len(lowercase ) _snake_case = [0] * len_array if len_array > 0: _snake_case = array[0] for i in range(1 , lowercase ): _snake_case = self.prefix_sum[i - 1] + array[i] def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A ( self : Union[str, Any] , lowercase : int ): '''simple docstring''' _snake_case = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
282
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def __lowercase ( _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" snake_case_ : Any = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } snake_case_ : List[str] = input_paths_and_base_extractors[compression_format] if input_path is None: snake_case_ : str = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_a ) assert base_extractor.is_extractable(_a ) snake_case_ : Optional[Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(_a , _a ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case_ : Union[str, Any] = file_path.read_text(encoding='''utf-8''' ) else: snake_case_ : Union[str, Any] = output_path.read_text(encoding='''utf-8''' ) snake_case_ : Any = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def __lowercase ( _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" snake_case_ : str = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } snake_case_ : List[str] = input_paths[compression_format] if input_path is None: snake_case_ : str = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_a ) snake_case_ : str = Extractor.infer_extractor_format(_a ) assert extractor_format is not None snake_case_ : List[str] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(_a , _a , _a ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case_ : Tuple = file_path.read_text(encoding='''utf-8''' ) else: snake_case_ : str = output_path.read_text(encoding='''utf-8''' ) snake_case_ : List[str] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowercase ( _a , _a ): """simple docstring""" import tarfile snake_case_ : Union[str, Any] = tmp_path / '''data_dot_dot''' directory.mkdir() snake_case_ : List[Any] = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(_a , '''w''' ) as f: f.add(_a , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def __lowercase ( _a ): """simple docstring""" import tarfile snake_case_ : Optional[Any] = tmp_path / '''data_sym_link''' directory.mkdir() snake_case_ : Any = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=_a ) with tarfile.TarFile(_a , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def __lowercase ( _a , _a , _a , _a , _a , _a ): """simple docstring""" snake_case_ : str = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } snake_case_ : Tuple = insecure_tar_files[insecure_tar_file] snake_case_ : str = tmp_path / '''extracted''' TarExtractor.extract(_a , _a ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowercase ( _a ): """simple docstring""" snake_case_ : Any = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 snake_case_ : Any = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(_a ) assert zipfile.is_zipfile(str(_a ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_a ) # but we're right
363
"""simple docstring""" from math import pow def __lowercase ( _a , _a , _a , _a , _a , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case_ : int = int(pow(_a , _a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case_, snake_case_ : List[Any] = backtrack( _a , _a , current_number + 1 , _a , _a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case_, snake_case_ : str = backtrack( _a , _a , current_number + 1 , _a , _a ) return current_sum, solutions_count def __lowercase ( _a , _a ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(_a , _a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
155
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "Wav2Vec2FeatureExtractor" SCREAMING_SNAKE_CASE : Dict = "AutoTokenizer" def __init__( self : str , _UpperCamelCase : Dict , _UpperCamelCase : str ) ->Dict: super().__init__(_UpperCamelCase , _UpperCamelCase ) snake_case_ = self.feature_extractor snake_case_ = False @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : List[str] ) ->Dict: try: return super().from_pretrained(_UpperCamelCase , **_UpperCamelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _UpperCamelCase , ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = WavaVecaCTCTokenizer.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) return cls(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) def __call__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Dict ) ->Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCamelCase , **_UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) snake_case_ = kwargs.pop('''raw_speech''' ) else: snake_case_ = kwargs.pop('''audio''' , _UpperCamelCase ) snake_case_ = kwargs.pop('''sampling_rate''' , _UpperCamelCase ) snake_case_ = kwargs.pop('''text''' , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case_ = args[0] snake_case_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: snake_case_ = self.feature_extractor(_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) if text is not None: snake_case_ = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case_ = encodings['''input_ids'''] return inputs def snake_case__( self : Any , *_UpperCamelCase : List[str] , **_UpperCamelCase : Optional[int] ) ->int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_UpperCamelCase , **_UpperCamelCase ) snake_case_ = kwargs.pop('''input_features''' , _UpperCamelCase ) snake_case_ = kwargs.pop('''labels''' , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case_ = args[0] snake_case_ = args[1:] if input_features is not None: snake_case_ = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) if labels is not None: snake_case_ = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: snake_case_ = labels['''input_ids'''] return input_features def snake_case__( self : Union[str, Any] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Optional[int]: return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : List[str] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : str ) ->Optional[Any]: return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @contextmanager def snake_case__( self : str ) ->List[Any]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) snake_case_ = True snake_case_ = self.tokenizer yield snake_case_ = self.feature_extractor snake_case_ = False
8
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __snake_case :Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __snake_case :List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __snake_case :List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = random.randint(0 , len(_UpperCAmelCase ) - 1 ) __a = parent_a[:random_slice] + parent_a[random_slice:] __a = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __a = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = [] # Generate more children proportionally to the fitness score. __a = int(parent_a[1] * 100 ) + 1 __a = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): __a = population_score[random.randint(0 , _UpperCAmelCase )][0] __a , __a = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __a = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __a = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __a = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. __a = [] for _ in range(_UpperCAmelCase ): population.append(''''''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __a , __a = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __a = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. __a = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __a = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. __a = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __snake_case :Optional[int] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __snake_case :List[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __snake_case ,__snake_case ,__snake_case :Dict = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
49
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : int ="""codegen""" lowercase : int ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=5_0400 , UpperCamelCase_=2048 , UpperCamelCase_=2048 , UpperCamelCase_=4096 , UpperCamelCase_=28 , UpperCamelCase_=16 , UpperCamelCase_=64 , UpperCamelCase_=None , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Dict = vocab_size lowercase_ :List[str] = n_ctx lowercase_ :List[str] = n_positions lowercase_ :Dict = n_embd lowercase_ :List[Any] = n_layer lowercase_ :Any = n_head lowercase_ :List[Any] = n_inner lowercase_ :List[str] = rotary_dim lowercase_ :str = activation_function lowercase_ :Any = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :str = attn_pdrop lowercase_ :Any = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Optional[int] = use_cache lowercase_ :Dict = bos_token_id lowercase_ :Optional[int] = eos_token_id super().__init__( bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ ) class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ = "default" , UpperCamelCase_ = None , UpperCamelCase_ = False , ): super().__init__(UpperCamelCase_ , task=UpperCamelCase_ , patching_specs=UpperCamelCase_ , use_past=UpperCamelCase_ ) if not getattr(self._config , '''pad_token_id''' , UpperCamelCase_ ): # TODO: how to do that better? lowercase_ :List[str] = 0 @property def UpperCamelCase ( self ): lowercase_ :Optional[int] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) lowercase_ :Dict = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase_ :str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase ( self ): return self._config.n_layer @property def UpperCamelCase ( self ): return self._config.n_head def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , ): lowercase_ :Optional[int] = super(UpperCamelCase_ , self ).generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) # We need to order the input in the way they appears in the forward() lowercase_ :Tuple = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase_ , lowercase_ :str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase_ :List[Any] = seqlen + 2 lowercase_ :str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase_ :str = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(self.num_layers ) ] lowercase_ :Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase_ :Dict = ordered_inputs['''attention_mask'''].dtype lowercase_ :Optional[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase ( self ): return 13
252
from __future__ import annotations from random import random class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None ): lowercase_ :Tuple = value lowercase_ :Tuple = random() lowercase_ :Node | None = None lowercase_ :Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self ): lowercase_ :Optional[int] = str(self.value ) + ''' ''' lowercase_ :List[str] = str(self.left or '''''' ) lowercase_ :List[Any] = str(self.right or '''''' ) return value + left + right def UpperCamelCase ( _a , _a ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase_ , lowercase_ :List[Any] = split(root.left , _a ) return left, root else: lowercase_ , lowercase_ :Tuple = split(root.right , _a ) return root, right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase_ :Tuple = merge(left.right , _a ) return left else: lowercase_ :Optional[int] = merge(_a , right.left ) return right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ :str = Node(_a ) lowercase_ , lowercase_ :Dict = split(_a , _a ) return merge(merge(_a , _a ) , _a ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ , lowercase_ :List[str] = split(_a , value - 1 ) lowercase_ , lowercase_ :Tuple = split(_a , _a ) return merge(_a , _a ) def UpperCamelCase ( _a ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase_ :Any = insert(_a , int(arg[1:] ) ) elif arg[0] == "-": lowercase_ :Optional[int] = erase(_a , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :List[Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase_ :Optional[Any] = input() while args != "q": lowercase_ :Union[str, Any] = interact_treap(_a , _a ) print(_a ) lowercase_ :str = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = text_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [text_path] lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if split: lowerCAmelCase = {split: text_path} else: lowerCAmelCase = """train""" lowerCAmelCase = {"""train""": text_path, """test""": text_path} lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
46
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(SCREAMING_SNAKE_CASE )-1}' ) if "norm" in key: lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(SCREAMING_SNAKE_CASE )-1}' ) if "layer_norm1" in key: lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(SCREAMING_SNAKE_CASE )-1}' ) if "attn.q" in key: lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(SCREAMING_SNAKE_CASE )-1}' ) if "bot_conv" in key: lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) lowerCAmelCase = value return new_state_dict def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase = rename_keys(SCREAMING_SNAKE_CASE ) # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # forward pass lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
46
1
"""simple docstring""" import math def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( UpperCamelCase__ = 10_001 ): """simple docstring""" try: A__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) A__ = [] A__ = 2 while len(UpperCamelCase__ ) < nth: if is_prime(UpperCamelCase__ ): primes.append(UpperCamelCase__ ) num += 1 else: num += 1 return primes[len(UpperCamelCase__ ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
154
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
154
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCAmelCase : Any =get_logger() __lowerCAmelCase : Optional[dict] =None class _A ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" super().__init__(features=__lowerCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'Expected {device} to be a `str` not {type(__lowerCAmelCase )}, as `jaxlib.xla_extension.Device` ' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) lowercase = device if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) lowercase = str(jax.devices()[0] ) lowercase = jnp_array_kwargs @staticmethod def A__ ( ): """simple docstring""" import jax return {str(__lowerCAmelCase ): device for device in jax.devices()} def A__ ( self , __lowerCAmelCase ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and column: if all( isinstance(__lowerCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCAmelCase , axis=0 ) return column def A__ ( self , __lowerCAmelCase ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(__lowerCAmelCase , (str, bytes, type(__lowerCAmelCase )) ): return value elif isinstance(__lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase = {} if isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase = {"""dtype""": jnp.intaa} else: lowercase = {"""dtype""": jnp.intaa} elif isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCAmelCase , PIL.Image.Image ): lowercase = np.asarray(__lowerCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCAmelCase , """__array__""" ) and not isinstance(__lowerCAmelCase , jax.Array ): lowercase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(__lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return map_nested(self._recursive_tensorize , __lowerCAmelCase , map_list=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.numpy_arrow_extractor().extract_row(__lowerCAmelCase ) lowercase = self.python_features_decoder.decode_row(__lowerCAmelCase ) return self.recursive_tensorize(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.numpy_arrow_extractor().extract_column(__lowerCAmelCase ) lowercase = self.python_features_decoder.decode_column(__lowerCAmelCase , pa_table.column_names[0] ) lowercase = self.recursive_tensorize(__lowerCAmelCase ) lowercase = self._consolidate(__lowerCAmelCase ) return column def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.numpy_arrow_extractor().extract_batch(__lowerCAmelCase ) lowercase = self.python_features_decoder.decode_batch(__lowerCAmelCase ) lowercase = self.recursive_tensorize(__lowerCAmelCase ) for column_name in batch: lowercase = self._consolidate(batch[column_name] ) return batch
197
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase : Any = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCamelCase : int = parser.parse_args() if args.check_lib: lowerCamelCase : Optional[int] = importlib.import_module('transformers') lowerCamelCase : List[str] = Path(transformers_module.__file__).parent else: lowerCamelCase : Optional[int] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
124
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase : Tuple = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
251
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A_( A : List[Any]): UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A , A) def A_( A : Any): UpperCamelCase = list(s_dict.keys()) for key in keys: if "transformer_layers" in key: UpperCamelCase = s_dict.pop(A) elif "subsample" in key: UpperCamelCase = s_dict.pop(A) def A_( A : Optional[int]): UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(A , A , bias=A) UpperCamelCase = emb.weight.data return lin_layer def A_( A : Optional[int] , A : List[str]): UpperCamelCase = torch.load(A , map_location='cpu') UpperCamelCase = mam_aaa['args'] UpperCamelCase = mam_aaa['model'] UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(A) rename_keys(A) UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCamelCase = args.share_decoder_input_output_embed UpperCamelCase = [int(A) for i in args.conv_kernel_sizes.split(',')] UpperCamelCase = SpeechaTextConfig( vocab_size=A , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(A) , conv_channels=args.conv_channels , conv_kernel_sizes=A , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=A , num_beams=5 , max_length=200 , use_cache=A , decoder_start_token_id=2 , early_stopping=A , ) UpperCamelCase = SpeechaTextForConditionalGeneration(A) UpperCamelCase , UpperCamelCase = model.model.load_state_dict(A , strict=A) if len(A) > 0 and not set(A) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''') if tie_embeds: UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens) else: UpperCamelCase = lm_head_weights model.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
251
1
def lowerCamelCase__ ( snake_case_ : list ) -> list: if len(snake_case_ ) <= 1: return lst __snake_case = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: __snake_case , __snake_case = lst[i], lst[i - 1] i -= 1 if i == 0: __snake_case = 1 return lst if __name__ == "__main__": snake_case_ = input('Enter numbers separated by a comma:\n').strip() snake_case_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
24
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = DistilBertTokenizer __lowerCAmelCase = DistilBertTokenizerFast __lowerCAmelCase = True @slow def SCREAMING_SNAKE_CASE ( self ) -> int: a =DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) a =tokenizer.encode('''sequence builders''' , add_special_tokens=__A ) a =tokenizer.encode('''multi-sequence build''' , add_special_tokens=__A ) a =tokenizer.build_inputs_with_special_tokens(__A ) a =tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
81
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) )
287
1
"""simple docstring""" from math import isclose, sqrt def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> tuple[float, float, float]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = point_y / 4 / point_x lowerCAmelCase_ :Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase_ :Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase_ :str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase_ :Tuple = outgoing_gradient**2 + 4 lowerCAmelCase_ :Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase_ :str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 lowerCAmelCase_ :Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase_ :Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase_ :List[Any] = x_minus if isclose(lowercase__ , lowercase__ ) else x_plus lowerCAmelCase_ :List[str] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _snake_case ( lowercase__ : float = 1.4 , lowercase__ : float = -9.6 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = 0 lowerCAmelCase_ :float = first_x_coord lowerCAmelCase_ :float = first_y_coord lowerCAmelCase_ :float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = next_point(lowercase__ , lowercase__ , lowercase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
84
from ...processing_utils import ProcessorMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''feature_extractor'''] lowerCamelCase__ = '''TvltImageProcessor''' lowerCamelCase__ = '''TvltFeatureExtractor''' def __init__( self : List[str] , __magic_name__ : Any , __magic_name__ : Any ) -> int: super().__init__(image_processor=__magic_name__ , feature_extractor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor SCREAMING_SNAKE_CASE_ = feature_extractor def __call__( self : List[str] , __magic_name__ : Optional[Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : int=None , __magic_name__ : str=None , __magic_name__ : Any=False , __magic_name__ : int=False , *__magic_name__ : int , **__magic_name__ : Any , ) -> List[Any]: if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) SCREAMING_SNAKE_CASE_ = None if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , mask_pixel=__magic_name__ , *__magic_name__ , **__magic_name__ ) if images_mixed is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , is_mixed=__magic_name__ , *__magic_name__ , **__magic_name__ ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor( __magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , mask_audio=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = {} if audio is not None: output_dict.update(__magic_name__ ) if images is not None: output_dict.update(__magic_name__ ) if images_mixed_dict is not None: output_dict.update(__magic_name__ ) return output_dict @property def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
118
0
snake_case_ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution snake_case_ = [None] * 1000_0000 snake_case_ = True snake_case_ = False def _lowerCAmelCase ( lowercase_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase = chain(next_number(_lowerCAmelCase ) ) UpperCAmelCase = number_chain while number < 10000000: UpperCAmelCase = number_chain number *= 10 return number_chain def _lowerCAmelCase ( lowercase_ = 10000000 ): for i in range(1 , _lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
371
"""simple docstring""" def _lowerCAmelCase ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCAmelCase ( ): return next(i for i in triangle_number_generator() if count_divisors(lowercase_ ) > 500 ) if __name__ == "__main__": print(solution())
181
0
class _lowercase : '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCamelCase_ = {} def _lowerCamelCase ( self ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(snake_case__ , " -> " , " -> ".join([str(snake_case__ ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(snake_case__ ) else: # else make a new vertex UpperCamelCase_ = [to_vertex] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(snake_case__ , snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = True print(snake_case__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase : Dict =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
128
class lowerCamelCase__ : '''simple docstring''' def __init__( self :int ) -> Dict: __UpperCamelCase : Union[str, Any] = {} def _lowerCamelCase ( self :str ) -> None: print(self.vertex ) for i in self.vertex: print(a , " -> " , " -> ".join([str(a ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self :List[Any] , a :int , a :int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a ) else: # else make a new vertex __UpperCamelCase : Optional[Any] = [to_vertex] def _lowerCamelCase ( self :Tuple ) -> None: # visited array for storing already visited nodes __UpperCamelCase : Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a , a ) def _lowerCamelCase ( self :Any , a :int , a :list ) -> None: # mark start vertex as visited __UpperCamelCase : int = True print(a , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a ) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
232
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case :Tuple = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[str] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[Any] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __snake_case :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
49
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ): """simple docstring""" UpperCAmelCase__ = {} if top_k is not None: UpperCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = load_image(_UpperCAmelCase ) UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model(**_UpperCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
346
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _snake_case = None try: import msvcrt except ImportError: _snake_case = None try: import fcntl except ImportError: _snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _snake_case = OSError # Data # ------------------------------------------------ _snake_case = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _snake_case = '3.0.12' _snake_case = None def lowerCAmelCase__ ( ): '''simple docstring''' global _logger _a : List[str] = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> int: _a : List[str] = lock_file return None def __str__( self : Dict ) -> List[Any]: _a : str = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase : def __init__( self : str , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: _a : Tuple = lock return None def __enter__( self : List[str] ) -> Optional[Any]: return self.lock def __exit__( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> int: self.lock.release() return None class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=-1 , UpperCAmelCase__ : Tuple=None ) -> Any: _a : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _a : Any = self.hash_filename_if_too_long(UpperCAmelCase__ , UpperCAmelCase__ ) # The path to the lock file. _a : List[str] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a : Optional[Any] = None # The default timeout value. _a : List[str] = timeout # We use this lock primarily for the lock counter. _a : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a : Tuple = 0 return None @property def _lowercase ( self : Dict ) -> Union[str, Any]: return self._lock_file @property def _lowercase ( self : Optional[int] ) -> Optional[Any]: return self._timeout @timeout.setter def _lowercase ( self : Dict , UpperCAmelCase__ : int ) -> List[str]: _a : int = float(UpperCAmelCase__ ) return None def _lowercase ( self : Tuple ) -> Tuple: raise NotImplementedError() def _lowercase ( self : List[Any] ) -> List[str]: raise NotImplementedError() @property def _lowercase ( self : Tuple ) -> int: return self._lock_file_fd is not None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=0.0_5 ) -> Optional[Any]: # Use the default timeout, if no timeout is provided. if timeout is None: _a : str = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a : Any = id(self ) _a : List[str] = self._lock_file _a : Any = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(UpperCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any=False ) -> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a : Any = id(self ) _a : List[Any] = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _a : Optional[int] = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Union[str, Any] ) -> Tuple: self.acquire() return self def __exit__( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]: self.release() return None def __del__( self : str ) -> Optional[Any]: self.release(force=UpperCAmelCase__ ) return None def _lowercase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: _a : Optional[Any] = os.path.basename(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > max_length and max_length > 0: _a : Optional[int] = os.path.dirname(UpperCAmelCase__ ) _a : Optional[int] = str(hash(UpperCAmelCase__ ) ) _a : Union[str, Any] = filename[: max_length - len(UpperCAmelCase__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) else: return path class UpperCamelCase ( snake_case_ ): def __init__( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=-1 , UpperCAmelCase__ : Dict=None ) -> str: from .file_utils import relative_to_absolute_path super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) _a : List[str] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _lowercase ( self : Optional[Any] ) -> str: _a : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a : int = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCAmelCase__ ) else: _a : str = fd return None def _lowercase ( self : Union[str, Any] ) -> str: _a : Union[str, Any] = self._lock_file_fd _a : Union[str, Any] = None msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=-1 , UpperCAmelCase__ : List[str]=None ) -> Union[str, Any]: _a : List[str] = os.statvfs(os.path.dirname(UpperCAmelCase__ ) ).f_namemax super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> str: _a : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a : Tuple = os.open(self._lock_file , UpperCAmelCase__ ) try: fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCAmelCase__ ) else: _a : str = fd return None def _lowercase ( self : List[str] ) -> str: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a : int = self._lock_file_fd _a : Dict = None fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_UN ) os.close(UpperCAmelCase__ ) return None class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: _a : Optional[int] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a : Any = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: _a : Dict = fd return None def _lowercase ( self : List[str] ) -> int: os.close(self._lock_file_fd ) _a : Any = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _snake_case = None if msvcrt: _snake_case = WindowsFileLock elif fcntl: _snake_case = UnixFileLock else: _snake_case = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , __A=13 , __A=32 , __A=3 , __A=4 , __A=[10, 20, 30, 40] , __A=[2, 2, 3, 2] , __A=True , __A=True , __A=37 , __A="gelu" , __A=10 , __A=0.02 , __A=["stage2", "stage3", "stage4"] , __A=3 , __A=None , ): """simple docstring""" lowerCamelCase : Any = parent lowerCamelCase : List[str] = batch_size lowerCamelCase : Dict = image_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : Optional[int] = num_stages lowerCamelCase : Dict = hidden_sizes lowerCamelCase : Dict = depths lowerCamelCase : List[str] = is_training lowerCamelCase : Dict = use_labels lowerCamelCase : Dict = intermediate_size lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : str = type_sequence_label_size lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : List[str] = out_features lowerCamelCase : List[Any] = num_labels lowerCamelCase : Tuple = scope lowerCamelCase : List[Any] = num_stages def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Dict = None if self.use_labels: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _snake_case ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _snake_case ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=snake_case_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=snake_case_ , loss_ignore_index=255 , num_labels=self.num_labels , ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Optional[int] = UperNetForSemanticSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowerCamelCase : Dict = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = config_and_inputs lowerCamelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_ , A_ , unittest.TestCase ): '''simple docstring''' __A : str = (UperNetForSemanticSegmentation,) if is_torch_available() else () __A : str = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} __A : Any = False __A : Dict = False __A : Optional[int] = False __A : int = False __A : int = False __A : Union[str, Any] = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = UperNetModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def _snake_case ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): """simple docstring""" return def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Union[str, Any] = model_class(snake_case_ ) lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Dict = [*signature.parameters.keys()] lowerCamelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def _snake_case ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" def check_hidden_states_output(__A , __A , __A ): lowerCamelCase : Optional[int] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): lowerCamelCase : int = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) lowerCamelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Dict = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : str = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : str = _config_zero_init(snake_case_ ) lowerCamelCase : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCamelCase : int = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="UperNet does not have tied weights" ) def _snake_case ( self ): """simple docstring""" pass @slow def _snake_case ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase_( ): '''simple docstring''' lowerCamelCase : str = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) lowerCamelCase : Union[str, Any] = Image.open(lowercase_ ).convert("RGB" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) lowerCamelCase : int = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(snake_case_ ) lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : Optional[int] = processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) with torch.no_grad(): lowerCamelCase : int = model(**snake_case_ ) lowerCamelCase : str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case_ ) lowerCamelCase : Optional[int] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) lowerCamelCase : str = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(snake_case_ ) lowerCamelCase : int = prepare_img() lowerCamelCase : Tuple = processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) with torch.no_grad(): lowerCamelCase : Tuple = model(**snake_case_ ) lowerCamelCase : Optional[int] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case_ ) lowerCamelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) )
283
"""simple docstring""" import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( ) -> Tuple: from torch.utils.cpp_extension import load A__ = Path(lowercase_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" A__ = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , lowercase_ , with_cuda=lowercase_ , extra_include_paths=[str(lowercase_ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
247
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : List[Any] =logging.get_logger(__name__) A__ : int ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } A__ : Dict ={ '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } A__ : int ={ '''ctrl''': 2_56, } A__ : Optional[Any] ={ '''Pregnancy''': 16_86_29, '''Christianity''': 76_75, '''Explain''': 10_64_23, '''Fitness''': 6_34_40, '''Saving''': 6_31_63, '''Ask''': 2_71_71, '''Ass''': 9_59_85, '''Joke''': 16_35_09, '''Questions''': 4_56_22, '''Thoughts''': 4_96_05, '''Retail''': 5_23_42, '''Feminism''': 16_43_38, '''Writing''': 1_19_92, '''Atheism''': 19_22_63, '''Netflix''': 4_86_16, '''Computing''': 3_96_39, '''Opinion''': 4_32_13, '''Alone''': 4_49_67, '''Funny''': 5_89_17, '''Gaming''': 4_03_58, '''Human''': 40_88, '''India''': 13_31, '''Joker''': 7_71_38, '''Diet''': 3_62_06, '''Legal''': 1_18_59, '''Norman''': 49_39, '''Tip''': 7_26_89, '''Weight''': 5_23_43, '''Movies''': 4_62_73, '''Running''': 2_34_25, '''Science''': 20_90, '''Horror''': 3_77_93, '''Confession''': 6_05_72, '''Finance''': 1_22_50, '''Politics''': 1_63_60, '''Scary''': 19_19_85, '''Support''': 1_26_54, '''Technologies''': 3_25_16, '''Teenage''': 6_61_60, '''Event''': 3_27_69, '''Learned''': 6_74_60, '''Notion''': 18_27_70, '''Wikipedia''': 3_75_83, '''Books''': 66_65, '''Extract''': 7_60_50, '''Confessions''': 10_27_01, '''Conspiracy''': 7_59_32, '''Links''': 6_36_74, '''Narcissus''': 15_04_25, '''Relationship''': 5_47_66, '''Relationships''': 13_47_96, '''Reviews''': 4_16_71, '''News''': 42_56, '''Translation''': 2_68_20, '''multilingual''': 12_84_06, } def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char _lowerCAmelCase = set(lowerCAmelCase ) return pairs class UpperCAmelCase ( snake_case_ ): _lowercase: int = VOCAB_FILES_NAMES _lowercase: str = PRETRAINED_VOCAB_FILES_MAP _lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Optional[Any] = CONTROL_CODES def __init__( self : Optional[Any] , __snake_case : Tuple , __snake_case : int , __snake_case : Dict="<unk>" , **__snake_case : Tuple ) -> Optional[int]: super().__init__(unk_token=__snake_case , **__snake_case ) with open(__snake_case , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase = json.load(__snake_case ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(__snake_case , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _lowerCAmelCase = {} @property def lowercase__ ( self : Any ) -> Tuple: return len(self.encoder ) def lowercase__ ( self : Union[str, Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : List[str] , __snake_case : Optional[Any] ) -> Optional[int]: if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(__snake_case ) _lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _lowerCAmelCase = get_pairs(__snake_case ) if not pairs: return token while True: _lowerCAmelCase = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(__snake_case ): try: _lowerCAmelCase = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(__snake_case ) _lowerCAmelCase = new_word if len(__snake_case ) == 1: break else: _lowerCAmelCase = get_pairs(__snake_case ) _lowerCAmelCase = """@@ """.join(__snake_case ) _lowerCAmelCase = word[:-4] _lowerCAmelCase = word return word def lowercase__ ( self : Tuple , __snake_case : Dict ) -> Optional[int]: _lowerCAmelCase = [] _lowerCAmelCase = re.findall(R"""\S+\n?""" , __snake_case ) for token in words: split_tokens.extend(list(self.bpe(__snake_case ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : Union[str, Any] , __snake_case : Dict ) -> Tuple: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : str , __snake_case : List[str] ) -> str: return self.decoder.get(__snake_case , self.unk_token ) def lowercase__ ( self : Dict , __snake_case : str ) -> str: _lowerCAmelCase = """ """.join(__snake_case ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + """\n""" ) _lowerCAmelCase = 0 with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase = token_index writer.write(""" """.join(__snake_case ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
220
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = cva.getAffineTransform(lowerCAmelCase , lowerCAmelCase ) return cva.warpAffine(lowerCAmelCase , lowerCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image A__ : Any =cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A__ : Any =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A__ , A__ : Tuple =gray_img.shape # set different points to rotate image A__ : Optional[int] =np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) A__ : Tuple =np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) A__ : List[str] =np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) A__ : Dict =np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list A__ : List[Any] =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A__ : Tuple =plt.figure(1) A__ : int =['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
220
1