code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class __UpperCamelCase : A_ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) A_ = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) A_ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) A_ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) A_ = field(default=2 , metadata={"help": "Batch size for training."} ) A_ = field(default=2 , metadata={"help": "Batch size for evaluation."} ) A_ = field(default=0.1 , metadata={"help": "Value of weight decay."} ) A_ = field( default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) A_ = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) A_ = field(default="cosine" , metadata={"help": "Learning rate."} ) A_ = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) A_ = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) A_ = field(default=50000 , metadata={"help": "Maximum number of training steps."} ) A_ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) A_ = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) A_ = field(default=1 , metadata={"help": "Training seed."} ) A_ = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __UpperCamelCase : A_ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) A_ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) A_ = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) A_ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) A_ = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) A_ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __UpperCamelCase : A_ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "Number of workers used for code evaluation."} ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Sample from the language model's output distribution."} ) A_ = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) A_ = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) A_ = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) A_ = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) A_ = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) A_ = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) A_ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) A_ = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) A_ = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) A_ = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __UpperCamelCase : A_ = field( default=lowerCAmelCase_ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) A_ = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) A_ = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) A_ = field( default=100000 , metadata={"help": "Number of files to save per JSON output file."} ) A_ = field(default="content" , metadata={"help": "Column containing text data to process."} ) A_ = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) A_ = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) A_ = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) A_ = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) A_ = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) A_ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "If True, near-duplicate samples are removed."} ) A_ = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __UpperCamelCase : A_ = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) A_ = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) A_ = field(default="content" , metadata={"help": "Column containing text data to process."} ) A_ = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} ) A_ = field( default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} ) A_ = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __UpperCamelCase : A_ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) A_ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) A_ = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __UpperCamelCase : A_ = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) A_ = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) A_ = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "Push saved tokenizer to the hub."} )
27
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[Any] = 10 def _a (self ): A_ : Dict = [1, 2, 3, 4] A_ : List[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : List[str] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" A_, A_ : Dict = process_story(lowercase ) self.assertEqual(lowercase , [] ) def _a (self ): A_ : Optional[int] = """""" A_, A_ : List[str] = process_story(lowercase ) self.assertEqual(lowercase , [] ) self.assertEqual(lowercase , [] ) def _a (self ): A_ : Optional[Any] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) A_, A_ : int = process_story(lowercase ) A_ : Optional[Any] = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(lowercase , lowercase ) A_ : Dict = ["""It was the best of times."""] self.assertEqual(lowercase , lowercase ) def _a (self ): A_ : Optional[int] = torch.tensor([1, 2, 3, 4] ) A_ : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase , 0 ).numpy() , expected.numpy() ) def _a (self ): A_ : str = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 23 ).numpy() , expected.numpy() ) def _a (self ): A_ : Any = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 1 ).numpy() , expected.numpy() ) def _a (self ): A_ : List[Any] = 101 A_ : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ : Dict = compute_token_type_ids(lowercase , lowercase ) np.testing.assert_array_equal(lowercase , lowercase )
206
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''big_bird''' def __init__( self :Union[str, Any] , __magic_name__ :Any=5_0358 , __magic_name__ :List[str]=768 , __magic_name__ :List[str]=12 , __magic_name__ :Optional[int]=12 , __magic_name__ :List[str]=3072 , __magic_name__ :Dict="gelu_new" , __magic_name__ :List[Any]=0.1 , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=4096 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :int=0.02 , __magic_name__ :int=1E-1_2 , __magic_name__ :Any=True , __magic_name__ :Any=0 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :Any=2 , __magic_name__ :Dict=66 , __magic_name__ :int="block_sparse" , __magic_name__ :List[Any]=True , __magic_name__ :Dict=False , __magic_name__ :Tuple=64 , __magic_name__ :Dict=3 , __magic_name__ :Union[str, Any]=None , **__magic_name__ :Optional[Any] , ): '''simple docstring''' super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , sep_token_id=__magic_name__ , **__magic_name__ , ) a = vocab_size a = max_position_embeddings a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = type_vocab_size a = layer_norm_eps a = use_cache a = rescale_embeddings a = attention_type a = use_bias a = block_size a = num_random_blocks a = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): @property def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
347
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) a = jnp.array([[0, 1, 2, 3, 4, 5]] ) a = model(__magic_name__ )[0] a = 5_0000 a = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) a = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
347
1
'''simple docstring''' import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__: Tuple = shutil.get_terminal_size() UpperCamelCase__: int = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class SCREAMING_SNAKE_CASE( enum.Enum ): """simple docstring""" lowerCamelCase__ = 0 lowerCamelCase__ = 1 def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int]="" ) -> Tuple: sys.stdout.write(str(_lowerCAmelCase ) + end ) sys.stdout.flush() def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any="" ) -> List[str]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , _lowerCAmelCase ) def snake_case_ ( ) -> Any: forceWrite('''\r''' ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> Dict: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def snake_case_ ( ) -> List[str]: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def snake_case_ ( ) -> int: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
23
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase: Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ ( _A ): a : Tuple = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: a : Dict = 192 a : Optional[Any] = 768 a : Optional[int] = 12 a : Any = 3 a : List[Any] = [800, 1333] a : Tuple = False elif yolos_name == "yolos_s_dWr": a : Dict = 330 a : Any = 14 a : Tuple = 6 a : Any = 1320 elif "yolos_s" in yolos_name: a : Any = 384 a : int = 1536 a : List[Any] = 12 a : Tuple = 6 elif "yolos_b" in yolos_name: a : Tuple = [800, 1344] a : Dict = 91 a : Any = 'huggingface/label-files' a : List[str] = 'coco-detection-id2label.json' a : Union[str, Any] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) a : List[str] = {int(_A ): v for k, v in idalabel.items()} a : Tuple = idalabel a : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _A , _A , _A = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) a : int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a : List[Any] = in_proj_weight[: config.hidden_size, :] a : Dict = in_proj_bias[: config.hidden_size] a : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : Optional[int] = in_proj_weight[-config.hidden_size :, :] a : str = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( _A ): if "backbone" in name: a : Tuple = name.replace('backbone' , 'vit' ) if "cls_token" in name: a : List[str] = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: a : List[str] = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: a : Dict = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: a : Union[str, Any] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: a : Optional[int] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: a : Dict = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: a : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Dict = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Dict = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: a : List[str] = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: a : List[Any] = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: a : List[str] = name.replace('vit.norm' , 'vit.layernorm' ) return name def lowerCamelCase__ ( _A , _A ): for key in orig_state_dict.copy().keys(): a : Dict = orig_state_dict.pop(_A ) if "qkv" in key: a : Tuple = key.split('.' ) a : Any = int(key_split[2] ) a : Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: a : List[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : int = val[-dim:, :] else: a : Any = val[:dim] a : Optional[int] = val[dim : dim * 2] a : Dict = val[-dim:] else: a : Any = val return orig_state_dict def lowerCamelCase__ ( ): a : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : List[Any] = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A , _A = False ): a : int = get_yolos_config(_A ) # load original state_dict a : Dict = torch.load(_A , map_location='cpu' )['model'] # load 🤗 model a : str = YolosForObjectDetection(_A ) model.eval() a : Any = convert_state_dict(_A , _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by YolosImageProcessor a : Dict = 800 if yolos_name != 'yolos_ti' else 512 a : str = YolosImageProcessor(format='coco_detection' , size=_A ) a : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) a : List[Any] = model(**_A ) a , a : List[Any] = outputs.logits, outputs.pred_boxes a , a : List[str] = None, None if yolos_name == "yolos_ti": a : List[str] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) a : Optional[int] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": a : List[str] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) a : Tuple = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": a : Tuple = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) a : str = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": a : str = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) a : Dict = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": a : int = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) a : str = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: a : List[Any] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) a : List[str] = model_mapping[yolos_name] image_processor.push_to_hub(_A , organization='hustvl' ) model.push_to_hub(_A , organization='hustvl' ) if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase: Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
96
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Optional[int] ): a : int = '' a : List[str] = '' a : int = [] a : Optional[Any] = 0 a : Optional[Any] = 2_56 a : int = 0 a : Optional[int] = 0 a : str = 0 a : int = 0 def lowercase_ ( self : List[str] , __snake_case : int ): a : Optional[Any] = cva.imread(__snake_case , 0 ) a : int = copy.deepcopy(self.img ) a , a , a : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : str = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : List[str] = x[i] / self.k self.sk += prk a : List[Any] = (self.L - 1) * self.sk if self.rem != 0: a : Union[str, Any] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : int = int(np.ma.count(self.img ) / self.img[1].size ) a : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Tuple = self.img[j][i] if num != self.last_list[num]: a : Union[str, Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Union[str, Any] ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : Any ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Dict = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
96
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE :Any = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
"""simple docstring""" from math import isclose, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float, float]: SCREAMING_SNAKE_CASE = point_y / 4 / point_x SCREAMING_SNAKE_CASE = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) SCREAMING_SNAKE_CASE = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) SCREAMING_SNAKE_CASE = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 SCREAMING_SNAKE_CASE = outgoing_gradient**2 + 4 SCREAMING_SNAKE_CASE = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) SCREAMING_SNAKE_CASE = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 SCREAMING_SNAKE_CASE = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) SCREAMING_SNAKE_CASE = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point SCREAMING_SNAKE_CASE = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus SCREAMING_SNAKE_CASE = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase (SCREAMING_SNAKE_CASE_ : float = 1.4 , SCREAMING_SNAKE_CASE_ : float = -9.6 ) -> int: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = first_x_coord SCREAMING_SNAKE_CASE = first_y_coord SCREAMING_SNAKE_CASE = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
113
0
"""simple docstring""" import numpy as np A : Optional[Any] = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = np.array(__a ) def snake_case ( self , __a ): __lowerCAmelCase , __lowerCAmelCase = np.where(letter == self.SQUARE ) __lowerCAmelCase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def snake_case ( self , __a , __a ): __lowerCAmelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def snake_case ( self , __a ): __lowerCAmelCase = message.lower() __lowerCAmelCase = message.replace(" " , "" ) __lowerCAmelCase = message.replace("j" , "i" ) __lowerCAmelCase = np.empty((2, len(__a )) ) for letter_index in range(len(__a ) ): __lowerCAmelCase = self.letter_to_numbers(message[letter_index] ) __lowerCAmelCase = numbers[0] __lowerCAmelCase = numbers[1] __lowerCAmelCase = first_step.reshape(2 * len(__a ) ) __lowerCAmelCase = "" for numbers_index in range(len(__a ) ): __lowerCAmelCase = int(second_step[numbers_index * 2] ) __lowerCAmelCase = int(second_step[(numbers_index * 2) + 1] ) __lowerCAmelCase = self.numbers_to_letter(__a , __a ) __lowerCAmelCase = encoded_message + letter return encoded_message def snake_case ( self , __a ): __lowerCAmelCase = message.lower() message.replace(" " , "" ) __lowerCAmelCase = np.empty(2 * len(__a ) ) for letter_index in range(len(__a ) ): __lowerCAmelCase = self.letter_to_numbers(message[letter_index] ) __lowerCAmelCase = numbers[0] __lowerCAmelCase = numbers[1] __lowerCAmelCase = first_step.reshape((2, len(__a )) ) __lowerCAmelCase = "" for numbers_index in range(len(__a ) ): __lowerCAmelCase = int(second_step[0, numbers_index] ) __lowerCAmelCase = int(second_step[1, numbers_index] ) __lowerCAmelCase = self.numbers_to_letter(__a , __a ) __lowerCAmelCase = decoded_message + letter return decoded_message
371
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A : Optional[int] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ): __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self , __a ): __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case ( self ): __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = AutoformerModel(config=__a ).to(__a ).eval() __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**__a ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCAmelCase : List[Any] =(AutoformerForPrediction,) if is_torch_available() else () __UpperCAmelCase : Tuple ={"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False __UpperCAmelCase : Dict =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Optional[Any] =False def snake_case ( self ): __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , "seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "decoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "encoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "d_model" , __a ) __lowerCAmelCase = getattr(self.model_tester , "num_attention_heads" , __a ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(__a ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def _lowerCamelCase ( _UpperCamelCase="train-batch.pt" ): '''simple docstring''' __lowerCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_UpperCamelCase , repo_type="dataset" ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) return batch @require_torch @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowerCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__a ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
259
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __magic_name__ : def __init__( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="resnet50" , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=True , __snake_case=True , ) -> Dict: '''simple docstring''' __a =parent __a =out_indices if out_indices is not None else [4] __a =stage_names __a =out_features __a =backbone __a =batch_size __a =image_size __a =num_channels __a =use_pretrained_backbone __a =is_training def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a =self.get_config() return config, pixel_values def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' __a =TimmBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __a =model(__snake_case ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() __a , __a =config_and_inputs __a ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE = {'feature-extraction': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =TimmBackboneModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> str: '''simple docstring''' __a ='resnet18' __a ='microsoft/resnet-18' __a =AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case ) __a =AutoBackbone.from_pretrained(__snake_case ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __a =AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case , out_indices=[1, 2, 3] ) __a =AutoBackbone.from_pretrained(__snake_case , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __magic_name__ ( self ) -> int: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('Safetensors is not supported by timm.' ) def __magic_name__ ( self ) -> int: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __magic_name__ ( self ) -> str: '''simple docstring''' pass def __magic_name__ ( self ) -> Any: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a =model_class(__snake_case ) __a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a =[*signature.parameters.keys()] __a =['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() __a =True __a =self.has_attentions # no need to test all models as different heads yield the same functionality __a =self.all_model_classes[0] __a =model_class(__snake_case ) model.to(__snake_case ) __a =self._prepare_for_class(__snake_case , __snake_case ) __a =model(**__snake_case ) __a =outputs[0][-1] # Encoder-/Decoder-only models __a =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __a =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() __a =model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __a =copy.deepcopy(__snake_case ) __a =None __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() __a =model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __a =copy.deepcopy(__snake_case ) __a =False __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() __a =model(**__snake_case )
218
from __future__ import annotations def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(_snake_case ) return len(_snake_case ) == 9 and set(_snake_case ) == set('123456789' ) def UpperCamelCase_( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): __a =100002 * base_num if is_9_pandigital(_snake_case ): return candidate for base_num in range(333 , 99 , -1 ): __a =1002003 * base_num if is_9_pandigital(_snake_case ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
218
1
import math from collections.abc import Callable def snake_case ( snake_case__ :Callable[[float], float] , snake_case__ :float , snake_case__ :float) -> Any: _A = xa _A = xa while True: if x_n == x_na or function(snake_case__) == function(snake_case__): raise ZeroDivisionError("""float division by zero, could not find root""") _A = x_na - ( function(snake_case__) / ((function(snake_case__) - function(snake_case__)) / (x_na - x_n)) ) if abs(x_na - x_na) < 10**-5: return x_na _A = x_na _A = x_na def snake_case ( snake_case__ :float) -> Optional[int]: return math.pow(snake_case__ , 3) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
361
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
81
0
from collections import deque from math import floor from random import random from time import time class __A: """simple docstring""" def __init__(self ): UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ): if self.graph.get(SCREAMING_SNAKE_CASE_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCamelCase__ = [[w, v]] if not self.graph.get(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] def UpperCAmelCase_ (self ): return list(self.graph ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if self.graph.get(SCREAMING_SNAKE_CASE_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ): if s == d: return [] UpperCamelCase__ = [] UpperCamelCase__ = [] if s == -2: UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return visited def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-1 ): if c == -1: UpperCamelCase__ = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCamelCase__ = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 ): UpperCamelCase__ = deque() UpperCamelCase__ = [] if s == -2: UpperCamelCase__ = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) while d: UpperCamelCase__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return len(self.graph[u] ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 ): UpperCamelCase__ = [] UpperCamelCase__ = [] if s == -2: UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s UpperCamelCase__ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return sorted_nodes def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -2 UpperCamelCase__ = [] UpperCamelCase__ = s UpperCamelCase__ = False UpperCamelCase__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return list(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -2 UpperCamelCase__ = [] UpperCamelCase__ = s UpperCamelCase__ = False UpperCamelCase__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return False def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ): UpperCamelCase__ = time() self.dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = time() return end - begin def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 ): UpperCamelCase__ = time() self.bfs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = time() return end - begin class __A: """simple docstring""" def __init__(self ): UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ): # check if the u exists if self.graph.get(SCREAMING_SNAKE_CASE_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCamelCase__ = [[w, v]] # add the other way if self.graph.get(SCREAMING_SNAKE_CASE_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCamelCase__ = [[w, u]] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if self.graph.get(SCREAMING_SNAKE_CASE_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE_ ) # the other way round if self.graph.get(SCREAMING_SNAKE_CASE_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ): if s == d: return [] UpperCamelCase__ = [] UpperCamelCase__ = [] if s == -2: UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return visited def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-1 ): if c == -1: UpperCamelCase__ = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCamelCase__ = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 ): UpperCamelCase__ = deque() UpperCamelCase__ = [] if s == -2: UpperCamelCase__ = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) while d: UpperCamelCase__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return len(self.graph[u] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -2 UpperCamelCase__ = [] UpperCamelCase__ = s UpperCamelCase__ = False UpperCamelCase__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return list(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -2 UpperCamelCase__ = [] UpperCamelCase__ = s UpperCamelCase__ = False UpperCamelCase__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase__ = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase__ = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = s UpperCamelCase__ = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return False def UpperCAmelCase_ (self ): return list(self.graph ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ): UpperCamelCase__ = time() self.dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = time() return end - begin def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=-2 ): UpperCamelCase__ = time() self.bfs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = time() return end - begin
244
def __magic_name__ ( __a : str ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__a ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
244
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(a_ ) # We need to create solution object to save path. __lowerCAmelCase = [[0 for _ in range(a_ )] for _ in range(a_ )] __lowerCAmelCase = run_maze(a_ , 0 , 0 , a_ ) if solved: print("""\n""".join(str(a_ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = len(a_ ) # Final check point. if i == j == (size - 1): __lowerCAmelCase = 1 return True __lowerCAmelCase = (not i < 0) and (not j < 0) # Check lower bounds __lowerCAmelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCAmelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCAmelCase = 1 # check for directions if ( run_maze(a_ , i + 1 , a_ , a_ ) or run_maze(a_ , a_ , j + 1 , a_ ) or run_maze(a_ , i - 1 , a_ , a_ ) or run_maze(a_ , a_ , j - 1 , a_ ) ): return True __lowerCAmelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : List[str] ): # Return True if there is node that has not iterated. UpperCamelCase_ : List[str] = [False] * len(lowerCamelCase ) UpperCamelCase_ : List[str] = [] queue.append(lowerCamelCase ) UpperCamelCase_ : str = True while queue: UpperCamelCase_ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Tuple = u return visited[t] def __lowercase ( lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ): # This array is filled by BFS and to store path UpperCamelCase_ : int = [-1] * (len(lowerCamelCase )) UpperCamelCase_ : int = 0 while bfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCamelCase_ : int = float('Inf' ) UpperCamelCase_ : Any = sink while s != source: # Find the minimum value in select path UpperCamelCase_ : int = min(lowerCamelCase , graph[parent[s]][s] ) UpperCamelCase_ : Optional[Any] = parent[s] max_flow += path_flow UpperCamelCase_ : Any = sink while v != source: UpperCamelCase_ : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase_ : Optional[int] = parent[v] return max_flow a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_ , a_ = 0, 5 print(ford_fulkerson(graph, source, sink))
175
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCAmelCase_ : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: UpperCAmelCase_ : str = json.load(f) @require_torch class UpperCamelCase ( unittest.TestCase ): def __A ( self , UpperCAmelCase__ ): return FSMTTokenizer.from_pretrained(UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): A__ = FSMTForConditionalGeneration.from_pretrained(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality A__ = F"""facebook/wmt19-{pair}""" A__ = self.get_tokenizer(UpperCAmelCase__ ) A__ = self.get_model(UpperCAmelCase__ ) A__ = bleu_data[pair]["src"] A__ = bleu_data[pair]["tgt"] A__ = tokenizer(UpperCAmelCase__ , return_tensors="pt" , truncation=UpperCAmelCase__ , padding="longest" ).to(UpperCAmelCase__ ) A__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) A__ = tokenizer.batch_decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) A__ = calculate_bleu(UpperCAmelCase__ , UpperCAmelCase__ ) print(UpperCAmelCase__ ) self.assertGreaterEqual(scores["bleu"] , UpperCAmelCase__ )
371
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = field A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , field=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def __A ( self ): A__ = self.to_json_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , UpperCAmelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=UpperCAmelCase__ ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) return written def __A ( self , UpperCAmelCase__ ): A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(UpperCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **UpperCAmelCase__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ): A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase__ , UpperCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(UpperCAmelCase__ ) return written
198
0
"""simple docstring""" import os from collections.abc import Iterator def UpperCamelCase_ ( lowerCAmelCase__ : str = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(lowerCAmelCase__ ): lowerCAmelCase_ : str = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowerCAmelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ).lstrip('./' ) def UpperCamelCase_ ( lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" return f"{i * ' '}*" if i else "\n##" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> str: """simple docstring""" lowerCAmelCase_ : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowerCAmelCase__ ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(lowerCAmelCase__ )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def UpperCamelCase_ ( lowerCAmelCase__ : str = "." ) -> None: """simple docstring""" lowerCAmelCase_ : Any = '' for filepath in sorted(good_file_paths(lowerCAmelCase__ ) ): lowerCAmelCase_ ,lowerCAmelCase_ : str = os.path.split(lowerCAmelCase__ ) if filepath != old_path: lowerCAmelCase_ : Dict = print_path(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase_ : int = f"{filepath}/{filename}".replace(' ' , '%20' ) lowerCAmelCase_ : str = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(f"{md_prefix(lowerCAmelCase__ )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
224
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" if len(lowerCAmelCase__ ) == 0: return False lowerCAmelCase_ : Union[str, Any] = len(lowerCAmelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCAmelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : str = input("""Enter numbers separated by comma:\n""").strip() lowercase__ : Optional[int] = [int(item.strip()) for item in user_input.split(""",""")] lowercase__ : Optional[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) lowercase__ : int = """""" if binary_search(sequence, target) else """not """ print(f'{target} was {not_str}found in {sequence}')
224
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case : Any = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = ['DeiTFeatureExtractor'] _snake_case : List[Any] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
179
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(__a ) class __lowercase ( __a ): """simple docstring""" def __init__( self , *A , **A ) -> int: '''simple docstring''' super().__init__(*_A , **_A ) requires_backends(self , """vision""" ) self.check_model_type(_A ) def __call__( self , A , **A ) -> Optional[int]: '''simple docstring''' return super().__call__(_A , **_A ) def __A ( self , **A ) -> Tuple: '''simple docstring''' return {}, {}, {} def __A ( self , A ) -> str: '''simple docstring''' lowerCamelCase = load_image(_A ) lowerCamelCase = image.size lowerCamelCase = self.image_processor(images=_A , return_tensors=self.framework ) return model_inputs def __A ( self , A ) -> Any: '''simple docstring''' lowerCamelCase = self.model(**_A ) return model_outputs def __A ( self , A ) -> Any: '''simple docstring''' lowerCamelCase = model_outputs.predicted_depth lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=_A ) lowerCamelCase = prediction.squeeze().cpu().numpy() lowerCamelCase = (output * 2_55 / np.max(_A )).astype("""uint8""" ) lowerCamelCase = Image.fromarray(_A ) lowerCamelCase = {} lowerCamelCase = predicted_depth lowerCamelCase = depth return output_dict
252
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : Union[str, Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any]=8 ) -> Union[str, Any]: _UpperCAmelCase : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Any=512, _lowerCAmelCase : Optional[Any]=512 ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1 ) _UpperCAmelCase : List[Any] = np.array(pil_image.convert("""RGB""" ) ) _UpperCAmelCase : str = arr.astype(np.floataa ) / 127.5 - 1 _UpperCAmelCase : Dict = np.transpose(_lowerCAmelCase, [2, 0, 1] ) _UpperCAmelCase : Union[str, Any] = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( __a): def __init__( self , _A , _A , _A , ) -> int: '''simple docstring''' super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) _UpperCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self , _A , _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : int = min(int(num_inference_steps * strength ) , _A ) _UpperCAmelCase : Dict = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A=None ) -> List[Any]: '''simple docstring''' if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}''' ) _UpperCAmelCase : Any = image.to(device=_A , dtype=_A ) _UpperCAmelCase : Optional[int] = batch_size * num_images_per_prompt if image.shape[1] == 4: _UpperCAmelCase : Dict = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(_A , _A ): _UpperCAmelCase : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] _UpperCAmelCase : List[Any] = torch.cat(_A , dim=0 ) else: _UpperCAmelCase : str = self.movq.encode(_A ).latent_dist.sample(_A ) _UpperCAmelCase : Any = self.movq.config.scaling_factor * init_latents _UpperCAmelCase : List[Any] = torch.cat([init_latents] , dim=0 ) _UpperCAmelCase : Union[str, Any] = init_latents.shape _UpperCAmelCase : List[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents _UpperCAmelCase : Optional[int] = self.scheduler.add_noise(_A , _A , _A ) _UpperCAmelCase : Optional[int] = init_latents return latents def __snake_case ( self , _A=0 ) -> Optional[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __snake_case ( self , _A=0 ) -> int: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _UpperCAmelCase : int = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Any = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Tuple = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. _UpperCAmelCase : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self ) -> List[str]: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self , _A , _A , _A , _A = 5_12 , _A = 5_12 , _A = 1_00 , _A = 4.0 , _A = 0.3 , _A = 1 , _A = None , _A = "pil" , _A = True , ) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self._execution_device _UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(_A , _A ): _UpperCAmelCase : Dict = torch.cat(_A , dim=0 ) _UpperCAmelCase : Any = image_embeds.shape[0] if isinstance(_A , _A ): _UpperCAmelCase : Any = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : str = image_embeds.repeat_interleave(_A , dim=0 ) _UpperCAmelCase : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) _UpperCAmelCase : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): _UpperCAmelCase : str = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) _UpperCAmelCase : Union[str, Any] = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) _UpperCAmelCase : List[Any] = image.to(dtype=image_embeds.dtype , device=_A ) _UpperCAmelCase : int = self.movq.encode(_A )["""latents"""] _UpperCAmelCase : Dict = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(_A , _A , _A ) _UpperCAmelCase : Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _UpperCAmelCase , _UpperCAmelCase : str = downscale_height_and_width(_A , _A , self.movq_scale_factor ) _UpperCAmelCase : List[Any] = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Union[str, Any] = {"""image_embeds""": image_embeds} _UpperCAmelCase : str = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = variance_pred.chunk(2 ) _UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing _UpperCAmelCase : Optional[int] = self.movq.decode(_A , force_not_quantize=_A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Any = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
246
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar('KEY') SCREAMING_SNAKE_CASE__ = TypeVar('VAL') @dataclass(frozen=lowerCamelCase , slots=lowerCamelCase ) class a_ ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class a_ ( _Item ): def __init__( self ) -> None: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __bool__( self ) -> bool: """simple docstring""" return False SCREAMING_SNAKE_CASE__ = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): def __init__( self , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 0.7_5 ) -> None: """simple docstring""" UpperCamelCase = initial_block_size UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCamelCase = capacity_factor UpperCamelCase = 0 def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return hash(_SCREAMING_SNAKE_CASE ) % len(self._buckets ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase = self._buckets[ind] if not stored: UpperCamelCase = _Item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: UpperCamelCase = _Item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return True else: return False def A__ ( self ) -> bool: """simple docstring""" UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def A__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = self._buckets UpperCamelCase = [None] * new_size UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def A__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def A__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Iterator[int]: """simple docstring""" UpperCamelCase = self._get_bucket_index(_SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind UpperCamelCase = self._get_next_ind(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ): if self._try_set(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): break def __setitem__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __delitem__( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ): UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(_SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(_SCREAMING_SNAKE_CASE ): UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_SCREAMING_SNAKE_CASE ) def __len__( self ) -> int: """simple docstring""" return self._len def __iter__( self ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: """simple docstring""" UpperCamelCase = """ ,""".join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
363
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowercase__ ( __UpperCamelCase )-> Dict: # picklable for multiprocessing return x.sum() def lowercase__ ( __UpperCamelCase )-> Tuple: # picklable for multiprocessing return i + 1 @dataclass class a_ : lowercase = 42 lowercase = 42 class a_ ( lowerCamelCase ): def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"""a""": 2, """b""": 3} UpperCamelCase = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 2 self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} UpperCamelCase = {"""a""": 2, """b""": 0, """c""": 2} UpperCamelCase = { """a""": np.eye(2 ).astype(_SCREAMING_SNAKE_CASE ), """b""": np.zeros(3 ).astype(_SCREAMING_SNAKE_CASE ), """c""": np.ones(2 ).astype(_SCREAMING_SNAKE_CASE ), } self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # can't pickle a local lambda map_nested(lambda _SCREAMING_SNAKE_CASE : x + 1 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": 3, """b""": 4} UpperCamelCase = {"""a""": 5, """b""": 6} UpperCamelCase = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: """simple docstring""" class a_ : lowercase = """bar""" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(_SCREAMING_SNAKE_CASE , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(__UpperCamelCase )} UpperCamelCase = map_nested(lambda __UpperCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( lowerCamelCase ): @require_tf def A__ ( self ) -> Any: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(_SCREAMING_SNAKE_CASE ).numpy() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A__ ( self ) -> int: """simple docstring""" import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(_SCREAMING_SNAKE_CASE ).detach().numpy() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A__ ( self ) -> Dict: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def lowercase__ ( )-> Union[str, Any]: UpperCamelCase = A(x=1 , y="""foobar""" ) UpperCamelCase = {"""x""": 1, """y""": """foobar"""} assert asdict(__UpperCamelCase ) == expected_output UpperCamelCase = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} UpperCamelCase = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def lowercase__ ( __UpperCamelCase )-> List[Any]: return text.split() def lowercase__ ( __UpperCamelCase )-> List[str]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowercase__ ( )-> int: with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(__UpperCamelCase ) == 4
183
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _UpperCAmelCase : Dict = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , 'sklearn' ) return (preds == labels).mean() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , 'sklearn' ) snake_case_ = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , 'sklearn' ) snake_case_ = pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] snake_case_ = spearmanr(UpperCamelCase__ , UpperCamelCase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , 'sklearn' ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), F'''Predictions and labels have mismatched lengths {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "mrpc": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "sts-b": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "qqp": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , 'sklearn' ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError(UpperCamelCase__ )
285
from PIL import Image def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = (259 * (level + 255)) / (255 * (259 - level)) def contrast(UpperCamelCase__ ) -> int: return int(128 + factor * (c - 128) ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 _UpperCAmelCase : Tuple = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
285
1
import os import re import shutil import sys import tempfile import unittest import black _UpperCAmelCase : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _UpperCAmelCase : Union[str, Any] = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Dict = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase :str = self.diffusers_dir shutil.copy( os.path.join(_lowerCAmelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :List[Any] = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any , _lowerCAmelCase: Any=None ): lowercase :str = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowercase :Optional[Any] = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result lowercase :Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase :str = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) lowercase :Any = os.path.join(self.diffusers_dir , "new_code.py" ) with open(_lowerCAmelCase , "w" , newline="\n" ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , "r" ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Union[str, Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _lowerCAmelCase ) , ) # Copy consistency with a really long name lowercase :str = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub("Bert" , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _lowerCAmelCase , overwrite_result=re.sub("DDPM" , "Test" , _lowerCAmelCase ) , )
158
from math import factorial class __lowerCAmelCase : def __init__( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple ): lowercase :str = real if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Tuple = [1] * rank else: lowercase :List[str] = rank def __repr__( self: Optional[Any] ): return ( F"{self.real}+" F"{'+'.join(str(_lowerCAmelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCAmelCase ) def __add__( self: int , _lowerCAmelCase: Tuple ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return Dual(self.real + other , self.duals ) lowercase :Dict = self.duals.copy() lowercase :List[str] = other.duals.copy() if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): o_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) elif len(_lowerCAmelCase ) < len(_lowerCAmelCase ): s_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) lowercase :Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCAmelCase ) _a = __add__ def __sub__( self: Optional[Any] , _lowerCAmelCase: Optional[int] ): return self + other * -1 def __mul__( self: Optional[Any] , _lowerCAmelCase: Optional[int] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCAmelCase ) lowercase :Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCAmelCase ) _a = __mul__ def __truediv__( self: List[str] , _lowerCAmelCase: Optional[int] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Union[str, Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCAmelCase ) raise ValueError def __floordiv__( self: int , _lowerCAmelCase: Any ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCAmelCase ) raise ValueError def __pow__( self: Any , _lowerCAmelCase: Tuple ): if n < 0 or isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self lowercase :Optional[int] = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if not callable(lowerCamelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(lowerCamelCase, (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(lowerCamelCase, lowerCamelCase ): raise ValueError("differentiate() requires an int as input for order" ) lowercase :str = Dual(lowerCamelCase, 1 ) lowercase :Dict = func(lowerCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase__ ( lowerCamelCase ): return y**2 * y**4 print(differentiate(f, 9, 2))
158
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = ["""pixel_values"""] def __init__( self : List[Any] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : List[str] , ) -> None: super().__init__(**__snake_case ) UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase : int = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) UpperCAmelCase : Any = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : str = resample UpperCAmelCase : Tuple = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_rescale UpperCAmelCase : int = rescale_factor UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : List[Any] = do_convert_rgb def A ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : Tuple , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> np.ndarray: UpperCAmelCase : Tuple = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def A ( self : Any , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> List[str]: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : List[str] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Optional[int] , ) -> PIL.Image.Image: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : str = size if size is not None else self.size UpperCAmelCase : Dict = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Any = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : List[str] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : str = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : Union[str, Any] = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase : int = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase : Optional[int] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase : int = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase : List[Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase : Tuple = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
23
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = CLIPTokenizer UpperCamelCase = CLIPTokenizerFast UpperCamelCase = True UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Optional[Any] , **A : str) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , **A : Dict) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" _UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _UpperCAmelCase = tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , A) @require_ftfy def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase = 'xa\u0303y' + ' ' + 'x\xe3y' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F"{text_of_1_token} {text_of_1_token}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (0, len(A))) self.assertEqual( encoding.offset_mapping[1] , (len(A) + 1, len(A) + 1 + len(A)) , ) _UpperCAmelCase = F" {text}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A) + 1, 1 + len(A) + 1 + len(A)) , ) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" with self.assertRaises(A) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer') self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.')) @require_ftfy def _lowerCamelCase ( self : int) -> int: """simple docstring""" super().test_tokenization_python_rust_equals() def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" pass
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["pixel_values"] def __init__(self : Optional[int] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = True , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) __a : List[Any] = size if size is not None else {'''shortest_edge''': 2_2_4} __a : List[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __a : Any = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __a : Dict = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='''crop_size''' ) __a : Optional[int] = do_resize __a : Optional[int] = size __a : Optional[int] = resample __a : Any = do_center_crop __a : Optional[Any] = crop_size __a : Optional[Any] = do_rescale __a : Tuple = rescale_factor __a : Optional[Any] = do_normalize __a : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD __a : List[str] = do_convert_rgb def lowerCAmelCase (self : Any , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Dict , ): __a : Optional[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __a : Any = get_resize_output_image_size(snake_case_ , size=size['''shortest_edge'''] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Dict , ): __a : Union[str, Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(snake_case_ , size=(size['''height'''], size['''width''']) , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : List[Any] , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[Any] , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Union[str, Any] , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case_ : Optional[Any] , ): __a : Optional[Any] = do_resize if do_resize is not None else self.do_resize __a : str = size if size is not None else self.size __a : str = get_size_dict(snake_case_ , param_name='''size''' , default_to_square=snake_case_ ) __a : Tuple = resample if resample is not None else self.resample __a : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Dict = crop_size if crop_size is not None else self.crop_size __a : List[str] = get_size_dict(snake_case_ , param_name='''crop_size''' , default_to_square=snake_case_ ) __a : Dict = do_rescale if do_rescale is not None else self.do_rescale __a : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : str = do_normalize if do_normalize is not None else self.do_normalize __a : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __a : Any = image_std if image_std is not None else self.image_std __a : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a : List[Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a : int = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. __a : Dict = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __a : Dict = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: __a : Tuple = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: __a : List[str] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: __a : List[Any] = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] __a : Any = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __a : Tuple = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
216
def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): __a : str = len(lowerCAmelCase__ ) __a : Optional[int] = [] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): __a : str = True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: __a : Tuple = False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
216
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase : int = 1_000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
157
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : """simple docstring""" def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=3 , lowercase_ : Tuple=32 , lowercase_ : List[str]=3 , lowercase_ : str=10 , lowercase_ : Tuple=[10, 20, 30, 40] , lowercase_ : Tuple=[1, 1, 2, 1] , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]="relu" , lowercase_ : Optional[int]=3 , lowercase_ : List[Any]=None , ): UpperCamelCase__ : Tuple =parent UpperCamelCase__ : str =batch_size UpperCamelCase__ : List[Any] =image_size UpperCamelCase__ : Union[str, Any] =num_channels UpperCamelCase__ : Dict =embeddings_size UpperCamelCase__ : Tuple =hidden_sizes UpperCamelCase__ : List[Any] =depths UpperCamelCase__ : List[Any] =is_training UpperCamelCase__ : Union[str, Any] =use_labels UpperCamelCase__ : Optional[int] =hidden_act UpperCamelCase__ : Dict =num_labels UpperCamelCase__ : List[str] =scope UpperCamelCase__ : Optional[Any] =len(lowercase_ ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[int] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Tuple =None if self.use_labels: UpperCamelCase__ : str =ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : List[str] =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Tuple ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] ): UpperCamelCase__ : Any =RegNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Union[str, Any] =model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): UpperCamelCase__ : List[str] =self.num_labels UpperCamelCase__ : Optional[Any] =RegNetForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Optional[int] =model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : List[Any] =self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] =config_and_inputs UpperCamelCase__ : str ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Optional[int] =RegNetModelTester(self ) UpperCamelCase__ : Optional[int] =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def _lowerCAmelCase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Dict ): return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowerCAmelCase ( self : List[Any] ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowerCAmelCase ( self : Dict ): pass def _lowerCAmelCase ( self : int ): UpperCamelCase__ , UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] =model_class(lowercase_ ) UpperCamelCase__ : List[str] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[str] =[*signature.parameters.keys()] UpperCamelCase__ : str =['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ , UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] =model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowerCAmelCase ( self : List[Any] ): def check_hidden_states_output(lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] ): UpperCamelCase__ : int =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : List[str] =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : Tuple =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Optional[int] =self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCamelCase__ , UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[Any] =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ : Dict =layer_type UpperCamelCase__ : Dict =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : int =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : Any ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] =RegNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __a ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : List[Any] =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.default_image_processor UpperCamelCase__ : Any =prepare_img() UpperCamelCase__ : Optional[Any] =image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict =model(**lowercase_ ) # verify the logits UpperCamelCase__ : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase__ : Union[str, Any] =torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
157
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __magic_name__ = logging.getLogger() def _lowerCAmelCase ( A__: Path , A__: list ): '''simple docstring''' UpperCAmelCase = '''\n'''.join(A__ ) Path(A__ ).open('''w''' ).writelines(A__ ) __magic_name__ = "patrickvonplaten/t5-tiny-random" __magic_name__ = "sshleifer/bart-tiny-random" __magic_name__ = "sshleifer/tiny-mbart" __magic_name__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCAmelCase = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCAmelCase = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(_snake_case , _snake_case ) UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) UpperCAmelCase = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCAmelCase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(_snake_case , '''argv''' , _snake_case ): run_generate() assert Path(_snake_case ).exists() # os.remove(Path(output_file_name)) def snake_case_ ( self ) -> Dict: """simple docstring""" self.run_eval_tester(_snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def snake_case_ ( self , _snake_case ) -> Any: """simple docstring""" self.run_eval_tester(_snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCAmelCase = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCAmelCase = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) UpperCAmelCase = str(tmp_dir / '''scores.json''' ) UpperCAmelCase = str(tmp_dir / '''val.target''' ) _dump_articles(_snake_case , text['''en'''] ) _dump_articles(_snake_case , text['''de'''] ) UpperCAmelCase = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCAmelCase = f""" run_eval_search.py {model} {str(_snake_case )} {str(_snake_case )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(_snake_case , '''argv''' , _snake_case ): with CaptureStdout() as cs: run_search() UpperCAmelCase = [''' num_beams | length_penalty''', model, '''Best score args'''] UpperCAmelCase = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(_snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_snake_case ).exists() os.remove(Path(_snake_case ) )
152
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : str ) -> int: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Tuple ) -> str: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) def UpperCamelCase_ ( *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : int ) -> Any: """simple docstring""" requires_backends(_lowerCAmelCase , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : str , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : str , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : str , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : str , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : str , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['torch'] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""torch"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(self , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['torch'] )
224
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 100 ,) -> float: __lowerCamelCase : Dict = x_start __lowerCamelCase : int = fnc(_lowerCAmelCase ) __lowerCamelCase : Dict = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length __lowerCamelCase : List[str] = (x_end - x_start) / steps + xa __lowerCamelCase : List[Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa ,fxa - fxa ) # Increment step __lowerCamelCase : Any = xa __lowerCamelCase : Tuple = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase ) -> Dict: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _UpperCamelCase = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
208
0
def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : str = " " ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for index, char in enumerate(lowerCAmelCase_ ): if char == separator: split_words.append(string[last_index:index] ) lowerCAmelCase__ = index + 1 elif index + 1 == len(lowerCAmelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
354
from __future__ import annotations UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _A ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[int]] , ): """simple docstring""" lowerCAmelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the reference grid lowerCAmelCase__ = 1 lowerCAmelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the action grid lowerCAmelCase__ = init[0] lowerCAmelCase__ = init[1] lowerCAmelCase__ = 0 lowerCAmelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCAmelCase__ = [[f, g, x, y]] lowerCAmelCase__ = False # flag that is set when search is complete lowerCAmelCase__ = False # flag set if we can't find expand while not found and not resign: if len(lowerCAmelCase_ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCAmelCase__ = cell.pop() lowerCAmelCase__ = next_cell[2] lowerCAmelCase__ = next_cell[3] lowerCAmelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCAmelCase__ = True else: for i in range(len(lowerCAmelCase_ ) ): # to try out different valid actions lowerCAmelCase__ = x + DIRECTIONS[i][0] lowerCAmelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCAmelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCAmelCase__ = g + cost lowerCAmelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCAmelCase__ = 1 lowerCAmelCase__ = i lowerCAmelCase__ = [] lowerCAmelCase__ = goal[0] lowerCAmelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCAmelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCAmelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCAmelCase__ = xa lowerCAmelCase__ = ya invpath.append([x, y] ) lowerCAmelCase__ = [] for i in range(len(lowerCAmelCase_ ) ): path.append(invpath[len(lowerCAmelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase = 1 # the cost map which pushes the path closer to the goal UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase = 99 UpperCamelCase , UpperCamelCase = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
221
0
from ..utils import DummyObject, requires_backends class snake_case__ (metaclass=_a ): """simple docstring""" __lowerCAmelCase :int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *__lowercase , **__lowercase ) -> Any: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Dict: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Dict: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class snake_case__ (metaclass=_a ): """simple docstring""" __lowerCAmelCase :Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *__lowercase , **__lowercase ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Dict: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class snake_case__ (metaclass=_a ): """simple docstring""" __lowerCAmelCase :Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *__lowercase , **__lowercase ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class snake_case__ (metaclass=_a ): """simple docstring""" __lowerCAmelCase :str = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *__lowercase , **__lowercase ) -> Tuple: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Any: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class snake_case__ (metaclass=_a ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *__lowercase , **__lowercase ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class snake_case__ (metaclass=_a ): """simple docstring""" __lowerCAmelCase :Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *__lowercase , **__lowercase ) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE__( cls , *__lowercase , **__lowercase ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
170
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _a , unittest.TestCase ): _A : str = CTRLTokenizer _A : List[str] = False _A : int = False def __UpperCamelCase ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE:Dict = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] SCREAMING_SNAKE_CASE:Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE:str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] SCREAMING_SNAKE_CASE:Union[str, Any] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE:Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE__ ) ) def __UpperCamelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Any ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Optional[Any] = "adapt react readapt apt" SCREAMING_SNAKE_CASE:Tuple = "adapt react readapt apt" return input_text, output_text def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:List[str] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE:Any = "adapt react readapt apt" SCREAMING_SNAKE_CASE:Any = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() SCREAMING_SNAKE_CASE:Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE:Optional[int] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ )
139
0
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = " " ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 0 for index, char in enumerate(lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) _lowerCAmelCase = index + 1 elif index + 1 == len(lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
220
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A__ : int ={'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict =['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A__ : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
220
1
def lowerCAmelCase_ ( snake_case_ ): if any(not isinstance(snake_case_,snake_case_ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(snake_case_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(snake_case_,sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
26
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : Any = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = time.time() locka.acquire(lowerCAmelCase__ ) assert time.time() - _start > timeout def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = """a""" * 1000 + """.lock""" __UpperCAmelCase : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __UpperCAmelCase : Union[str, Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): locka.acquire(0 )
254
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Dict =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Tuple =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Dict =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] )
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from itertools import permutations def a__ ( lowercase : tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCamelCase = [7, 11, 13, 17] for i, test in enumerate(lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def a__ ( lowercase : int = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(lowercase, lowercase ) ) ) for num in permutations(range(lowercase ) ) if is_substring_divisible(lowercase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
324
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'deformable_detr' _snake_case : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowerCAmelCase__ ) _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha _UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : int ) -> int: '''simple docstring''' return self.d_model def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
324
1
class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : int): """simple docstring""" a : Dict = n a : Dict = [None] * self.n a : int = 0 # index of the first element a : Optional[int] = 0 a : Optional[Any] = 0 def __len__( self : int): """simple docstring""" return self.size def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.size == 0 def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" if self.size >= self.n: raise Exception('QUEUE IS FULL') a : int = data a : str = (self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" if self.size == 0: raise Exception('UNDERFLOW') a : Union[str, Any] = self.array[self.front] a : Optional[Any] = None a : List[str] = (self.front + 1) % self.n self.size -= 1 return temp
357
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCAmelCase__ : List[str] = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase__ : Optional[int] = DisjunctiveConstraint(lowercase_ ) self.assertTrue(isinstance(dc.token_ids ,lowercase_ ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : Tuple ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCAmelCase__ : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase_ ): DisjunctiveConstraint(lowercase_ ) # fails here def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : str = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase__ : Optional[int] = DisjunctiveConstraint(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = dc.update(1 ) lowerCAmelCase__ : int = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = dc.update(2 ) lowerCAmelCase__ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = dc.update(3 ) lowerCAmelCase__ : Any = stepped is True and completed is True and reset is False self.assertTrue(lowercase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Optional[int] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase__ : List[Any] = DisjunctiveConstraint(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
106
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __snake_case : Optional[Any] = len(a_ ) - 1 def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __snake_case : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a_ ) , 5 ) == 1 return output_values def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __snake_case : List[str] = self.basis_function(a_ ) __snake_case : str = 0.0 __snake_case : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def SCREAMING_SNAKE_CASE (self , a_ = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __snake_case : list[float] = [] # x coordinates of points to plot __snake_case : list[float] = [] # y coordinates of points to plot __snake_case : int = 0.0 while t <= 1: __snake_case : Union[str, Any] = self.bezier_curve_function(a_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __snake_case : List[Any] = [i[0] for i in self.list_of_points] __snake_case : Any = [i[1] for i in self.list_of_points] plt.plot( a_ , a_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(a_ , a_ , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
102
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCAmelCase_ ( snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = torch.load(snake_case_ , map_location="cpu" ) UpperCAmelCase_ = Namespace(**checkpoint["cfg"]["model"] ) UpperCAmelCase_ = checkpoint["model"] remove_ignore_keys_(snake_case_ ) UpperCAmelCase_ = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCAmelCase_ = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} UpperCAmelCase_ = XGLMConfig( vocab_size=snake_case_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ = XGLMForCausalLM(snake_case_ ) UpperCAmelCase_ = model.load_state_dict(snake_case_ , strict=snake_case_ ) print(snake_case_ ) UpperCAmelCase_ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE_: int =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_: List[Any] =parser.parse_args() SCREAMING_SNAKE_CASE_: Tuple =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def _lowercase (self : Dict , __a : Any ): if isinstance(__a , __a ): UpperCAmelCase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : int ): if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCAmelCase_ = [sequences] UpperCAmelCase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *__a : Optional[int] , **__a : List[str] ): UpperCAmelCase_ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowercase (self : str ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowercase (self : Any , __a : Any , __a : int=True , __a : Dict=True , __a : Any=TruncationStrategy.ONLY_FIRST , **__a : Tuple ): UpperCAmelCase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCAmelCase_ = self.tokenizer.eos_token try: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase (self : List[str] , **__a : Tuple ): if kwargs.get("multi_class" , __a ) is not None: UpperCAmelCase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCAmelCase_ = {} if "candidate_labels" in kwargs: UpperCAmelCase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCAmelCase_ = kwargs["hypothesis_template"] UpperCAmelCase_ = {} if "multi_label" in kwargs: UpperCAmelCase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self : Tuple , __a : Union[str, List[str]] , *__a : Optional[Any] , **__a : Tuple , ): if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase_ = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(__a , **__a ) def _lowercase (self : Optional[int] , __a : Optional[Any] , __a : List[str]=None , __a : Any="This example is {}." ): UpperCAmelCase_ , UpperCAmelCase_ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCAmelCase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = inputs["candidate_label"] UpperCAmelCase_ = inputs["sequence"] UpperCAmelCase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowercase (self : Optional[Any] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = [outputs["candidate_label"] for outputs in model_outputs] UpperCAmelCase_ = [outputs["sequence"] for outputs in model_outputs] UpperCAmelCase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCAmelCase_ = logits.shape[0] UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = N // n UpperCAmelCase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase_ = self.entailment_id UpperCAmelCase_ = -1 if entailment_id == 0 else 0 UpperCAmelCase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase_ = reshaped_outputs[..., self.entailment_id] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
106
0
"""simple docstring""" from math import ceil def __SCREAMING_SNAKE_CASE ( A_ = 10_01 ): lowerCAmelCase__ : Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase__ : int = 2 * i + 1 lowerCAmelCase__ : Any = 2 * i lowerCAmelCase__ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
106
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCAmelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = 'https://pypi.org/pypi/diffusers/json' _a : int = json.loads(request.urlopen(__a ).read() )['releases'].keys() return sorted(__a , key=lambda __a : version.Version(__a ) ) def UpperCAmelCase_ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a , exist_ok=__a ) _a : str = Path(__a ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _a : Dict = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a , exist_ok=__a ) _a : Optional[int] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : str ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : int = f.read() # Imports of the form `import .xxx` _a : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , __a , flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[int] = False _a : Optional[int] = [module_file] _a : List[str] = [] # Let's recurse through all relative imports while not no_change: _a : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Union[str, Any] = Path(__a ).parent _a : str = [str(module_path / m ) for m in new_imports] _a : Tuple = [f for f in new_import_files if f not in all_relative_imports] _a : Dict = [f"""{f}.py""" for f in new_import_files] _a : List[str] = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : Dict = f.read() # Imports of the form `import xxx` _a : Optional[int] = re.findall('^\s*import\s+(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , __a , flags=re.MULTILINE ) # Only keep the top-level module _a : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _a : Optional[int] = list(set(__a ) ) _a : List[str] = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _a : Any = module_path.replace(os.path.sep , '.' ) _a : Union[str, Any] = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a , __a ) def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" from ..pipelines import DiffusionPipeline _a : List[str] = dict(inspect.getmembers(__a , inspect.isclass ) ) _a : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __a ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) _a : Any = cls return pipeline_class def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , ): """simple docstring""" _a : str = str(__a ) _a : Optional[Any] = os.path.join(__a , __a ) if os.path.isfile(__a ): _a : Tuple = module_file_or_url _a : Optional[Any] = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Any = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _a : Any = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Any = f"""v{revision}""" elif revision == "main": _a : Optional[int] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__a , pipeline=__a ) try: _a : Any = cached_download( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = 'git' _a : Any = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a , __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Optional[int] = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Any = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a , submodule_path / module_file ) for module_needed in modules_needed: _a : Dict = f"""{module_needed}.py""" shutil.copy(os.path.join(__a , __a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a , __a ): _a : Optional[Any] = use_auth_token elif use_auth_token is True: _a : List[Any] = HfFolder.get_token() else: _a : Dict = None _a : int = model_info(__a , revision=__a , token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : Optional[int] = submodule_path / commit_hash _a : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a , f"""{module_needed}.py""" , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return os.path.join(__a , __a ) def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[str] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : str , ): """simple docstring""" _a : Dict = get_cached_module_file( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return get_class_in_module(__a , final_module.replace('.py' , '' ) )
271
0
def A(__a: str ): assert column_title.isupper() lowerCAmelCase_ = 0 lowerCAmelCase_ = len(lowerCAmelCase__ ) - 1 lowerCAmelCase_ = 0 while index >= 0: lowerCAmelCase_ = (ord(column_title[index] ) - 64) * pow(26 , lowerCAmelCase__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class A__(a_ ): """simple docstring""" _A : str = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) a_ : Dict = size if size is not None else {"""shortest_edge""": 224} a_ : Any = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} a_ : Optional[int] = get_size_dict(_lowercase , default_to_square=_lowercase , param_name="""crop_size""" ) a_ : List[str] = do_resize a_ : str = size a_ : int = resample a_ : int = do_center_crop a_ : List[Any] = crop_size a_ : Optional[int] = do_rescale a_ : Optional[Any] = rescale_factor a_ : Union[str, Any] = do_normalize a_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a_ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD a_ : int = do_convert_rgb def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: a_ : Optional[Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a_ : Tuple = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: a_ : Tuple = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> List[Any]: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: a_ : Optional[int] = do_resize if do_resize is not None else self.do_resize a_ : Dict = size if size is not None else self.size a_ : str = get_size_dict(_lowercase , param_name="""size""" , default_to_square=_lowercase ) a_ : Union[str, Any] = resample if resample is not None else self.resample a_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a_ : Union[str, Any] = get_size_dict(_lowercase , param_name="""crop_size""" , default_to_square=_lowercase ) a_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale a_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : int = do_normalize if do_normalize is not None else self.do_normalize a_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean a_ : int = image_std if image_std is not None else self.image_std a_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : int = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. a_ : Union[str, Any] = [to_numpy_array(_lowercase ) for image in images] if do_resize: a_ : Dict = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: a_ : List[Any] = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: a_ : List[str] = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: a_ : int = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] a_ : Optional[int] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] a_ : List[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
248
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Optional[int] = """sshleifer/mar_enro_6_3_student""" class A__(a_ ): """simple docstring""" def UpperCamelCase__ ( self ) -> Tuple: super().setUp() a_ : Union[str, Any] = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=_lowercase , ) a_ : Union[str, Any] = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: MarianMTModel.from_pretrained(_lowercase ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> int: a_ : Any = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script a_ : List[str] = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() a_ : Dict = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): a_ : Optional[int] = bash_script.replace(_lowercase , str(_lowercase ) ) a_ : int = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") a_ : Dict = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future a_ : Union[str, Any] = ["""finetune.py"""] + bash_script.split() + args with patch.object(_lowercase , """argv""" , _lowercase ): a_ : Optional[Any] = argparse.ArgumentParser() a_ : Tuple = pl.Trainer.add_argparse_args(_lowercase ) a_ : Any = SummarizationModule.add_model_specific_args(_lowercase , os.getcwd() ) a_ : str = parser.parse_args() a_ : Union[str, Any] = main(_lowercase ) # Check metrics a_ : Any = load_json(model.metrics_save_path ) a_ : List[Any] = metrics["""val"""][0] a_ : Union[str, Any] = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowercase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict a_ : Optional[Any] = os.listdir(_lowercase ) a_ : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] a_ : str = os.path.join(args.output_dir , _lowercase ) a_ : Any = torch.load(_lowercase , map_location="""cpu""" ) a_ : Union[str, Any] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a_ : List[Any] = {os.path.basename(_lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class A__(a_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' a_ : str = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script a_ : Union[str, Any] = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) a_ : Union[str, Any] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) a_ : Any = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): a_ : Dict = bash_script.replace(_lowercase , str(_lowercase ) ) a_ : int = self.get_auto_remove_tmp_dir() a_ : Optional[Any] = bash_script.replace("""--fp16""" , """""" ) a_ : List[str] = 6 a_ : str = ( ["""distillation.py"""] + bash_script.split() + [ F'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", F'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(_lowercase , """argv""" , _lowercase ): a_ : int = argparse.ArgumentParser() a_ : Any = pl.Trainer.add_argparse_args(_lowercase ) a_ : str = SummarizationDistiller.add_model_specific_args(_lowercase , os.getcwd() ) a_ : Any = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu a_ : Dict = distill_main(_lowercase ) # Check metrics a_ : Any = load_json(model.metrics_save_path ) a_ : int = metrics["""val"""][0] a_ : Union[str, Any] = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict a_ : Dict = os.listdir(_lowercase ) a_ : List[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] a_ : int = os.path.join(args.output_dir , _lowercase ) a_ : Union[str, Any] = torch.load(_lowercase , map_location="""cpu""" ) a_ : List[str] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a_ : List[str] = {os.path.basename(_lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
248
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __snake_case : str , __snake_case : Optional[int]=7 , __snake_case : int=3 , __snake_case : Tuple=30 , __snake_case : Optional[Any]=4_00 , __snake_case : str=True , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=0.9 , __snake_case : Any=None , __snake_case : int=True , __snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , __snake_case : Dict=[0.5, 0.5, 0.5] , ): UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize_and_center_crop UpperCAmelCase_ = size UpperCAmelCase_ = crop_pct UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def lowerCamelCase_ ( self : Union[str, Any] ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''crop_pct''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self : Optional[Any] ): pass def lowerCamelCase_ ( self : List[str] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
0
import argparse import os import re a ="""src/transformers""" # Pattern that looks at the indentation in a line. a =re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. a =re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a =re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. a =re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a =re.compile(r"""\[([^\]]+)\]""") def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : List[str] = _re_indent.search(lowerCamelCase__ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__="" , lowerCamelCase__=None , lowerCamelCase__=None ) -> Any: __lowerCamelCase : int = 0 __lowerCamelCase : int = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase__ ): index += 1 __lowerCamelCase : Dict = ['\n'.join(lines[:index] )] else: __lowerCamelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCamelCase : str = [lines[index]] index += 1 while index < len(lowerCamelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowerCamelCase__ ) ) if index < len(lowerCamelCase__ ) - 1: __lowerCamelCase : Dict = [lines[index + 1]] index += 1 else: __lowerCamelCase : List[str] = [] else: blocks.append('\n'.join(lowerCamelCase__ ) ) __lowerCamelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase__ ) > 0: blocks.append('\n'.join(lowerCamelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: def _inner(lowerCamelCase__ ): return key(lowerCamelCase__ ).lower().replace('_' , '' ) return _inner def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(lowerCamelCase__ ): return x if key is None: __lowerCamelCase : Dict = noop # Constants are all uppercase, they go first. __lowerCamelCase : List[Any] = [obj for obj in objects if key(lowerCamelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(lowerCamelCase__ )[0].isupper() and not key(lowerCamelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __lowerCamelCase : Union[str, Any] = [obj for obj in objects if not key(lowerCamelCase__ )[0].isupper()] __lowerCamelCase : List[Any] = ignore_underscore(lowerCamelCase__ ) return sorted(lowerCamelCase__ , key=lowerCamelCase__ ) + sorted(lowerCamelCase__ , key=lowerCamelCase__ ) + sorted(lowerCamelCase__ , key=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: # This inner function sort imports between [ ]. def _replace(lowerCamelCase__ ): __lowerCamelCase : Dict = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowerCamelCase : Any = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase : List[Any] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCamelCase__ )] ) + "]" __lowerCamelCase : int = import_statement.split('\n' ) if len(lowerCamelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCamelCase : Any = 2 if lines[1].strip() == '[' else 1 __lowerCamelCase : Optional[Any] = [(i, _re_strip_line.search(lowerCamelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCamelCase : Tuple = sort_objects(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] ) __lowerCamelCase : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCamelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCamelCase : int = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase : Optional[int] = keys[:-1] __lowerCamelCase : List[str] = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(lowerCamelCase__ )] ) return "\n".join(lowerCamelCase__ ) else: # Finally we have to deal with imports fitting on one line __lowerCamelCase : Any = _re_bracket_content.sub(_replace , lowerCamelCase__ ) return import_statement def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=True ) -> Dict: with open(lowerCamelCase__ , encoding='utf-8' ) as f: __lowerCamelCase : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCamelCase : str = split_code_in_indented_blocks( lowerCamelCase__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCamelCase : Optional[int] = main_blocks[block_idx] __lowerCamelCase : str = block.split('\n' ) # Get to the start of the imports. __lowerCamelCase : Union[str, Any] = 0 while line_idx < len(lowerCamelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCamelCase : List[Any] = len(lowerCamelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __lowerCamelCase : Dict = '\n'.join(block_lines[line_idx:-1] ) __lowerCamelCase : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCamelCase : Any = split_code_in_indented_blocks(lowerCamelCase__ , indent_level=lowerCamelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCamelCase : Optional[Any] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCamelCase : Optional[Any] = [(pattern.search(lowerCamelCase__ ).groups()[0] if pattern.search(lowerCamelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(lowerCamelCase__ ) if key is not None] __lowerCamelCase : str = [x[0] for x in sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = [] for i in range(len(lowerCamelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowerCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase__ ) count += 1 # And we put our main block back together with its first and last line. __lowerCamelCase : Tuple = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=True ) -> Optional[Any]: __lowerCamelCase : Optional[int] = [] for root, _, files in os.walk(lowerCamelCase__ ): if "__init__.py" in files: __lowerCamelCase : Optional[Any] = sort_imports(os.path.join(lowerCamelCase__ , '__init__.py' ) , check_only=lowerCamelCase__ ) if result: __lowerCamelCase : Tuple = [os.path.join(lowerCamelCase__ , '__init__.py' )] if len(lowerCamelCase__ ) > 0: raise ValueError(F"Would overwrite {len(lowerCamelCase__ )} files, run `make style`." ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") a =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
73
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
'''simple docstring''' import numpy as np def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> np.ndarray: return np.where(vector > 0 , __UpperCamelCase , (alpha * (np.exp(__UpperCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger('transformers.models.speecht5') def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: hf_model.apply_weight_norm() UpperCamelCase = checkpoint["""input_conv.weight_g"""] UpperCamelCase = checkpoint["""input_conv.weight_v"""] UpperCamelCase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase = checkpoint[F"upsamples.{i}.1.weight_g"] UpperCamelCase = checkpoint[F"upsamples.{i}.1.weight_v"] UpperCamelCase = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] UpperCamelCase = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , )-> List[Any]: if config_path is not None: UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: UpperCamelCase = SpeechTaHifiGanConfig() UpperCamelCase = SpeechTaHifiGan(__UpperCamelCase ) UpperCamelCase = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase = np.load(__UpperCamelCase ) UpperCamelCase = stats[0].reshape(-1 ) UpperCamelCase = stats[1].reshape(-1 ) UpperCamelCase = torch.from_numpy(__UpperCamelCase ).float() UpperCamelCase = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
183
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowerCamelCase_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = '''left''' def __init__( self : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : Dict="<unk>" , __UpperCAmelCase : Tuple="<sep>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : int="<cls>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : Optional[Any]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _A = 3 _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' if self.remove_space: _A = " ".join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _A = unicodedata.normalize("NFKD" , __UpperCAmelCase ) _A = "".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def lowerCAmelCase ( self : str , __UpperCAmelCase : str ): '''simple docstring''' _A = self.preprocess_text(__UpperCAmelCase ) _A = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _A = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.sp_model.PieceToId(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Dict ): '''simple docstring''' _A = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase , " " ).strip() return out_string def lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = None , __UpperCAmelCase : bool = True , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = kwargs.pop("use_source_tokenizer" , __UpperCAmelCase ) _A = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _A = [] _A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _A = [] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _A = "".join(__UpperCAmelCase ) _A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _A = self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
79
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 1000 )-> int: UpperCamelCase = -1 UpperCamelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCamelCase = n - a - b if c * c == (a * a + b * b): UpperCamelCase = a * b * c if candidate >= product: UpperCamelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
321
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __lowerCamelCase ( __magic_name__ : int = 3 ): if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(__magic_name__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) a__: str =QuantumRegister(__magic_name__ , "qr" ) a__: Any =ClassicalRegister(__magic_name__ , "cr" ) a__: Dict =QuantumCircuit(__magic_name__ , __magic_name__ ) a__: Any =number_of_qubits for i in range(__magic_name__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__magic_name__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__magic_name__ , __magic_name__ ) # simulate with 10000 shots a__: Tuple =Aer.get_backend("qasm_simulator" ) a__: Tuple =execute(__magic_name__ , __magic_name__ , shots=10_000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
42
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase ( __magic_name__ : List[Any] ): if hor == 128: a__: Union[str, Any] =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: Optional[int] =(32, 128, 256) a__: Tuple =("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a__: Tuple =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: List[Any] =(32, 64, 128, 256) a__: List[str] =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a__: Dict =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) a__: Optional[int] =model.state_dict() a__: str ={ "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a__: List[Any] =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: Tuple =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: Dict =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) def __lowerCamelCase ( ): a__: Union[str, Any] ={ "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a__: Union[str, Any] =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a__: Any =model a__: str =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: List[str] =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: List[Any] =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase : SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : TreeNode | None = None SCREAMING_SNAKE_CASE_ : TreeNode | None = None __A : List[str] = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowercase ( __snake_case : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__snake_case ) != count_coins(__snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__snake_case : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase_ , lowercase_ : List[Any] = get_distrib(node.left ) lowercase_ , lowercase_ : Optional[Any] = get_distrib(node.right ) lowercase_ : Any = 1 - left_distrib_excess lowercase_ : List[Any] = 1 - right_distrib_excess lowercase_ : Optional[int] = ( left_distrib_moves + right_distrib_moves + abs(__snake_case ) + abs(__snake_case ) ) lowercase_ : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__snake_case , __snake_case ) return get_distrib(__snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
33
def A_ ( A__ , A__ ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) a__ : List[str] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : Optional[int] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : List[str] = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
359
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar _lowerCamelCase : int = TypeVar("_T") class SCREAMING_SNAKE_CASE ( Generic[_T] ): """simple docstring""" def __init__( self : str , UpperCamelCase__ : Iterable[_T] | None = None ): """simple docstring""" UpperCamelCase = list(iterable or [] ) UpperCamelCase = [] def __len__( self : Optional[int] ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ): """simple docstring""" return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def A ( self : List[Any] , UpperCamelCase__ : _T ): """simple docstring""" self._stacka.append(UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self._stacka.pop UpperCamelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
28
# Imports import numpy as np class _lowercase : '''simple docstring''' def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) def _lowerCamelCase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' if red is not None: UpperCamelCase_ = red if green is not None: UpperCamelCase_ = green if blue is not None: UpperCamelCase_ = blue if red_edge is not None: UpperCamelCase_ = red_edge if nir is not None: UpperCamelCase_ = nir return True def _lowerCamelCase ( self , snake_case__="" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) UpperCamelCase_ = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def _lowerCamelCase ( self ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _lowerCamelCase ( self ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def _lowerCamelCase ( self ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def _lowerCamelCase ( self ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowerCamelCase ( self , snake_case__=0.08 , snake_case__=1.22 , snake_case__=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowerCamelCase ( self ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir / self.green) - 1 def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def _lowerCamelCase ( self ): '''simple docstring''' return (self.red - self.blue) / self.red def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir - self.green def _lowerCamelCase ( self ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _lowerCamelCase ( self , snake_case__=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def _lowerCamelCase ( self , snake_case__=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowerCamelCase ( self ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _lowerCamelCase ( self , snake_case__=None , snake_case__=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowerCamelCase ( self ): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def _lowerCamelCase ( self ): '''simple docstring''' return self.nir / self.red def _lowerCamelCase ( self ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def _lowerCamelCase ( self ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowerCamelCase ( self ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCamelCase_ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowerCamelCase ( self ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir / self.red def _lowerCamelCase ( self ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
128
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _UpperCAmelCase : List[str] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): for attribute in key.split('''.'''): __lowerCAmelCase = getattr(_lowerCAmelCase, _lowerCAmelCase) if weight_type is not None: __lowerCAmelCase = getattr(_lowerCAmelCase, _lowerCAmelCase).shape else: __lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""") def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowerCAmelCase = None for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) __lowerCAmelCase = True elif name.split('''.''')[0] == "proj": __lowerCAmelCase = fairseq_model.proj __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(_lowerCAmelCase)[0].split('''.''')[-2] __lowerCAmelCase = mapped_key.replace('''*''', _lowerCAmelCase) if "weight_g" in name: __lowerCAmelCase = '''weight_g''' elif "weight_v" in name: __lowerCAmelCase = '''weight_v''' elif "bias" in name: __lowerCAmelCase = '''bias''' elif "weight" in name: __lowerCAmelCase = '''weight''' else: __lowerCAmelCase = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase) continue if not is_used: unused_weights.append(_lowerCAmelCase) logger.warning(F"""Unused weights: {unused_weights}""") return proj_weight def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = full_name.split('''conv_layers.''')[-1] __lowerCAmelCase = name.split('''.''') __lowerCAmelCase = int(items[0]) __lowerCAmelCase = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") else: unused_weights.append(_lowerCAmelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(_lowerCAmelCase, _lowerCAmelCase, bias=_lowerCAmelCase) __lowerCAmelCase = emb.weight.data return lin_layer def __magic_name__( lowerCamelCase): with open(_lowerCAmelCase, '''r''', encoding='''utf-8''') as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [line.split(''' ''')[0] for line in lines] __lowerCAmelCase = len(_lowerCAmelCase) __lowerCAmelCase = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(_lowerCAmelCase, range(4, num_words + 4)))) return vocab_dict @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): __lowerCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase) __lowerCAmelCase = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase, vocab_size=_lowerCAmelCase, decoder_layers=_lowerCAmelCase, do_stable_layer_norm=_lowerCAmelCase) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0, do_normalize=_lowerCAmelCase, return_attention_mask=_lowerCAmelCase, ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1])}) __lowerCAmelCase = model[0].eval() # set weights for wav2vec2 encoder __lowerCAmelCase = WavaVecaModel(_lowerCAmelCase) __lowerCAmelCase = recursively_load_weights_wavaveca(model.encoder, _lowerCAmelCase) __lowerCAmelCase = SpeechaTextaForCausalLM(_lowerCAmelCase) __lowerCAmelCase , __lowerCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=_lowerCAmelCase) # set output linear layer unexpected_keys.remove('''embed_out''') __lowerCAmelCase = nn.Parameter(model.decoder.embed_out.detach()) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""") logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""") __lowerCAmelCase = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase, decoder=_lowerCAmelCase) __lowerCAmelCase = False # add projection layer __lowerCAmelCase = nn.Parameter(projection_layer.weight) __lowerCAmelCase = nn.Parameter(projection_layer.bias) __lowerCAmelCase = create_vocab_dict(_lowerCAmelCase) with open(os.path.join(_lowerCAmelCase, '''vocab.json'''), '''w''') as fp: json.dump(_lowerCAmelCase, _lowerCAmelCase) __lowerCAmelCase = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase, '''vocab.json''')) tokenizer.save_pretrained(_lowerCAmelCase) __lowerCAmelCase = hf_wavavec.config.to_dict() __lowerCAmelCase = tokenizer.pad_token_id __lowerCAmelCase = tokenizer.bos_token_id __lowerCAmelCase = tokenizer.eos_token_id __lowerCAmelCase = '''speech_to_text_2''' __lowerCAmelCase = '''wav2vec2''' __lowerCAmelCase = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase) hf_wavavec.save_pretrained(_lowerCAmelCase) feature_extractor.save_pretrained(_lowerCAmelCase) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") _UpperCAmelCase : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : List[str] = {"""vocab_file""": """sentencepiece.model"""} a_ : Union[str, Any] = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } a_ : str = { """google/rembert""": 256, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase="[CLS]" , UpperCamelCase="[SEP]" , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , **UpperCamelCase , ): """simple docstring""" super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d lowerCamelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def snake_case ( self , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = self.sp_model.EncodeAsPieces(UpperCamelCase ) return pieces def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.sp_model.decode_pieces(UpperCamelCase ) return out_string def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase ) ) return lowerCamelCase_ = os.path.join( UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
55
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline __lowercase: Dict = "path-to-your-trained-model" __lowercase: Tuple = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") __lowercase: Union[str, Any] = "A photo of sks dog in a bucket" __lowercase: List[Any] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
367
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
0
from __future__ import annotations def __lowercase ( a__ , a__ ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = set(_SCREAMING_SNAKE_CASE ), [start] while stack: __SCREAMING_SNAKE_CASE = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored lowerCAmelCase__ : Any ={ '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
257
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True UpperCamelCase = 4 UpperCamelCase = (1 << p) - 1 for _ in range(p - 2 ): UpperCamelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
153
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCAmelCase_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __A ( A_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int = 101 ) -> List[str]: """simple docstring""" lowercase__ : Any = length def __len__( self : List[Any] ) -> Optional[int]: """simple docstring""" return self.length def __getitem__( self : Optional[Any] ,_snake_case : int ) -> int: """simple docstring""" return i class __A : '''simple docstring''' def __call__( self : Tuple ,_snake_case : Any ) -> Any: """simple docstring""" return {"input_ids": torch.tensor(_snake_case ), "labels": torch.tensor(_snake_case )} class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ) -> Optional[Any]: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__ : Dict = nn.Linear(120 ,80 ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class __A ( A_ ): '''simple docstring''' @require_torch_neuroncore def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ : Any = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowercase__ : Dict = self.get_auto_remove_tmp_dir() lowercase__ : int = f"""--output_dir {output_dir}""".split() lowercase__ : List[str] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_snake_case ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __A ( A_ ): '''simple docstring''' @require_torch_multi_gpu def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowercase__ : Tuple = self.get_auto_remove_tmp_dir() lowercase__ : Optional[int] = f"""--output_dir {output_dir}""".split() lowercase__ : List[str] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_snake_case ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCAmelCase_ = HfArgumentParser((TrainingArguments,)) lowerCAmelCase_ = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowerCAmelCase_ = DummyDataset(dataset_length) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Tuple = list(range(len(__lowerCamelCase ) ) ) lowercase__ : Any = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowerCAmelCase_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCAmelCase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase_ = 2 lowerCAmelCase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase_ = None
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase : Any =False class __a ( unittest.TestCase ): pass @nightly @require_torch_gpu class __a ( unittest.TestCase ): def __lowercase ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : str = pipe.dual_guided( prompt="first prompt" , image=_UpperCAmelCase , text_to_image_strength=0.7_5 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = generator.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = pipe.dual_guided( prompt="first prompt" , image=_UpperCAmelCase , text_to_image_strength=0.7_5 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = "cyberpunk 2077" UpperCamelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : Any = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.7_5 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCamelCase__ : Optional[int] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Dict = "A painting of a squirrel eating a burger " UpperCamelCase__ : Any = torch.manual_seed(0 ) UpperCamelCase__ : List[str] = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCamelCase__ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : Union[str, Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : List[str] = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type="numpy" ).images UpperCamelCase__ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : str = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
189
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"] UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
346
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase_ (unittest.TestCase ): def __init__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=100 , lowerCAmelCase_ : int=13 , lowerCAmelCase_ : Union[str, Any]=30 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple=32 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : str=37 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=10 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : str=3 , ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Dict = (image_size // patch_size) ** 2 UpperCAmelCase_ : Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> Tuple: UpperCAmelCase_ : List[Any] = FlaxBeitModel(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ) -> List[Any]: UpperCAmelCase_ : Tuple = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase_ ) UpperCAmelCase_ : str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> Dict: UpperCAmelCase_ : Any = self.type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = FlaxBeitForImageClassification(config=lowerCAmelCase_ ) UpperCAmelCase_ : Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : str = FlaxBeitForImageClassification(lowerCAmelCase_ ) UpperCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Dict = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> None: UpperCAmelCase_ : int = FlaxBeitModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[int] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : List[str] = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_class_name in self.all_model_classes: UpperCAmelCase_ : str = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) UpperCAmelCase_ : Union[str, Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ : Any = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : Dict = image_processor(images=lowerCAmelCase_ , return_tensors="np" ).pixel_values # prepare bool_masked_pos UpperCAmelCase_ : int = np.ones((1, 196) , dtype=lowerCAmelCase_ ) # forward pass UpperCAmelCase_ : int = model(pixel_values=lowerCAmelCase_ , bool_masked_pos=lowerCAmelCase_ ) UpperCAmelCase_ : str = outputs.logits # verify the logits UpperCAmelCase_ : str = (1, 196, 8_192) self.assertEqual(logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -13.9_174], [-3.2_4_5_6, 0.4_9_4_8, -13.9_401], [-3.2_0_3_3, 0.5_1_2_1, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase_ , atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: UpperCAmelCase_ : Tuple = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) UpperCAmelCase_ : int = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=lowerCAmelCase_ , return_tensors="np" ) # forward pass UpperCAmelCase_ : List[Any] = model(**lowerCAmelCase_ ) UpperCAmelCase_ : Any = outputs.logits # verify the logits UpperCAmelCase_ : Optional[int] = (1, 1_000) self.assertEqual(logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) UpperCAmelCase_ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="np" ) # forward pass UpperCAmelCase_ : Union[str, Any] = model(**lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = outputs.logits # verify the logits UpperCAmelCase_ : Any = (1, 21_841) self.assertEqual(logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : int = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) UpperCAmelCase_ : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase_ )
367
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } lowerCamelCase_ = {'''bert_for_seq_generation''': 512} class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Tuple="<::::>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : List[str] = vocab_file UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : List[Any] = None return state def __setstate__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
253
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A_ : _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float _UpperCAmelCase : float _UpperCAmelCase : Tuple[int] def lowerCAmelCase ( self : Optional[int]): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def lowerCAmelCase ( self : str): return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa)) def lowerCAmelCase ( self : int): return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa)) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : int = torch.arange(self.height * self.width) __lowerCamelCase : Optional[Any] = torch.stack( [ pixel_indices % self.width, torch.div(SCREAMING_SNAKE_CASE__ ,self.width ,rounding_mode='trunc'), ] ,axis=1 ,) return coords @property def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , *__lowerCamelCase : Union[str, Any] = self.shape __lowerCamelCase : Optional[Any] = int(np.prod(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = self.get_image_coords() __lowerCamelCase : List[str] = torch.broadcast_to(coords.unsqueeze(0) ,[batch_size * inner_batch_size, *coords.shape]) __lowerCamelCase : Any = self.get_camera_rays(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = rays.view(SCREAMING_SNAKE_CASE__ ,inner_batch_size * self.height * self.width ,2 ,3) return rays def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : torch.Tensor): __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase : List[str] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase : Tuple = coords.view(SCREAMING_SNAKE_CASE__ ,-1 ,2) __lowerCamelCase : Optional[int] = self.resolution() __lowerCamelCase : Optional[int] = self.fov() __lowerCamelCase : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase : int = fracs * torch.tan(fov / 2) __lowerCamelCase : int = fracs.view(SCREAMING_SNAKE_CASE__ ,-1 ,2) __lowerCamelCase : Union[str, Any] = ( self.z.view(SCREAMING_SNAKE_CASE__ ,1 ,3) + self.x.view(SCREAMING_SNAKE_CASE__ ,1 ,3) * fracs[:, :, :1] + self.y.view(SCREAMING_SNAKE_CASE__ ,1 ,3) * fracs[:, :, 1:] ) __lowerCamelCase : Tuple = directions / directions.norm(dim=-1 ,keepdim=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(SCREAMING_SNAKE_CASE__ ,1 ,3) ,[batch_size, directions.shape[1], 3]), directions, ] ,dim=2 ,) return rays.view(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,2 ,3) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> DifferentiableProjectiveCamera: __lowerCamelCase : Dict = [] __lowerCamelCase : List[Any] = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Optional[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): __lowerCamelCase : Dict = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase : List[str] = -z * 4 __lowerCamelCase : List[str] = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) __lowerCamelCase : int = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
73
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
61
0
from __future__ import annotations def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = list(range(len(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Any = [v / w for v, w in zip(_UpperCAmelCase , _UpperCAmelCase )] index.sort(key=lambda _UpperCAmelCase : ratio[i] , reverse=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: float = 0 SCREAMING_SNAKE_CASE_: list[float] = [0] * len(_UpperCAmelCase ) for i in index: if weight[i] <= capacity: SCREAMING_SNAKE_CASE_: int = 1 max_value += value[i] capacity -= weight[i] else: SCREAMING_SNAKE_CASE_: Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
127
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = -1 SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0]) SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() SCREAMING_SNAKE_CASE_: Optional[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = -1 SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = -1 SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001) SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = "" for new_text in streamer: streamer_text += new_text
127
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCamelCase : Dict = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Any = WavaVecaForSequenceClassification.from_pretrained(A_ , config=A_ ) lowerCAmelCase__ : List[Any] = downstream_dict['''projector.weight'''] lowerCAmelCase__ : Tuple = downstream_dict['''projector.bias'''] lowerCAmelCase__ : Dict = downstream_dict['''model.post_net.linear.weight'''] lowerCAmelCase__ : Optional[int] = downstream_dict['''model.post_net.linear.bias'''] return model def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(A_ , config=A_ ) lowerCAmelCase__ : Optional[int] = downstream_dict['''model.linear.weight'''] lowerCAmelCase__ : Tuple = downstream_dict['''model.linear.bias'''] return model def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : List[Any] = WavaVecaForXVector.from_pretrained(A_ , config=A_ ) lowerCAmelCase__ : int = downstream_dict['''connector.weight'''] lowerCAmelCase__ : str = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCAmelCase__ : List[str] = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] lowerCAmelCase__ : List[str] = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] lowerCAmelCase__ : str = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] lowerCAmelCase__ : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] lowerCAmelCase__ : Any = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] lowerCAmelCase__ : str = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] lowerCAmelCase__ : str = downstream_dict['''objective.W'''] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : str = torch.load(A_ , map_location='''cpu''' ) lowerCAmelCase__ : int = checkpoint['''Downstream'''] lowerCAmelCase__ : Dict = WavaVecaConfig.from_pretrained(A_ ) lowerCAmelCase__ : int = WavaVecaFeatureExtractor.from_pretrained( A_ , return_attention_mask=A_ , do_normalize=A_ ) lowerCAmelCase__ : Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): lowerCAmelCase__ : List[Any] = convert_classification(A_ , A_ , A_ ) elif arch.endswith('''ForAudioFrameClassification''' ): lowerCAmelCase__ : Any = convert_diarization(A_ , A_ , A_ ) elif arch.endswith('''ForXVector''' ): lowerCAmelCase__ : Optional[Any] = convert_xvector(A_ , A_ , A_ ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: lowerCAmelCase__ : Optional[Any] = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __UpperCamelCase : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
106
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
"""simple docstring""" import argparse import os import re SCREAMING_SNAKE_CASE__:Optional[int] = """src/diffusers""" # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE__:Union[str, Any] = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE__:List[Any] = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE__:Optional[Any] = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE__:Union[str, Any] = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE__:Any = re.compile(R"""\[([^\]]+)\]""") def _lowerCamelCase( a ): __a = _re_indent.search(a ) return "" if search is None else search.groups()[0] def _lowerCamelCase( a , a="" , a=None , a=None ): __a = 0 __a = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(a ): index += 1 __a = ["\n".join(lines[:index] )] else: __a = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __a = [lines[index]] index += 1 while index < len(a ) and (end_prompt is None or not lines[index].startswith(a )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(a ) ) if index < len(a ) - 1: __a = [lines[index + 1]] index += 1 else: __a = [] else: blocks.append("\n".join(a ) ) __a = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a ) > 0: blocks.append("\n".join(a ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a ): blocks.append("\n".join(lines[index:] ) ) return blocks def _lowerCamelCase( a ): def _inner(a ): return key(a ).lower().replace("_" , "" ) return _inner def _lowerCamelCase( a , a=None ): # If no key is provided, we use a noop. def noop(a ): return x if key is None: __a = noop # Constants are all uppercase, they go first. __a = [obj for obj in objects if key(a ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __a = [obj for obj in objects if key(a )[0].isupper() and not key(a ).isupper()] # Functions begin with a lowercase, they go last. __a = [obj for obj in objects if not key(a )[0].isupper()] __a = ignore_underscore(a ) return sorted(a , key=a ) + sorted(a , key=a ) + sorted(a , key=a ) def _lowerCamelCase( a ): # This inner function sort imports between [ ]. def _replace(a ): __a = match.groups()[0] if "," not in imports: return F"[{imports}]" __a = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(a )] ) + "]" __a = import_statement.split("\n" ) if len(a ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __a = 2 if lines[1].strip() == "[" else 1 __a = [(i, _re_strip_line.search(a ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __a = sort_objects(a , key=lambda a : x[1] ) __a = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __a = _re_bracket_content.sub(_replace , lines[1] ) else: __a = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] __a = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(a )] ) return "\n".join(a ) else: # Finally we have to deal with imports fitting on one line __a = _re_bracket_content.sub(_replace , a ) return import_statement def _lowerCamelCase( a , a=True ): with open(a , "r" ) as f: __a = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __a = split_code_in_indented_blocks( a , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __a = main_blocks[block_idx] __a = block.split("\n" ) # Get to the start of the imports. __a = 0 while line_idx < len(a ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __a = len(a ) else: line_idx += 1 if line_idx >= len(a ): continue # Ignore beginning and last line: they don't contain anything. __a = "\n".join(block_lines[line_idx:-1] ) __a = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __a = split_code_in_indented_blocks(a , indent_level=a ) # We have two categories of import key: list or _import_structure[key].append/extend __a = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __a = [(pattern.search(a ).groups()[0] if pattern.search(a ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __a = [(i, key) for i, key in enumerate(a ) if key is not None] __a = [x[0] for x in sorted(a , key=lambda a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __a = 0 __a = [] for i in range(len(a ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __a = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(a ) count += 1 # And we put our main block back together with its first and last line. __a = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(a ): if check_only: return True else: print(F"Overwriting {file}." ) with open(a , "w" ) as f: f.write("\n".join(a ) ) def _lowerCamelCase( a=True ): __a = [] for root, _, files in os.walk(a ): if "__init__.py" in files: __a = sort_imports(os.path.join(a , "__init__.py" ) , check_only=a ) if result: __a = [os.path.join(a , "__init__.py" )] if len(a ) > 0: raise ValueError(F"Would overwrite {len(a )} files, run `make style`." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:str = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") SCREAMING_SNAKE_CASE__:Any = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
268
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency SCREAMING_SNAKE_CASE__:Any = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } SCREAMING_SNAKE_CASE__:Optional[int] = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" SCREAMING_SNAKE_CASE__:Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _lowerCamelCase( a ): __a = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _lowerCamelCase( a ): return x[0] def _lowerCamelCase( a ): __a = get_letter_count(a ) __a = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(a ) __a = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=a ) __a = "".join(freq_to_letter[freq] ) __a = list(freq_to_letter_str.items() ) freq_pairs.sort(key=a , reverse=a ) __a = [freq_pair[1] for freq_pair in freq_pairs] return "".join(a ) def _lowerCamelCase( a ): __a = get_frequency_order(a ) __a = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
268
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase ( A_ ): A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=0.999 , __lowerCamelCase : Optional[Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCamelCase : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCamelCase : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) snake_case : Optional[Any] = [] for i in range(__lowerCamelCase ): snake_case : List[str] = i / num_diffusion_timesteps snake_case : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ) , __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase , dtype=torch.floataa ) class UpperCAmelCase ( A_ ,A_ ): @register_to_config def __init__(self : str , snake_case__ : int = 10_00 , snake_case__ : str = "fixed_small_log" , snake_case__ : bool = True , snake_case__ : Optional[float] = 1.0 , snake_case__ : str = "epsilon" , snake_case__ : str = "squaredcos_cap_v2" , ) -> List[str]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) snake_case : Union[str, Any] = betas_for_alpha_bar(snake_case__ ) snake_case : str = 1.0 - self.betas snake_case : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) snake_case : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case : Optional[Any] = 1.0 # setable values snake_case : Optional[Any] = None snake_case : List[str] = torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) snake_case : str = variance_type def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ) -> int: '''simple docstring''' snake_case : int = num_inference_steps snake_case : Tuple = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case : Union[str, Any] = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case : List[str] = torch.from_numpy(snake_case__ ).to(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' if prev_timestep is None: snake_case : Optional[int] = t - 1 snake_case : Union[str, Any] = self.alphas_cumprod[t] snake_case : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case : Union[str, Any] = 1 - alpha_prod_t snake_case : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case : List[str] = self.betas[t] else: snake_case : Any = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case : Union[str, Any] = torch.log(torch.clamp(snake_case__ , min=1e-20 ) ) snake_case : Any = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case : Union[str, Any] = variance.log() snake_case : Union[str, Any] = beta.log() snake_case : Optional[Any] = (predicted_variance + 1) / 2 snake_case : Dict = frac * max_log + (1 - frac) * min_log return variance def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None , snake_case__ : int=None , snake_case__ : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' snake_case : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case , snake_case : int = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: snake_case : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: snake_case : Any = t - 1 snake_case : int = self.alphas_cumprod[t] snake_case : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case : str = 1 - alpha_prod_t snake_case : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case : int = self.betas[t] snake_case : Union[str, Any] = self.alphas[t] else: snake_case : str = 1 - alpha_prod_t / alpha_prod_t_prev snake_case : List[str] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case : Any = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case : List[Any] = torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case : str = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case : Tuple = 0 if t > 0: snake_case : Optional[int] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) snake_case : str = self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": snake_case : Optional[Any] = variance elif self.variance_type == "learned_range": snake_case : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) snake_case : Any = variance * variance_noise snake_case : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.IntTensor , ) -> torch.FloatTensor: '''simple docstring''' snake_case : Optional[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) snake_case : List[Any] = timesteps.to(original_samples.device ) snake_case : Optional[int] = alphas_cumprod[timesteps] ** 0.5 snake_case : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case : Tuple = sqrt_alpha_prod.unsqueeze(-1 ) snake_case : List[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
59
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =StableDiffusionControlNetImgaImgPipeline a_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) a_ =IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __lowerCamelCase : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Union[str, Any] = CLIPTextModel(_a ) __lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : int = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self : Union[str, Any] , _a : Any , _a : List[str]=0 ) -> List[str]: if str(_a ).startswith('mps' ): __lowerCamelCase : Any = torch.manual_seed(_a ) else: __lowerCamelCase : Any = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase : Union[str, Any] = 2 __lowerCamelCase : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) __lowerCamelCase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) __lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : int = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self : List[str] ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self : str ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self : Any ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =StableDiffusionControlNetImgaImgPipeline a_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowercase ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a : str ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) __lowerCamelCase : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Dict = CLIPTextModel(_a ) __lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : List[str] = MultiControlNetModel([controlneta, controlneta] ) __lowerCamelCase : str = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self : Dict , _a : int , _a : Union[str, Any]=0 ) -> Union[str, Any]: if str(_a ).startswith('mps' ): __lowerCamelCase : Optional[Any] = torch.manual_seed(_a ) else: __lowerCamelCase : Union[str, Any] = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase : Any = 2 __lowerCamelCase : Any = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] __lowerCamelCase : List[Any] = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) __lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Dict = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase : Any = self.get_dummy_components() __lowerCamelCase : Any = self.pipeline_class(**_a ) pipe.to(_a ) __lowerCamelCase : Optional[int] = 10.0 __lowerCamelCase : Tuple = 4 __lowerCamelCase : str = self.get_dummy_inputs(_a ) __lowerCamelCase : int = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : Optional[Any] = pipe(**_a )[0] __lowerCamelCase : Dict = self.get_dummy_inputs(_a ) __lowerCamelCase : List[str] = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : Dict = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __lowerCamelCase : Any = self.get_dummy_inputs(_a ) __lowerCamelCase : Union[str, Any] = steps __lowerCamelCase : Any = scale __lowerCamelCase : Optional[int] = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __lowerCamelCase : Any = self.get_dummy_inputs(_a ) __lowerCamelCase : Tuple = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : List[str] = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _lowercase ( self : Optional[Any] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self : Dict ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self : str ) -> int: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _lowercase ( self : List[Any] ) -> str: __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : List[Any] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) __lowerCamelCase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase : List[Any] = 'evil space-punk bird' __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) __lowerCamelCase : Any = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) __lowerCamelCase : Dict = pipe( _a , _a , control_image=_a , generator=_a , output_type='np' , num_inference_steps=50 , strength=0.6 , ) __lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
208
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a = logging.get_logger(__name__) # pylint: disable=invalid-name a = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : str=8 ) -> Dict: '''simple docstring''' _A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase_ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) _A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): if latents is None: _A = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A = latents.to(lowercase_ ) _A = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device(F'''cuda:{gpu_id}''' ) _A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _A = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A = None for cpu_offloaded_model in [self.unet, self.movq]: _A = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. _A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self : Dict ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : int , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 100 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ): _A = self._execution_device _A = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): _A = torch.cat(lowercase_ , dim=0 ) _A = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): _A = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: _A = image_embeds.repeat_interleave(lowercase_ , dim=0 ) _A = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) _A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) _A = self.scheduler.timesteps _A = self.unet.config.in_channels _A = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent _A = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = {"""image_embeds""": image_embeds} _A = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: _A = noise_pred.split(latents.shape[1] , dim=1 ) _A = noise_pred.chunk(2 ) _A = variance_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing _A = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _A = image * 0.5 + 0.5 _A = image.clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
371
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _snake_case ( _snake_case : int = 8 ) -> str: '''simple docstring''' _A = ascii_letters + digits + punctuation return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' i -= len(_snake_case ) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(_snake_case , quotient + remainder ) + random(_snake_case , _snake_case ) + random(_snake_case , _snake_case ) ) _A = list(_snake_case ) shuffle(_snake_case ) return "".join(_snake_case ) # random is a generalised function for letters, characters and numbers def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Any , _snake_case : str ) -> Dict: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : str , _snake_case : int = 8 ) -> bool: '''simple docstring''' if len(_snake_case ) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password ) _A = any(char in ascii_lowercase for char in password ) _A = any(char in digits for char in password ) _A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = int(input('Please indicate the max length of your password: ' ).strip() ) _A = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_snake_case ) ) print( 'Alternative Password generated:' , alternative_password_generator(_snake_case , _snake_case ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
271
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = """layoutlmv3""" def __init__( self: List[Any] , __lowerCamelCase: str=5_02_65 , __lowerCamelCase: Optional[Any]=7_68 , __lowerCamelCase: int=12 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Tuple=30_72 , __lowerCamelCase: Optional[Any]="gelu" , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: str=2 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: int=1e-5 , __lowerCamelCase: Any=1 , __lowerCamelCase: Dict=0 , __lowerCamelCase: str=2 , __lowerCamelCase: str=10_24 , __lowerCamelCase: List[str]=1_28 , __lowerCamelCase: List[Any]=1_28 , __lowerCamelCase: str=True , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Tuple=1_28 , __lowerCamelCase: Optional[int]=64 , __lowerCamelCase: Optional[Any]=2_56 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Tuple=2_24 , __lowerCamelCase: int=3 , __lowerCamelCase: int=16 , __lowerCamelCase: List[Any]=None , **__lowerCamelCase: str , ) -> Optional[int]: super().__init__( vocab_size=_A , hidden_size=_A , num_hidden_layers=_A , num_attention_heads=_A , intermediate_size=_A , hidden_act=_A , hidden_dropout_prob=_A , attention_probs_dropout_prob=_A , max_position_embeddings=_A , type_vocab_size=_A , initializer_range=_A , layer_norm_eps=_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) __UpperCAmelCase : str = max_ad_position_embeddings __UpperCAmelCase : List[Any] = coordinate_size __UpperCAmelCase : Any = shape_size __UpperCAmelCase : List[Any] = has_relative_attention_bias __UpperCAmelCase : int = rel_pos_bins __UpperCAmelCase : int = max_rel_pos __UpperCAmelCase : List[Any] = has_spatial_attention_bias __UpperCAmelCase : Optional[int] = rel_ad_pos_bins __UpperCAmelCase : Optional[int] = max_rel_ad_pos __UpperCAmelCase : Optional[Any] = text_embed __UpperCAmelCase : Tuple = visual_embed __UpperCAmelCase : Optional[int] = input_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Any = patch_size __UpperCAmelCase : int = classifier_dropout class _snake_case ( _lowercase ): lowerCamelCase__: List[str] = version.parse("1.12" ) @property def _lowerCamelCase ( self: int ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def _lowerCamelCase ( self: str ) -> float: return 1e-5 @property def _lowerCamelCase ( self: Tuple ) -> int: return 12 def _lowerCamelCase ( self: int , __lowerCamelCase: "ProcessorMixin" , __lowerCamelCase: int = -1 , __lowerCamelCase: int = -1 , __lowerCamelCase: bool = False , __lowerCamelCase: Optional["TensorType"] = None , __lowerCamelCase: int = 3 , __lowerCamelCase: int = 40 , __lowerCamelCase: int = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , "apply_ocr" , _A ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCAmelCase : str = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase : Tuple = processor.tokenizer.num_special_tokens_to_add(_A ) __UpperCAmelCase : Tuple = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase : int = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __UpperCAmelCase : Tuple = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __UpperCAmelCase : List[Any] = self._generate_dummy_images(_A , _A , _A , _A ) __UpperCAmelCase : int = dict( processor( _A , text=_A , boxes=_A , return_tensors=_A , ) ) return inputs
157
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Union[str, Any]) -> Optional[Any]: __snake_case : int = 0 def _lowercase (self : Union[str, Any]) -> Optional[Any]: __snake_case : int = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(_A , _A) def _lowercase (self : Any) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Union[str, Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Any = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[str]) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case : int = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case : List[Any] = AutoImageProcessor.from_pretrained(_A).to_dict() config_dict.pop('image_processor_type') __snake_case : Dict = CLIPImageProcessor(**_A) # save in new folder model_config.save_pretrained(_A) config.save_pretrained(_A) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) # make sure private variable is not incorrectly saved __snake_case : Optional[int] = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_A , _A) def _lowercase (self : Union[str, Any]) -> str: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = Path(_A) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) __snake_case : Any = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> str: with self.assertRaisesRegex( _A , 'clip-base is not a local folder and is not a valid model identifier'): __snake_case : Tuple = AutoImageProcessor.from_pretrained('clip-base') def _lowercase (self : Optional[int]) -> int: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : int = AutoImageProcessor.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : Tuple) -> Optional[int]: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __snake_case : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Tuple) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A): __snake_case : Optional[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): __snake_case : Any = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) __snake_case : Any = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Dict = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def _lowercase (self : int) -> str: try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoImageProcessor.register(_A , _A) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = CustomImageProcessor.from_pretrained(_A) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : int) -> str: class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = True try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # If remote code is not set, the default is to use local __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(_A , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
172
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__): _a : Any = ['''pixel_values'''] def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : bool = True , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> None: super().__init__(**UpperCamelCase_ ) lowerCAmelCase__ : Tuple = size if size is not None else {'''height''': 384, '''width''': 384} lowerCAmelCase__ : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase__ : Dict = do_resize lowerCAmelCase__ : int = size lowerCAmelCase__ : Dict = resample lowerCAmelCase__ : Any = do_rescale lowerCAmelCase__ : Optional[Any] = rescale_factor lowerCAmelCase__ : Any = do_normalize lowerCAmelCase__ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : Union[str, Any] = do_convert_rgb def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Any , )-> np.ndarray: lowerCAmelCase__ : int = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) lowerCAmelCase__ : int = (size['''height'''], size['''width''']) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[int, float] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Optional[int] , )-> List[str]: return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Optional[int] , )-> np.ndarray: return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : ImageInput , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[float] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE : Union[str, Any] , )-> PIL.Image.Image: lowerCAmelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : List[str] = resample if resample is not None else self.resample lowerCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : str = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Optional[int] = size if size is not None else self.size lowerCAmelCase__ : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase__ : List[Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Dict = [convert_to_rgb(UpperCamelCase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: lowerCAmelCase__ : Optional[Any] = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ : Optional[int] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ : int = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowerCAmelCase__ : Optional[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowerCAmelCase__ : Optional[int] = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCamelCase_ ) return encoded_outputs
355
from math import isqrt def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _a , _a ): lowerCAmelCase__ : int = False return [i for i in range(2 , _a ) if is_prime[i]] def lowerCamelCase_ ( _a = 10**8 ): """simple docstring""" lowerCAmelCase__ : Any = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[int] = len(_a ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
211
0
def __UpperCAmelCase ( __a : List[str] = 50 ) -> List[str]: """simple docstring""" _a : Optional[Any] = [1] * (length + 1) for row_length in range(3 ,length + 1 ): for block_length in range(3 ,row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
235
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Dict = '''informer''' __lowercase : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "student_t" , lowerCAmelCase__ = "nll" , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = "mean" , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.05 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__=True , lowerCAmelCase__ = "prob" , lowerCAmelCase__ = 5 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): # time series specific configuration __SCREAMING_SNAKE_CASE = prediction_length __SCREAMING_SNAKE_CASE = context_length or prediction_length __SCREAMING_SNAKE_CASE = distribution_output __SCREAMING_SNAKE_CASE = loss __SCREAMING_SNAKE_CASE = input_size __SCREAMING_SNAKE_CASE = num_time_features __SCREAMING_SNAKE_CASE = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __SCREAMING_SNAKE_CASE = scaling __SCREAMING_SNAKE_CASE = num_dynamic_real_features __SCREAMING_SNAKE_CASE = num_static_real_features __SCREAMING_SNAKE_CASE = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""") __SCREAMING_SNAKE_CASE = cardinality else: __SCREAMING_SNAKE_CASE = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""") __SCREAMING_SNAKE_CASE = embedding_dimension else: __SCREAMING_SNAKE_CASE = [min(5_0 , (cat + 1) // 2) for cat in self.cardinality] __SCREAMING_SNAKE_CASE = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE = input_size * len(self.lags_sequence) + self._number_of_features __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = use_cache # Informer __SCREAMING_SNAKE_CASE = attention_type __SCREAMING_SNAKE_CASE = sampling_factor __SCREAMING_SNAKE_CASE = distil super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
100
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class a_ : '''simple docstring''' def __init__( self : List[Any] , lowercase__ : str , lowercase__ : Dict=2 , lowercase__ : str=True , lowercase__ : Tuple=False , lowercase__ : int=10 , lowercase__ : Optional[int]=3 , lowercase__ : Tuple=32 * 8 , lowercase__ : List[Any]=32 * 8 , lowercase__ : Optional[int]=4 , lowercase__ : Optional[Any]=64 , ): '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = is_training lowerCAmelCase__ = use_auxiliary_loss lowerCAmelCase__ = num_queries lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_size lowerCAmelCase__ = max_size lowerCAmelCase__ = num_labels lowerCAmelCase__ = hidden_dim lowerCAmelCase__ = hidden_dim def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( lowercase__) lowerCAmelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase__) lowerCAmelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase__) > 0.5 ).float() lowerCAmelCase__ = (torch.rand((self.batch_size, self.num_labels) , device=lowercase__) > 0.5).long() lowerCAmelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case ( self : int): '''simple docstring''' lowerCAmelCase__ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase__ = self.num_queries lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = [1, 1, 1, 1] lowerCAmelCase__ = self.num_channels lowerCAmelCase__ = 64 lowerCAmelCase__ = 128 lowerCAmelCase__ = self.hidden_dim lowerCAmelCase__ = self.hidden_dim lowerCAmelCase__ = self.hidden_dim return config def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __snake_case ( self : int , lowercase__ : Any , lowercase__ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = output.encoder_hidden_states lowerCAmelCase__ = output.pixel_decoder_hidden_states lowerCAmelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase__) , config.decoder_layers) def __snake_case ( self : List[Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Optional[int]=False): '''simple docstring''' with torch.no_grad(): lowerCAmelCase__ = MaskaFormerModel(config=lowercase__) model.to(lowercase__) model.eval() lowerCAmelCase__ = model(pixel_values=lowercase__ , pixel_mask=lowercase__) lowerCAmelCase__ = model(lowercase__ , output_hidden_states=lowercase__) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(lowercase__ , lowercase__) def __snake_case ( self : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = MaskaFormerForUniversalSegmentation(config=lowercase__) model.to(lowercase__) model.eval() def comm_check_on_output(lowercase__ : str): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): lowerCAmelCase__ = model(pixel_values=lowercase__ , pixel_mask=lowercase__) lowerCAmelCase__ = model(lowercase__) comm_check_on_output(lowercase__) lowerCAmelCase__ = model( pixel_values=lowercase__ , pixel_mask=lowercase__ , mask_labels=lowercase__ , class_labels=lowercase__) comm_check_on_output(lowercase__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class a_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCAmelCase_ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = MaskaFormerModelTester(self) lowerCAmelCase__ = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__) def __snake_case ( self : Optional[int]): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase__ , **lowercase__ , output_hidden_states=lowercase__) def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowercase__) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def __snake_case ( self : Dict): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def __snake_case ( self : str): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model') def __snake_case ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings') def __snake_case ( self : str): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __snake_case ( self : List[Any]): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __snake_case ( self : int): '''simple docstring''' pass def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowercase__) lowerCAmelCase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__) @slow def __snake_case ( self : int): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase__ = MaskaFormerModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = (self.model_tester.min_size,) * 2 lowerCAmelCase__ = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase__), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase__), 'class_labels': torch.zeros(2 , 10 , device=lowercase__).long(), } lowerCAmelCase__ = self.model_tester.get_config() lowerCAmelCase__ = MaskaFormerForUniversalSegmentation(lowercase__).to(lowercase__) lowerCAmelCase__ = model(**lowercase__) self.assertTrue(outputs.loss is not None) def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase__ , **lowercase__ , output_hidden_states=lowercase__) def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowercase__).to(lowercase__) lowerCAmelCase__ = model(**lowercase__ , output_attentions=lowercase__) self.assertTrue(outputs.attentions is not None) def __snake_case ( self : Tuple): '''simple docstring''' if not self.model_tester.is_training: return lowerCAmelCase__ = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = model_class(lowercase__) model.to(lowercase__) model.train() lowerCAmelCase__ = model(lowercase__ , mask_labels=lowercase__ , class_labels=lowercase__).loss loss.backward() def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(lowercase__).to(lowercase__) model.train() lowerCAmelCase__ = model(lowercase__ , mask_labels=lowercase__ , class_labels=lowercase__) lowerCAmelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) lowerCAmelCase__ = 1e-4 def __lowerCamelCase ( ): lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : str): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case ( self : str): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(lowercase__) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(lowercase__ , return_tensors='pt').to(lowercase__) lowerCAmelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase__ , (1, 3, 384, 384)) with torch.no_grad(): lowerCAmelCase__ = model(**lowercase__) lowerCAmelCase__ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]]).to(lowercase__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase__ , atol=lowercase__)) lowerCAmelCase__ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]]).to(lowercase__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase__ , atol=lowercase__)) lowerCAmelCase__ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]]).to(lowercase__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase__ , atol=lowercase__)) def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(lowercase__).eval() lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(lowercase__ , return_tensors='pt').to(lowercase__) lowerCAmelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase__ , (1, 3, 384, 384)) with torch.no_grad(): lowerCAmelCase__ = model(**lowercase__) # masks_queries_logits lowerCAmelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) lowerCAmelCase__ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowerCAmelCase__ = torch.tensor(lowercase__).to(lowercase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase__ , atol=lowercase__)) # class_queries_logits lowerCAmelCase__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) lowerCAmelCase__ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ]).to(lowercase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase__ , atol=lowercase__)) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(lowercase__).eval() lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = image_processor( [np.zeros((3, 800, 1_333)), np.zeros((3, 800, 1_333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='pt' , ) lowerCAmelCase__ = inputs['pixel_values'].to(lowercase__) lowerCAmelCase__ = [el.to(lowercase__) for el in inputs['mask_labels']] lowerCAmelCase__ = [el.to(lowercase__) for el in inputs['class_labels']] with torch.no_grad(): lowerCAmelCase__ = model(**lowercase__) self.assertTrue(outputs.loss is not None)
119
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['image_processor'] UpperCAmelCase_ = 'SamImageProcessor' def __init__( self : Tuple , lowercase__ : Dict): '''simple docstring''' super().__init__(lowercase__) lowerCAmelCase__ = self.image_processor lowerCAmelCase__ = -10 lowerCAmelCase__ = self.image_processor.size['longest_edge'] def __call__( self : List[Any] , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : Tuple=None , lowercase__ : List[str]=None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase__ = encoding_image_processor['original_sizes'] if hasattr(lowercase__ , 'numpy'): # Checks if Torch or TF tensor lowerCAmelCase__ = original_sizes.numpy() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._check_and_preprocess_points( input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , ) lowerCAmelCase__ = self._normalize_and_convert( lowercase__ , lowercase__ , input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , return_tensors=lowercase__ , ) return encoding_image_processor def __snake_case ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : str=None , lowercase__ : Optional[int]=None , lowercase__ : str=None , lowercase__ : Optional[Any]="pt" , ): '''simple docstring''' if input_points is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0]) for point in input_points ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__) for point, original_size in zip(lowercase__ , lowercase__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCAmelCase__ , lowerCAmelCase__ = self._pad_points_and_labels(lowercase__ , lowercase__) lowerCAmelCase__ = np.array(lowercase__) if input_labels is not None: lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] , is_bounding_box=lowercase__) for box in input_boxes ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ , is_bounding_box=lowercase__) for box, original_size in zip(lowercase__ , lowercase__) ] lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def __snake_case ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = max([point.shape[0] for point in input_points]) lowerCAmelCase__ = [] for i, point in enumerate(lowercase__): if point.shape[0] != expected_nb_points: lowerCAmelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCAmelCase__ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(lowercase__) lowerCAmelCase__ = processed_input_points return input_points, input_labels def __snake_case ( self : Optional[Any] , lowercase__ : int , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[Any]=False): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = original_size lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor._get_preprocess_shape(lowercase__ , longest_edge=lowercase__) lowerCAmelCase__ = deepcopy(lowercase__).astype(lowercase__) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 2 , 2) lowerCAmelCase__ = coords[..., 0] * (new_w / old_w) lowerCAmelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 4) return coords def __snake_case ( self : Dict , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(lowercase__ , 'numpy'): # Checks for TF or Torch tensor lowerCAmelCase__ = input_points.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_points[0] , lowercase__): raise ValueError('Input points must be a list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__) for input_point in input_points] else: lowerCAmelCase__ = None if input_labels is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_labels.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_labels[0] , lowercase__): raise ValueError('Input labels must be a list of list integers.') lowerCAmelCase__ = [np.array(lowercase__) for label in input_labels] else: lowerCAmelCase__ = None if input_boxes is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_boxes.numpy().tolist() if ( not isinstance(lowercase__ , lowercase__) or not isinstance(input_boxes[0] , lowercase__) or not isinstance(input_boxes[0][0] , lowercase__) ): raise ValueError('Input boxes must be a list of list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__).astype(np.floataa) for box in input_boxes] else: lowerCAmelCase__ = None return input_points, input_labels, input_boxes @property def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase__)) def __snake_case ( self : int , *lowercase__ : int , **lowercase__ : int): '''simple docstring''' return self.image_processor.post_process_masks(*lowercase__ , **lowercase__)
119
1
"""simple docstring""" from math import pi, sqrt, tan def _snake_case ( _snake_case : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _snake_case ( _snake_case : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _snake_case ( _snake_case : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _snake_case ( _snake_case : float , _snake_case : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) lowerCAmelCase : Tuple = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _snake_case ( _snake_case : float , _snake_case : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _snake_case ( _snake_case : float , _snake_case : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(_snake_case , 2 ) * torus_radius * tube_radius def _snake_case ( _snake_case : float , _snake_case : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _snake_case ( _snake_case : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _snake_case ( _snake_case : float , _snake_case : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) lowerCAmelCase : Tuple = (sidea + sidea + sidea) / 2 lowerCAmelCase : Dict = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _snake_case ( _snake_case : float , _snake_case : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _snake_case ( _snake_case : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _snake_case ( _snake_case : float , _snake_case : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _snake_case ( _snake_case : float , _snake_case : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _snake_case ( _snake_case : int , _snake_case : float ): if not isinstance(_snake_case , _snake_case ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
60
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Union[str, Any] = """bart""" __lowerCAmelCase : Optional[int] = ["""past_key_values"""] __lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , _lowerCamelCase : List[Any]=5_02_65 , _lowerCamelCase : Optional[Any]=10_24 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Dict=40_96 , _lowerCamelCase : Tuple=16 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : Tuple=40_96 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : int="gelu" , _lowerCamelCase : Any=10_24 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Optional[int]=0.02 , _lowerCamelCase : int=0.0 , _lowerCamelCase : Any=False , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=3 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : int=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Any=True , _lowerCamelCase : str=2 , _lowerCamelCase : str=2 , **_lowerCamelCase : str , ): """simple docstring""" A_ : Dict = vocab_size A_ : Union[str, Any] = max_position_embeddings A_ : Union[str, Any] = d_model A_ : Optional[int] = encoder_ffn_dim A_ : Optional[Any] = encoder_layers A_ : Union[str, Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : Any = decoder_attention_heads A_ : List[Any] = dropout A_ : Optional[int] = attention_dropout A_ : List[Any] = activation_dropout A_ : Tuple = activation_function A_ : Any = init_std A_ : Union[str, Any] = encoder_layerdrop A_ : Optional[Any] = decoder_layerdrop A_ : Tuple = classifier_dropout A_ : Tuple = use_cache A_ : List[str] = encoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowerCamelCase ): A_ : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class lowercase ( __UpperCAmelCase): @property def a_ ( self : Optional[Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ : Tuple = {0: '''batch'''} A_ : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ , A_ : Any = self.num_layers for i in range(_lowerCamelCase ): A_ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} A_ : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: A_ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a_ ( self : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super().outputs else: A_ : List[Any] = super(_lowerCamelCase , self ).outputs if self.use_past: A_ , A_ : int = self.num_layers for i in range(_lowerCamelCase ): A_ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} A_ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a_ ( self : Union[str, Any] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs A_ : Tuple = seq_length if not self.use_past else 1 A_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} A_ : Dict = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : Union[str, Any] = common_inputs['''input_ids'''].shape A_ : Any = common_inputs['''decoder_input_ids'''].shape[1] A_ , A_ : Optional[Any] = self.num_attention_heads A_ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Optional[Any] = decoder_seq_length + 3 A_ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) A_ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ , A_ : Optional[Any] = self.num_layers A_ : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers A_ : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. A_ : List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def a_ ( self : Optional[int] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A_ : Union[str, Any] = seqlen + 2 A_ , A_ : Tuple = self.num_layers A_ , A_ : Optional[int] = self.num_attention_heads A_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : str = common_inputs['''attention_mask'''].dtype A_ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) A_ : int = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def a_ ( self : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : List[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Dict = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) A_ : int = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence A_ : List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : List[str] = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def a_ ( self : Tuple , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": A_ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: A_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def a_ ( self : str , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: A_ : List[Any] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
167
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase_ ( A_ ): lowercase__ = field(default='''image-classification''', metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase__ = Features({'''image''': Image()} ) lowercase__ = Features({'''labels''': ClassLabel} ) lowercase__ = "image" lowercase__ = "labels" def __magic_name__ ( self : List[str] , snake_case_ : str ) -> Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case_ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) A__ = copy.deepcopy(self ) A__ = self.label_schema.copy() A__ = features[self.label_column] A__ = label_schema return task_template @property def __magic_name__ ( self : Any ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
230
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
1
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : str = "▁" _lowerCamelCase : Any = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} _lowerCamelCase : str = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } _lowerCamelCase : Optional[int] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } _lowerCamelCase : int = { "ernie-m-base": 514, "ernie-m-large": 514, } _lowerCamelCase : Dict = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["input_ids"] _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = RESOURCE_FILES_NAMES def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Any=False , UpperCamelCase__ : int="utf8" , UpperCamelCase__ : Tuple="[UNK]" , UpperCamelCase__ : List[Any]="[SEP]" , UpperCamelCase__ : str="[PAD]" , UpperCamelCase__ : Union[str, Any]="[CLS]" , UpperCamelCase__ : List[Any]="[MASK]" , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : int , ): """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , vocab_file=UpperCamelCase__ , encoding=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) UpperCamelCase = do_lower_case UpperCamelCase = sentencepiece_model_ckpt UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase = self.load_vocab(filepath=UpperCamelCase__ ) else: UpperCamelCase = {self.sp_model.id_to_piece(UpperCamelCase__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase = {v: k for k, v in self.vocab.items()} def A ( self : Optional[int] , UpperCamelCase__ : Tuple ): """simple docstring""" if text is None: return None UpperCamelCase = self.tokenize(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = '', [] for i, ch in enumerate(UpperCamelCase__ ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase = self.SP_CHAR_MAPPING.get(UpperCamelCase__ ) else: UpperCamelCase = unicodedata.normalize('NFKC' , UpperCamelCase__ ) if self.is_whitespace(UpperCamelCase__ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase__ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase = token[1:] UpperCamelCase = text[offset:].index(UpperCamelCase__ ) + offset UpperCamelCase = start + len(UpperCamelCase__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase = end return token_mapping @property def A ( self : List[str] ): """simple docstring""" return len(self.vocab ) def A ( self : List[str] ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self : List[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A ( self : Optional[int] , UpperCamelCase__ : Any ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase__ , UpperCamelCase__ ) for c in text) ) def A ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : str=6_4 , UpperCamelCase__ : Optional[Any]=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: UpperCamelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: UpperCamelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: UpperCamelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: UpperCamelCase = self.sp_model.EncodeAsPieces(UpperCamelCase__ ) else: UpperCamelCase = self.sp_model.SampleEncodeAsPieces(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = [] for pi, piece in enumerate(UpperCamelCase__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase__ ) and pi != 0: new_pieces.append(UpperCamelCase__ ) continue else: continue UpperCamelCase = 0 for i, chunk in enumerate(UpperCamelCase__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase__ ) or self.is_punct(UpperCamelCase__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase__ ) UpperCamelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase = i if len(UpperCamelCase__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A ( self : Tuple , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def A ( self : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.convert_ids_to_tokens(UpperCamelCase__ ) UpperCamelCase = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def A ( self : int , UpperCamelCase__ : List[Any] ): """simple docstring""" return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def A ( self : Optional[int] , UpperCamelCase__ : List[Any] ): """simple docstring""" return self.reverse_vocab.get(UpperCamelCase__ , self.unk_token ) def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : str=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Union[str, Any]=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def A ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase__ ) + 1) + [1] * (len(UpperCamelCase__ ) + 3) def A ( self : Union[str, Any] , UpperCamelCase__ : int ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def A ( self : List[str] , UpperCamelCase__ : str ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def A ( self : str , UpperCamelCase__ : str ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase__ ) == 1: UpperCamelCase = unicodedata.category(UpperCamelCase__ ) if cat == "Zs": return True return False def A ( self : List[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = {} with io.open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(UpperCamelCase__ ): UpperCamelCase = line.rstrip('\n' ) UpperCamelCase = int(UpperCamelCase__ ) return token_to_idx def A ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): """simple docstring""" UpperCamelCase = 0 if os.path.isdir(UpperCamelCase__ ): UpperCamelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: UpperCamelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) UpperCamelCase = token_index writer.write(token + '\n' ) index += 1 UpperCamelCase = os.path.join(UpperCamelCase__ , 'sentencepiece.bpe.model' ) with open(UpperCamelCase__ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (vocab_file,)
28
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =0 @slow def __lowerCamelCase ( self : Dict): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_lowerCAmelCase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_lowerCAmelCase) , 0) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 2_0) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoConfig.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) # Check that tokenizer_type ≠ model_type __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowerCAmelCase , 'vocab.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='bert' , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowerCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowerCAmelCase , 'merges.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='gpt2' , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowerCAmelCase , 'vocab.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='bert') self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowerCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowerCAmelCase , 'merges.txt')) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , tokenizer_type='gpt2') self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' with pytest.raises(_lowerCAmelCase): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx') @require_tokenizers def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase =tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) if isinstance(_lowerCAmelCase , _lowerCAmelCase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowerCAmelCase) else: self.assertEqual(tokenizer.do_lower_case , _lowerCAmelCase) self.assertEqual(tokenizer.model_max_length , 5_1_2) @require_tokenizers def __lowerCamelCase ( self : List[Any]): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowerCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __lowercase =tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =TOKENIZER_MAPPING.values() __lowercase =[] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_lowerCAmelCase) , _lowerCAmelCase) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased') , _lowerCAmelCase) @require_tokenizers def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_lowerCAmelCase) __lowercase ='Hello, world. How are you?' __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertEqual('[UNK]' , tokens[0]) __lowercase =AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_lowerCAmelCase) __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertEqual('[UNK]' , tokens[0]) @require_tokenizers def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(tokenizer.model_max_length , 5_1_2) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0) self.assertEqual(tokenizer.unk_token , '[UNK]') self.assertEqual(tokenizer.padding_side , 'right') self.assertEqual(tokenizer.truncation_side , 'right') def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 1_2) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =get_tokenizer_config('bert-base-cased') __lowercase =config.pop('_commit_hash' , _lowerCAmelCase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowerCAmelCase , {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase =get_tokenizer_config(_lowerCAmelCase) self.assertDictEqual(_lowerCAmelCase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =get_tokenizer_config(_lowerCAmelCase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer') def __lowerCamelCase ( self : List[Any]): '''simple docstring''' try: AutoConfig.register('custom' , _lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase): AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) __lowercase =CustomTokenizer.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self : int): '''simple docstring''' try: AutoConfig.register('custom' , _lowerCAmelCase) # Can register in two steps AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase): AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase =BertTokenizerFast.from_pretrained(_lowerCAmelCase) bert_tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =CustomTokenizerFast.from_pretrained(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with self.assertRaises(_lowerCAmelCase): __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase): __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') @require_tokenizers def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = False class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('custom' , _lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase) AutoTokenizer.register(_lowerCAmelCase , fast_tokenizer_class=_lowerCAmelCase) # If remote code is not set, the default is to use local __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def __lowerCamelCase ( self : List[str]): '''simple docstring''' with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __lowercase =AutoTokenizer.from_pretrained('bert-base') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase , revision='aaaaaa') def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
166
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=16 , lowerCamelCase=[32, 64, 128] , lowerCamelCase=[1, 2, 1] , lowerCamelCase=[2, 2, 4] , lowerCamelCase=2 , lowerCamelCase=2.0 , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=0.02 , lowerCamelCase=1E-5 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=10 , lowerCamelCase=8 , lowerCamelCase=["stage1", "stage2"] , lowerCamelCase=[1, 2] , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = hidden_sizes __a = depths __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = patch_norm __a = layer_norm_eps __a = initializer_range __a = is_training __a = scope __a = use_labels __a = type_sequence_label_size __a = encoder_stride __a = out_features __a = out_indices def a__ ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def a__ ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = FocalNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) __a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __a = None __a = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = FocalNetForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = FocalNetForMaskedImageModeling(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.type_sequence_label_size __a = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, unittest.TestCase ): _snake_case : Union[str, Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _snake_case : Tuple = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) _snake_case : str = False _snake_case : List[str] = False _snake_case : Tuple = False _snake_case : Dict = False _snake_case : int = False def a__ ( self ): __a = FocalNetModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , embed_dim=37 , has_text_modality=lowerCamelCase ) def a__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ): return def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def a__ ( self ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def a__ ( self ): pass def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a = model_class(lowerCamelCase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __a = outputs.hidden_states __a = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # FocalNet has a different seq_length __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __a = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) __a , __a , __a , __a = reshaped_hidden_states[0].shape __a = ( reshaped_hidden_states[0].view(lowerCamelCase , lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __a = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __a = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) @slow def a__ ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = FocalNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __a = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def a__ ( self ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def a__ ( self ): __a = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCamelCase ) __a = self.default_image_processor __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __a = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __a = torch.tensor([0.2166, -0.4368, 0.2191] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : Union[str, Any] = (FocalNetBackbone,) if is_torch_available() else () _snake_case : int = FocalNetConfig _snake_case : int = False def a__ ( self ): __a = FocalNetModelTester(self )
366
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[Any] = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__:Tuple = { """openbmb/cpm-ant-10b""": 1024, } def _lowerCamelCase( a ): __a = collections.OrderedDict() with open(a , "r" , encoding="utf-8" ) as reader: __a = reader.readlines() for index, token in enumerate(a ): __a = token.rstrip("\n" ) __a = index return vocab class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ): __a = vocab __a = unk_token __a = max_input_chars_per_word def a__ ( self , lowerCamelCase ): __a = list(lowerCamelCase ) if len(lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __a = 0 __a = [] while start < len(lowerCamelCase ): __a = len(lowerCamelCase ) __a = None while start < end: __a = "".join(chars[start:end] ) if substr in self.vocab: __a = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase ) __a = end return sub_tokens class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = ["""input_ids""", """attention_mask"""] _snake_case : int = False def __init__( self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , ) __a = bod_token __a = eod_token __a = load_vocab(lowerCamelCase ) __a = self.encoder[space_token] __a = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) __a = {v: k for k, v in self.encoder.items()} __a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def a__ ( self ): return self.encoder[self.bod_token] @property def a__ ( self ): return self.encoder[self.eod_token] @property def a__ ( self ): return self.encoder["\n"] @property def a__ ( self ): return len(self.encoder ) def a__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , lowerCamelCase ): __a = [] for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) ) return output_tokens def a__ ( self , lowerCamelCase , **lowerCamelCase ): __a = [i for i in token_ids if i >= 0] __a = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): return token in self.encoder def a__ ( self , lowerCamelCase ): return "".join(lowerCamelCase ) def a__ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def a__ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if os.path.isdir(lowerCamelCase ): __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __a = (filename_prefix + "-" if filename_prefix else "") + save_directory __a = 0 if " " in self.encoder: __a = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: __a = self.encoder["\n"] del self.encoder["\n"] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) __a = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase ))
268
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" __magic_name__ : Any = tmp_path / 'cache' __magic_name__ : Union[str, Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : Dict = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Tuple = tmp_path / 'cache' __magic_name__ : Optional[Any] = {'text': 'string'} __magic_name__ : List[str] = features.copy() if features else default_expected_features __magic_name__ : Any = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : Dict = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : List[Any] = tmp_path / 'cache' __magic_name__ : int = {'text': 'string'} __magic_name__ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Optional[Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Union[str, Any] = [text_path] __magic_name__ : Optional[Any] = tmp_path / 'cache' __magic_name__ : Tuple = {'text': 'string'} __magic_name__ : Any = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: __magic_name__ : Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : Optional[Any] = tmp_path / 'cache' __magic_name__ : List[Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : str = TextDatasetReader({'train': text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __magic_name__ : Union[str, Any] = {'text': 'string'} __magic_name__ : Optional[Any] = features.copy() if features else default_expected_features __magic_name__ : str = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : List[Any] = TextDatasetReader({'train': text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] ): """simple docstring""" if split: __magic_name__ : List[Any] = {split: text_path} else: __magic_name__ : Optional[int] = 'train' __magic_name__ : Optional[Any] = {'train': text_path, 'test': text_path} __magic_name__ : Any = tmp_path / 'cache' __magic_name__ : Union[str, Any] = {'text': 'string'} __magic_name__ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
import json import sys def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" with open(UpperCamelCase__ , encoding='utf-8' ) as f: __lowerCamelCase = json.load(UpperCamelCase__ ) __lowerCamelCase = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCamelCase__ ): __lowerCamelCase = results[benchmark_name] __lowerCamelCase = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) __lowerCamelCase = '| metric |' __lowerCamelCase = '|--------|' __lowerCamelCase = '| new / old (diff) |' for metric_name in sorted(UpperCamelCase__ ): __lowerCamelCase = benchmark_res[metric_name] __lowerCamelCase = metric_vals['new'] __lowerCamelCase = metric_vals.get('old' , UpperCamelCase__ ) __lowerCamelCase = metric_vals.get('diff' , UpperCamelCase__ ) __lowerCamelCase = F""" {new_val:f}""" if isinstance(UpperCamelCase__ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(UpperCamelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(UpperCamelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCamelCase__ ) ) if __name__ == "__main__": __A = sys.argv[1] __A = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Optional[Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: UpperCamelCase : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCamelCase : Union[str, Any] = True # Deal with multi-line cases elif ( re.search( rF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _lowerCAmelCase , ) is not None ): UpperCamelCase : List[str] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase : Tuple = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] UpperCamelCase : str = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed UpperCamelCase : List[Any] = True if not attribute_used: UpperCamelCase : List[str] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase : Optional[Any] = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase : Any = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase : int = True elif attribute.endswith("_token_id" ): UpperCamelCase : Optional[int] = True # configuration class specific cases if not case_allowed: UpperCamelCase : Dict = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase : List[str] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A_ ( _lowerCAmelCase ) -> int: UpperCamelCase : Optional[Any] = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase : List[Any] = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] UpperCamelCase : Union[str, Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase : Optional[int] = {} if len(config_class.attribute_map ) > 0: UpperCamelCase : Any = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase : List[Any] = inspect.getsourcefile(_lowerCAmelCase ) UpperCamelCase : Tuple = os.path.dirname(_lowerCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase : List[str] = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for fn in os.listdir(_lowerCAmelCase ) if fn.startswith("modeling_" )] # Get the source code strings UpperCamelCase : Dict = [] for path in modeling_paths: if os.path.isfile(_lowerCAmelCase ): with open(_lowerCAmelCase ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase : List[str] = [] for config_param, default_value in zip(_lowerCAmelCase , _lowerCAmelCase ): # `attributes` here is all the variant names for `config_param` UpperCamelCase : Union[str, Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_lowerCAmelCase ) def A_ ( ) -> str: UpperCamelCase : List[str] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase : Tuple = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _lowerCAmelCase : inspect.isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ) and inspect.getmodule(_lowerCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase : Any = check_config_attributes_being_used(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : int = unused_attributes if len(_lowerCAmelCase ) > 0: UpperCamelCase : Tuple = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": check_config_attributes()
52
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _A : Optional[int] = logging.getLogger(__name__) class a__ ( a_ ): def __init__( self , _a=-1 ): # in NER datasets, the last column is usually reserved for NER label lowercase : List[str] = label_idx def __magic_name__ ( self , _a , _a ): if isinstance(_a , _a ): lowercase : Optional[Any] = mode.value lowercase : List[str] = os.path.join(_a , f"""{mode}.txt""" ) lowercase : str = 1 lowercase : Optional[int] = [] with open(_a , encoding="utf-8" ) as f: lowercase : List[Any] = [] lowercase : Optional[int] = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_a , labels=_a ) ) guid_index += 1 lowercase : int = [] lowercase : int = [] else: lowercase : Optional[Any] = line.split(" " ) words.append(splits[0] ) if len(_a ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_a , labels=_a ) ) return examples def __magic_name__ ( self , _a , _a , _a ): lowercase : List[str] = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(_a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase : Any = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(_a ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def __magic_name__ ( self , _a ): if path: with open(_a , "r" ) as f: lowercase : Optional[Any] = f.read().splitlines() if "O" not in labels: lowercase : List[Any] = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class a__ ( a_ ): def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __magic_name__ ( self , _a ): if path: with open(_a , "r" ) as f: lowercase : Tuple = f.read().splitlines() if "O" not in labels: lowercase : Optional[int] = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class a__ ( a_ ): def __magic_name__ ( self , _a , _a ): if isinstance(_a , _a ): lowercase : List[Any] = mode.value lowercase : Optional[int] = os.path.join(_a , f"""{mode}.txt""" ) lowercase : Tuple = 1 lowercase : List[str] = [] with open(_a , encoding="utf-8" ) as f: for sentence in parse_incr(_a ): lowercase : Optional[Any] = [] lowercase : str = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(_a ) == len(_a ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_a , labels=_a ) ) guid_index += 1 return examples def __magic_name__ ( self , _a , _a , _a ): lowercase : str = 0 for sentence in parse_incr(_a ): lowercase : List[Any] = preds_list[example_id] lowercase : List[str] = "" for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(_a ) example_id += 1 def __magic_name__ ( self , _a ): if path: with open(_a , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
202
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class snake_case__(a_ , unittest.TestCase ): """simple docstring""" lowercase_ = FlaxAutoencoderKL @property def snake_case ( self : int ): lowercase__ : Dict = 4 lowercase__ : Optional[Any] = 3 lowercase__ : Optional[int] = (32, 32) lowercase__ : str = jax.random.PRNGKey(0 ) lowercase__ : Optional[int] = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case ( self : Union[str, Any] ): lowercase__ : int = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowercase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict
358
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase__ = 1.054571817e-34 # unit of ℏ : J * s lowerCAmelCase__ = 3e8 # unit of c : m * s^-1 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase__ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase__ : str = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase__ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
121
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase : List[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): for attribute in key.split('''.''' ): lowerCAmelCase__ : Any = getattr(A_ , A_ ) if weight_type is not None: lowerCAmelCase__ : Tuple = getattr(A_ , A_ ).shape else: lowerCAmelCase__ : int = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase__ : Any = value elif weight_type == "weight_g": lowerCAmelCase__ : List[str] = value elif weight_type == "weight_v": lowerCAmelCase__ : Union[str, Any] = value elif weight_type == "bias": lowerCAmelCase__ : Dict = value else: lowerCAmelCase__ : Union[str, Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Union[str, Any] = fairseq_model.state_dict() lowerCAmelCase__ : List[str] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCAmelCase__ : Any = None for name, value in fairseq_dict.items(): lowerCAmelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( A_ , A_ , A_ , A_ , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase__ : List[Any] = True elif name.split('''.''' )[0] == "proj": lowerCAmelCase__ : List[Any] = fairseq_model.proj lowerCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase__ : Optional[Any] = True if "*" in mapped_key: lowerCAmelCase__ : List[Any] = name.split(A_ )[0].split('''.''' )[-2] lowerCAmelCase__ : Optional[Any] = mapped_key.replace('''*''' , A_ ) if "weight_g" in name: lowerCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: lowerCAmelCase__ : List[Any] = '''bias''' elif "weight" in name: lowerCAmelCase__ : Union[str, Any] = '''weight''' else: lowerCAmelCase__ : str = None set_recursively(A_ , A_ , A_ , A_ , A_ ) continue if not is_used: unused_weights.append(A_ ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): lowerCAmelCase__ : List[Any] = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase__ : int = name.split('''.''' ) lowerCAmelCase__ : Tuple = int(items[0] ) lowerCAmelCase__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase__ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = emb.weight.shape lowerCAmelCase__ : List[str] = nn.Linear(A_ , A_ , bias=A_ ) lowerCAmelCase__ : Optional[Any] = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : str = f.readlines() lowerCAmelCase__ : Any = [line.split(''' ''' )[0] for line in lines] lowerCAmelCase__ : Tuple = len(A_ ) lowerCAmelCase__ : Dict = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(A_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): lowerCAmelCase__ : Optional[int] = WavaVecaConfig.from_pretrained(A_ ) lowerCAmelCase__ : Dict = SpeechaTextaConfig.from_pretrained( A_ , vocab_size=A_ , decoder_layers=A_ , do_stable_layer_norm=A_ ) lowerCAmelCase__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=A_ , return_attention_mask=A_ , ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCAmelCase__ : Optional[int] = model[0].eval() # set weights for wav2vec2 encoder lowerCAmelCase__ : str = WavaVecaModel(A_ ) lowerCAmelCase__ : Dict = recursively_load_weights_wavaveca(model.encoder , A_ ) lowerCAmelCase__ : List[Any] = SpeechaTextaForCausalLM(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCAmelCase__ : Union[str, Any] = SpeechEncoderDecoderModel(encoder=A_ , decoder=A_ ) lowerCAmelCase__ : Union[str, Any] = False # add projection layer lowerCAmelCase__ : Optional[int] = nn.Parameter(projection_layer.weight ) lowerCAmelCase__ : List[Any] = nn.Parameter(projection_layer.bias ) lowerCAmelCase__ : str = create_vocab_dict(A_ ) with open(os.path.join(A_ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(A_ , A_ ) lowerCAmelCase__ : str = SpeechaTextaTokenizer(os.path.join(A_ , '''vocab.json''' ) ) tokenizer.save_pretrained(A_ ) lowerCAmelCase__ : Any = hf_wavavec.config.to_dict() lowerCAmelCase__ : Any = tokenizer.pad_token_id lowerCAmelCase__ : Optional[Any] = tokenizer.bos_token_id lowerCAmelCase__ : str = tokenizer.eos_token_id lowerCAmelCase__ : Optional[Any] = '''speech_to_text_2''' lowerCAmelCase__ : List[str] = '''wav2vec2''' lowerCAmelCase__ : Dict = SpeechEncoderDecoderConfig.from_dict(A_ ) hf_wavavec.save_pretrained(A_ ) feature_extractor.save_pretrained(A_ ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0_2_2_4, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __UpperCamelCase : List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
106
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A_ ( unittest.TestCase ): _UpperCAmelCase : Optional[int] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : List[Any] = hf_hub_download( repo_id='nateraw/video-demo' ,filename='archery.mp4' ,repo_type='dataset') __lowerCamelCase : str = VideoClassificationPipeline(model=SCREAMING_SNAKE_CASE__ ,image_processor=SCREAMING_SNAKE_CASE__ ,top_k=2) __lowerCamelCase : Optional[Any] = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[str]): for example in examples: __lowerCamelCase : str = video_classifier(SCREAMING_SNAKE_CASE__) self.assertEqual( SCREAMING_SNAKE_CASE__ ,[ {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, ] ,) @require_torch def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" __lowerCamelCase : Dict = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} ,crop_size={'height': 1_0, 'width': 1_0}) __lowerCamelCase : int = pipeline( 'video-classification' ,model=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,frame_sampling_rate=4) __lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' ,filename='archery.mp4' ,repo_type='dataset') __lowerCamelCase : List[str] = video_classifier(SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] ,) __lowerCamelCase : Union[str, Any] = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] ,) @require_tf def lowerCAmelCase ( self : Union[str, Any]): pass
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a ={ """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
113
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" if "model" in orig_key: lowerCamelCase__: Tuple =orig_key.replace("model." , "" ) if "norm1" in orig_key: lowerCamelCase__: Any =orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: lowerCamelCase__: Optional[int] =orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: lowerCamelCase__: Dict =orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: lowerCamelCase__: int =orig_key.split("." )[0].split("_" )[-1] lowerCamelCase__: Dict =orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowerCamelCase__: List[Any] =orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: lowerCamelCase__: str =orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: lowerCamelCase__: int =orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: lowerCamelCase__: Union[str, Any] =orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: lowerCamelCase__: Optional[Any] =orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: lowerCamelCase__: Union[str, Any] =orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: lowerCamelCase__: Tuple =orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: lowerCamelCase__: Union[str, Any] =orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: lowerCamelCase__: Optional[int] =orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: lowerCamelCase__: Any =orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: lowerCamelCase__: Dict ="yoso." + orig_key return orig_key def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Dict =orig_state_dict.pop(__a ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__: Union[str, Any] =val lowerCamelCase__: Optional[Any] =orig_state_dict["cls.predictions.decoder.bias"] lowerCamelCase__: Dict =torch.arange(__a ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =torch.load(__a , map_location="cpu" )["model_state_dict"] lowerCamelCase__: Any =YosoConfig.from_json_file(__a ) lowerCamelCase__: Optional[int] =YosoForMaskedLM(__a ) lowerCamelCase__: Dict =convert_checkpoint_helper(config.max_position_embeddings , __a ) print(model.load_state_dict(__a ) ) model.eval() model.save_pretrained(__a ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
10
import numpy as np from PIL import Image def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[int] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = 0 __lowercase : Optional[Any] = 0 __lowercase : str = 0 # compute the shape of the output matrix __lowercase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowercase : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowercase : Optional[int] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : Any = 0 __lowercase : List[Any] = 0 return updated_arr def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[Any] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : int = 0 __lowercase : str = 0 __lowercase : List[str] = 0 __lowercase : Dict = 0 # compute the shape of the output matrix __lowercase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowercase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowercase : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : int = 0 __lowercase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __lowerCAmelCase : List[Any] = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
156
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : List[str] ) -> Any: __A : Any = 0 __A : Optional[int] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCAmelCase ( __snake_case : Any ) -> str: if len(__snake_case ) <= 1: return arr, 0 __A : List[Any] = len(__snake_case ) // 2 __A : Optional[Any] = arr[0:mid] __A : List[Any] = arr[mid:] __A ,__A : List[Any] = count_inversions_recursive(__snake_case ) __A ,__A : int = count_inversions_recursive(__snake_case ) __A ,__A : List[str] = _count_cross_inversions(__snake_case , __snake_case ) __A : Optional[int] = inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : str ) -> Optional[Any]: __A : List[str] = [] __A : int = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCAmelCase ( ) -> Optional[Any]: __A : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __A : List[str] = count_inversions_bf(__snake_case ) __A ,__A : int = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __A : List[str] = count_inversions_bf(__snake_case ) __A ,__A : str = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __snake_case ) # an empty list should also have zero inversions __A : Dict = [] __A : Optional[int] = count_inversions_bf(__snake_case ) __A ,__A : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __snake_case ) if __name__ == "__main__": main()
190
'''simple docstring''' lowercase__ : Any = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowercase__ : List[Any] = ['''a''', '''b''', '''c''', '''d''', '''e'''] def _lowerCAmelCase ( __snake_case : str , __snake_case : Tuple , __snake_case : int ) -> Tuple: __A : List[str] = start # add current to visited visited.append(__snake_case ) __A : Optional[int] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __A : int = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: __A : Dict = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": lowercase__ : Tuple = topological_sort('''a''', [], []) print(sort)
190
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class __A: def __init__( self , _snake_case = 14 ) -> None: '''simple docstring''' if group not in primes: raise ValueError('''Unsupported Group''' ) __a = primes[group]['''prime'''] __a = primes[group]['''generator'''] __a = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = pow(self.generator , self.__private_key , self.prime ) return hex(_snake_case )[2:] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> bool: '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(_snake_case , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = int(_snake_case , base=16 ) if not self.is_valid_public_key(_snake_case ): raise ValueError('''Invalid public key''' ) __a = pow(_snake_case , self.__private_key , self.prime ) return shaaaa(str(_snake_case ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case , _snake_case ) -> bool: '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(_snake_case , (prime - 1) // 2 , _snake_case ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case , _snake_case , _snake_case = 14 ) -> str: '''simple docstring''' __a = int(_snake_case , base=16 ) __a = int(_snake_case , base=16 ) __a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_snake_case , _snake_case ): raise ValueError('''Invalid public key''' ) __a = pow(_snake_case , _snake_case , _snake_case ) return shaaaa(str(_snake_case ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
6
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase_ : Tuple = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''facebook/nllb-200-distilled-600M''' snake_case__ : Union[str, Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) snake_case__ : Optional[Any] = '''translator''' snake_case__ : Tuple = AutoTokenizer snake_case__ : Union[str, Any] = AutoModelForSeqaSeqLM snake_case__ : Dict = LANGUAGE_CODES snake_case__ : str = ['''text''', '''text''', '''text'''] snake_case__ : Tuple = ['''text'''] def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) a_ : str = self.lang_to_code[src_lang] a_ : Any = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( SCREAMING_SNAKE_CASE__ , return_tensors='pt' , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: return self.model.generate(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
32
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=99 , UpperCAmelCase__=32 , UpperCAmelCase__=2 , UpperCAmelCase__=4 , UpperCAmelCase__=37 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=16 , UpperCAmelCase__=2 , UpperCAmelCase__=0.02 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__="None" , UpperCAmelCase__=3 , UpperCAmelCase__=4 , UpperCAmelCase__=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def __A ( self ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = TFDebertaVaModel(config=UpperCAmelCase__ ) A__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A__ = [input_ids, input_mask] A__ = model(UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = TFDebertaVaForMaskedLM(config=UpperCAmelCase__ ) A__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = self.num_labels A__ = TFDebertaVaForSequenceClassification(config=UpperCAmelCase__ ) A__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = self.num_labels A__ = TFDebertaVaForTokenClassification(config=UpperCAmelCase__ ) A__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase__ ) A__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase : Any = False lowerCAmelCase : Optional[Any] = False def __A ( self ): A__ = TFDebertaVaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def __A ( self ): A__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class UpperCamelCase ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __A ( self ): pass @slow def __A ( self ): A__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) A__ = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) A__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] A__ = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1e-4 )
198
def UpperCamelCase ( _A : str )-> str: """simple docstring""" A__ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCamelCase ( _A : str )-> dict[str, str]: """simple docstring""" A__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A__ = remove_duplicates(key.upper() ) A__ = len(_A ) # First fill cipher with key characters A__ = {alphabet[i]: char for i, char in enumerate(_A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_A ) , 26 ): A__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A__ = alphabet[i - offset] A__ = char return cipher_alphabet def UpperCamelCase ( _A : str , _A : dict[str, str] )-> str: """simple docstring""" return "".join(cipher_map.get(_A , _A ) for ch in message.upper() ) def UpperCamelCase ( _A : str , _A : dict[str, str] )-> str: """simple docstring""" A__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_A , _A ) for ch in message.upper() ) def UpperCamelCase ( )-> None: """simple docstring""" A__ = input("Enter message to encode or decode: " ).strip() A__ = input("Enter keyword: " ).strip() A__ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: A__ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) A__ = create_cipher_map(_A ) print(func(_A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
198
1
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'efficientnet' def __init__( self ,__UpperCamelCase = 3 ,__UpperCamelCase = 600 ,__UpperCamelCase = 2.0 ,__UpperCamelCase = 3.1 ,__UpperCamelCase = 8 ,__UpperCamelCase = [3, 3, 5, 3, 5, 5, 3] ,__UpperCamelCase = [32, 16, 24, 40, 80, 112, 192] ,__UpperCamelCase = [16, 24, 40, 80, 112, 192, 320] ,__UpperCamelCase = [] ,__UpperCamelCase = [1, 2, 2, 2, 1, 2, 1] ,__UpperCamelCase = [1, 2, 2, 3, 3, 4, 1] ,__UpperCamelCase = [1, 6, 6, 6, 6, 6, 6] ,__UpperCamelCase = 0.25 ,__UpperCamelCase = "swish" ,__UpperCamelCase = 2560 ,__UpperCamelCase = "mean" ,__UpperCamelCase = 0.02 ,__UpperCamelCase = 0.001 ,__UpperCamelCase = 0.99 ,__UpperCamelCase = 0.5 ,__UpperCamelCase = 0.2 ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : List[str] = num_channels lowercase_ : Dict = image_size lowercase_ : List[str] = width_coefficient lowercase_ : Tuple = depth_coefficient lowercase_ : Tuple = depth_divisor lowercase_ : Dict = kernel_sizes lowercase_ : Optional[Any] = in_channels lowercase_ : Any = out_channels lowercase_ : int = depthwise_padding lowercase_ : int = strides lowercase_ : Union[str, Any] = num_block_repeats lowercase_ : Union[str, Any] = expand_ratios lowercase_ : Optional[Any] = squeeze_expansion_ratio lowercase_ : Tuple = hidden_act lowercase_ : Union[str, Any] = hidden_dim lowercase_ : Optional[Any] = pooling_type lowercase_ : str = initializer_range lowercase_ : Optional[Any] = batch_norm_eps lowercase_ : Union[str, Any] = batch_norm_momentum lowercase_ : str = dropout_rate lowercase_ : Optional[int] = drop_connect_rate lowercase_ : List[str] = sum(__UpperCamelCase ) * 4 class UpperCamelCase ( lowercase_ ): lowercase = version.parse('1.11' ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: '''simple docstring''' return 1e-5
213
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
213
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) def a__ ( __lowercase ) -> List[List[ImageInput]]: if isinstance(__lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowercase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class snake_case ( _UpperCamelCase): __UpperCamelCase = ['pixel_values'] def __init__( self : str , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 2_55 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Tuple , ) -> None: '''simple docstring''' super().__init__(**a__ ) _A = size if size is not None else {"shortest_edge": 2_56} _A = get_size_dict(a__ , default_to_square=a__ ) _A = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} _A = get_size_dict(a__ , param_name="crop_size" ) _A = do_resize _A = size _A = do_center_crop _A = crop_size _A = resample _A = do_rescale _A = rescale_factor _A = offset _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def a_ ( self : str , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : str , ) -> np.ndarray: '''simple docstring''' _A = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: _A = get_resize_output_image_size(a__ , size["shortest_edge"] , default_to_square=a__ ) elif "height" in size and "width" in size: _A = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def a_ ( self : Optional[Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Tuple , ) -> np.ndarray: '''simple docstring''' _A = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a__ , size=(size["height"], size["width"]) , data_format=a__ , **a__ ) def a_ ( self : Union[str, Any] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : List[str] , ) -> Tuple: '''simple docstring''' _A = image.astype(np.floataa ) if offset: _A = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def a_ ( self : Tuple , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def a_ ( self : Union[str, Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _A = to_numpy_array(a__ ) if do_resize: _A = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: _A = self.center_crop(a__ , size=a__ ) if do_rescale: _A = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: _A = self.normalize(image=a__ , mean=a__ , std=a__ ) _A = to_channel_dimension_format(a__ , a__ ) return image def a_ ( self : str , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Tuple , ) -> PIL.Image.Image: '''simple docstring''' _A = do_resize if do_resize is not None else self.do_resize _A = resample if resample is not None else self.resample _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = offset if offset is not None else self.offset _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(a__ , default_to_square=a__ ) _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(a__ , param_name="crop_size" ) if not valid_images(a__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _A = make_batched(a__ ) _A = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] _A = {"pixel_values": videos} return BatchFeature(data=a__ , tensor_type=a__ )
364
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a__ ( __lowercase ) -> List[Any]: _A = 384 if "tiny" in model_name: _A = [3, 3, 9, 3] _A = [96, 192, 384, 768] if "small" in model_name: _A = [3, 3, 27, 3] _A = [96, 192, 384, 768] if "base" in model_name: _A = [3, 3, 27, 3] _A = [128, 256, 512, 1024] _A = 512 if "large" in model_name: _A = [3, 3, 27, 3] _A = [192, 384, 768, 1536] _A = 768 if "xlarge" in model_name: _A = [3, 3, 27, 3] _A = [256, 512, 1024, 2048] _A = 1024 # set label information _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def a__ ( __lowercase ) -> List[Any]: _A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: _A = dct.pop(__lowercase ) _A = val def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" )["state_dict"] _A = get_upernet_config(__lowercase ) _A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) if "bn" in key: _A = key.replace("bn" , "batch_norm" ) _A = val # rename keys _A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image _A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("RGB" ) _A = SegformerImageProcessor() _A = processor(__lowercase , return_tensors="pt" ).pixel_values with torch.no_grad(): _A = model(__lowercase ) if model_name == "upernet-convnext-tiny": _A = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _A = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _A = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _A = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _A = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[str] ): __lowerCAmelCase = state_dict.pop(UpperCamelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCAmelCase = key.replace('backbone.0.body', 'backbone.conv_encoder.model' ) __lowerCAmelCase = value else: __lowerCAmelCase = value return new_state_dict def a_ ( lowerCAmelCase_ : Any ): __lowerCAmelCase = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:256, :] __lowerCAmelCase = in_proj_bias[:256] __lowerCAmelCase = in_proj_weight[256:512, :] __lowerCAmelCase = in_proj_bias[256:512] __lowerCAmelCase = in_proj_weight[-256:, :] __lowerCAmelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:256, :] __lowerCAmelCase = in_proj_bias[:256] __lowerCAmelCase = in_proj_weight[256:512, :] __lowerCAmelCase = in_proj_bias[256:512] __lowerCAmelCase = in_proj_weight[-256:, :] __lowerCAmelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __lowerCAmelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCAmelCase = in_proj_weight_cross_attn[:256, :] __lowerCAmelCase = in_proj_bias_cross_attn[:256] __lowerCAmelCase = in_proj_weight_cross_attn[256:512, :] __lowerCAmelCase = in_proj_bias_cross_attn[256:512] __lowerCAmelCase = in_proj_weight_cross_attn[-256:, :] __lowerCAmelCase = in_proj_bias_cross_attn[-256:] def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase , __lowerCAmelCase = image.size __lowerCAmelCase = max(UpperCamelCase_, UpperCamelCase_ ) __lowerCAmelCase = 800 if 'detection' in checkpoint_url else 1000 __lowerCAmelCase = target_max_size / current_max_size __lowerCAmelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = F.to_tensor(UpperCamelCase_ ) __lowerCAmelCase = F.normalize(UpperCamelCase_, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : int, lowerCAmelCase_ : Any ): logger.info('Converting model...' ) # load original state dict __lowerCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase_, map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) __lowerCAmelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCAmelCase = state_dict.pop(UpperCamelCase_ ) __lowerCAmelCase = val # create HuggingFace model and load state dict __lowerCAmelCase = TableTransformerConfig( backbone='resnet18', mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: __lowerCAmelCase = 15 __lowerCAmelCase = 2 __lowerCAmelCase = {0: 'table', 1: 'table rotated'} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} else: __lowerCAmelCase = 125 __lowerCAmelCase = 6 __lowerCAmelCase = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = DetrImageProcessor( format='coco_detection', max_size=800 if 'detection' in checkpoint_url else 1000 ) __lowerCAmelCase = TableTransformerForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # verify our conversion __lowerCAmelCase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __lowerCAmelCase = hf_hub_download(repo_id='nielsr/example-pdf', repo_type='dataset', filename=UpperCamelCase_ ) __lowerCAmelCase = Image.open(UpperCamelCase_ ).convert('RGB' ) __lowerCAmelCase = normalize(resize(UpperCamelCase_, UpperCamelCase_ ) ).unsqueeze(0 ) __lowerCAmelCase = model(UpperCamelCase_ ) if "detection" in checkpoint_url: __lowerCAmelCase = (1, 15, 3) __lowerCAmelCase = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) __lowerCAmelCase = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: __lowerCAmelCase = (1, 125, 7) __lowerCAmelCase = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) __lowerCAmelCase = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], UpperCamelCase_, atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], UpperCamelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __lowerCAmelCase = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(UpperCamelCase_ ) image_processor.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
284
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __SCREAMING_SNAKE_CASE = False if num < 0: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = -num __SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCamelCase_ ) for e in binary ) return "0b" + "".join(str(UpperCamelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
100
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase__ : Union[str, Any] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase=False) -> Dict: a , a = create_model( "HTSAT-tiny" , "roberta" , __UpperCamelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__UpperCamelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Dict: a = {} a = r".*sequential.(\d+).*" a = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: a = key.replace(__UpperCamelCase , __UpperCamelCase) if re.match(__UpperCamelCase , __UpperCamelCase): # replace sequential layers with list a = re.match(__UpperCamelCase , __UpperCamelCase).group(1) a = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(__UpperCamelCase)//3}.linear.''') elif re.match(__UpperCamelCase , __UpperCamelCase): a = int(re.match(__UpperCamelCase , __UpperCamelCase).group(1)) # Because in CLAP they use `nn.Sequential`... a = 1 if projecton_layer == 0 else 2 a = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''') if "audio" and "qkv" in key: # split qkv into query key and value a = value a = mixed_qkv.size(0) // 3 a = mixed_qkv[:qkv_dim] a = mixed_qkv[qkv_dim : qkv_dim * 2] a = mixed_qkv[qkv_dim * 2 :] a = query_layer a = key_layer a = value_layer else: a = value return model_state_dict def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False) -> Tuple: a , a = init_clap(__UpperCamelCase , enable_fusion=__UpperCamelCase) clap_model.eval() a = clap_model.state_dict() a = rename_state_dict(__UpperCamelCase) a = ClapConfig() a = enable_fusion a = ClapModel(__UpperCamelCase) # ignore the spectrogram embedding layer model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase) model.save_pretrained(__UpperCamelCase) transformers_config.save_pretrained(__UpperCamelCase) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase__ : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
180
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
1
import os import pytest from transformers.dynamic_module_utils import get_imports __a : List[str] = """ import os """ __a : str = """ def foo(): import os return False """ __a : Dict = """ def foo(): def bar(): if True: import os return False return bar() """ __a : Tuple = """ import os try: import bar except ImportError: raise ValueError() """ __a : Tuple = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ __a : Union[str, Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ __a : Union[str, Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ __a : Union[str, Any] = """ import os try: import bar except: raise ValueError() """ __a : Tuple = """ import os try: import bar import baz except ImportError: raise ValueError() """ __a : List[Any] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ __a : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase ) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = os.path.join(lowercase , '''test_file.py''' ) with open(lowercase , '''w''' ) as _tmp_file: _tmp_file.write(lowercase ) __lowercase = get_imports(lowercase ) assert parsed_imports == ["os"]
210
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
1
def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase_ (): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
82
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = """mock-s3-bucket""" UpperCAmelCase_: str = F's3://{mock_bucket}' UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path.startswith("""s3://""" ) is False UpperCAmelCase_: Tuple = """./local/path""" UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path == new_dataset_path def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is True UpperCAmelCase_: Optional[Any] = fsspec.filesystem("""file""" ) UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: List[str] , lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} UpperCAmelCase_: Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_: str = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = os.path.basename(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f, open(lowerCAmelCase__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple , lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: List[str] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} UpperCAmelCase_: Tuple = compressed_file_paths[protocol] UpperCAmelCase_: int = """dataset.jsonl""" UpperCAmelCase_: Any = F'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase_ , *UpperCAmelCase_: Dict = fsspec.get_fs_token_paths(lowerCAmelCase__ ) assert fs.isfile(lowerCAmelCase__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Tuple = hf_api.dataset_info(lowerCAmelCase__ , token=lowerCAmelCase__ ) UpperCAmelCase_: List[str] = HfFileSystem(repo_info=lowerCAmelCase__ , token=lowerCAmelCase__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(lowerCAmelCase__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[str] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCAmelCase__ , lowerCAmelCase__ , clobber=lowerCAmelCase__ ) with pytest.warns(lowerCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
82
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() def snake_case ( snake_case__ :Union[str, Any]) -> Optional[Any]: _A = {} _A = os.path.join(a__ , """all_results.json""") if os.path.exists(a__): with open(a__ , """r""") as f: _A = json.load(a__) else: raise ValueError(F'''can\'t find {path}''') return results _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class a ( _lowercase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: import xla_spawn _A = self.get_auto_remove_tmp_dir() _A = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): _A = time() xla_spawn.main() _A = time() _A = get_results(__UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def UpperCAmelCase ( self ) -> Dict: import xla_spawn _A = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): xla_spawn.main()
180
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Any ) -> Tuple: raise NotImplementedError() def _UpperCamelCase ( self : List[Any] ) -> Dict: raise NotImplementedError() class UpperCAmelCase_ ( _lowercase): def __init__( self : Dict , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , **__UpperCamelCase : Tuple ) -> str: _UpperCamelCase = tokenizer _UpperCamelCase = skip_prompt _UpperCamelCase = decode_kwargs # variables used in the streaming process _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = True def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Dict ) -> Optional[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _UpperCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCamelCase = text[self.print_len :] self.print_len += len(__UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__UpperCamelCase ) self.on_finalized_text(__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 else: _UpperCamelCase = '''''' _UpperCamelCase = True self.on_finalized_text(__UpperCamelCase , stream_end=__UpperCamelCase ) def _UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Tuple: print(__UpperCamelCase , flush=__UpperCamelCase , end='''''' if not stream_end else None ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False class UpperCAmelCase_ ( _lowercase): def __init__( self : Union[str, Any] , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[float] = None , **__UpperCamelCase : Optional[int] ) -> Optional[Any]: super().__init__(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = Queue() _UpperCamelCase = None _UpperCamelCase = timeout def _UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Any: self.text_queue.put(__UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ) -> List[str]: return self def _UpperCamelCase ( self : int ) -> Dict: _UpperCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
256
0
from decimal import Decimal, getcontext from math import ceil, factorial def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) UpperCamelCase__ : Tuple = precision UpperCamelCase__ : Dict = ceil(precision / 14 ) UpperCamelCase__ : Any = 42_6880 * Decimal(1_0005 ).sqrt() UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Tuple = 1359_1409 UpperCamelCase__ : Tuple = Decimal(lowerCamelCase__ ) for k in range(1 , lowerCamelCase__ ): UpperCamelCase__ : Tuple = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase : int =50 print(F"""The first {n} digits of pi is: {pi(n)}""")
354
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: UpperCamelCase__ : List[Any] = f'The input value of [n={number}] has to be > 0' raise ValueError(__lowerCAmelCase ) else: UpperCamelCase__ : Optional[Any] = sylvester(number - 1 ) UpperCamelCase__ : str = num - 1 UpperCamelCase__ : int = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
196
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: Any = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[str] = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Optional[Any] = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[str] = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Any = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Any = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCamelCase__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' if not conversation_id: __A : List[Any] = uuid.uuida() if past_user_inputs is None: __A : List[str] = [] if generated_responses is None: __A : Tuple = [] __A : uuid.UUID = conversation_id __A : List[str] = past_user_inputs __A : List[str] = generated_responses __A : Optional[str] = text def __eq__( self , __lowerCamelCase ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __A : str = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __A : Union[str, Any] = text def UpperCamelCase__( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __A : List[Any] = None def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' self.generated_responses.append(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __A : Optional[Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __A : Tuple = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( SCREAMING_SNAKE_CASE__ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if self.tokenizer.pad_token_id is None: __A : Union[str, Any] = self.tokenizer.eos_token def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A : str = {} __A : List[str] = {} __A : Any = {} if min_length_for_response is not None: __A : int = min_length_for_response if minimum_tokens is not None: __A : Any = minimum_tokens if "max_length" in generate_kwargs: __A : List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __A : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __lowerCamelCase , __lowerCamelCase=0 , **__lowerCamelCase ): '''simple docstring''' __A : Any = super().__call__(__lowerCamelCase , num_workers=__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1: return outputs[0] return outputs def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=32 ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __A : List[Any] = self.tokenizer._build_conversation_input_ids(__lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __A : int = self._legacy_parse_and_tokenize(__lowerCamelCase ) if self.framework == "pt": __A : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __A : int = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=10 , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __A : str = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __A : str = max_length - minimum_tokens __A : Any = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __A : Union[str, Any] = model_inputs['''attention_mask'''][:, -trim:] __A : Dict = model_inputs.pop('''conversation''' ) __A : List[str] = max_length __A : Dict = self.model.generate(**__lowerCamelCase , **__lowerCamelCase ) if self.model.config.is_encoder_decoder: __A : Any = 1 else: __A : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=True ): '''simple docstring''' __A : int = model_outputs['''output_ids'''] __A : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , ) __A : Dict = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__lowerCamelCase ) return conversation def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = self.tokenizer.eos_token_id __A : List[str] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) if len(__lowerCamelCase ) > self.tokenizer.model_max_length: __A : List[str] = input_ids[-self.tokenizer.model_max_length :] return input_ids
179
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Any = os.path.abspath(_UpperCamelCase ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model lowercase : Optional[int] = tf.train.list_variables(_UpperCamelCase ) lowercase : Optional[int] = [] lowercase : Optional[int] = [] lowercase : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase : int = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' lowercase : List[Any] = name[1:] # figure out how many levels deep the name is lowercase : Optional[int] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(_UpperCamelCase ) # read data lowercase : Any = tf.train.load_variable(_UpperCamelCase, _UpperCamelCase ) names.append('''/'''.join(_UpperCamelCase ) ) arrays.append(_UpperCamelCase ) logger.info(f"""Read a total of {len(_UpperCamelCase ):,} layers""" ) # Sanity check if len(set(_UpperCamelCase ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(_UpperCamelCase ) )})""" ) lowercase : List[str] = list(set(_UpperCamelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(_UpperCamelCase, _UpperCamelCase ): lowercase : Optional[int] = full_name.split('''/''' ) lowercase : Tuple = model lowercase : Any = [] for i, m_name in enumerate(_UpperCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): lowercase : Tuple = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) lowercase : int = getattr(_UpperCamelCase, '''embeddings''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) lowercase : int = getattr(_UpperCamelCase, '''encoder''' ) lowercase : Tuple = getattr(_UpperCamelCase, '''layer''' ) lowercase : List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) lowercase : str = getattr(_UpperCamelCase, '''pooler''' ) lowercase : str = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) lowercase : str = getattr(_UpperCamelCase, '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) lowercase : List[Any] = getattr(_UpperCamelCase, '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) lowercase : int = getattr(_UpperCamelCase, '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) lowercase : Tuple = getattr(_UpperCamelCase, '''attention''' ) lowercase : str = getattr(_UpperCamelCase, '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) lowercase : Dict = getattr(_UpperCamelCase, '''attention''' ) lowercase : Any = getattr(_UpperCamelCase, '''output''' ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''attention''' ) lowercase : str = getattr(_UpperCamelCase, '''output''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) lowercase : List[str] = getattr(_UpperCamelCase, '''output''' ) lowercase : str = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) lowercase : Dict = getattr(_UpperCamelCase, '''output''' ) lowercase : int = getattr(_UpperCamelCase, '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) lowercase : Dict = getattr(_UpperCamelCase, '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) lowercase : List[str] = getattr(_UpperCamelCase, '''intermediate''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) lowercase : Tuple = getattr(_UpperCamelCase, '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) lowercase : str = getattr(_UpperCamelCase, '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) lowercase : Dict = getattr(_UpperCamelCase, '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary lowercase : Any = '''.'''.join(_UpperCamelCase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''', _UpperCamelCase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''', _UpperCamelCase ): lowercase : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase : List[str] = array.transpose() if pointer.shape == array.shape: lowercase : Optional[Any] = torch.from_numpy(_UpperCamelCase ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Tuple: """simple docstring""" logger.info(f"""Loading model based on config from {config_path}...""" ) lowercase : List[Any] = BertConfig.from_json_file(_UpperCamelCase ) lowercase : Dict = BertModel(_UpperCamelCase ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict(), _UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __a = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
173
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->list[int]: """simple docstring""" lowercase : Dict = int(_UpperCamelCase ) # Initialize Result lowercase : Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(_UpperCamelCase ): # Find denominations while int(_UpperCamelCase ) >= int(_UpperCamelCase ): total_value -= int(_UpperCamelCase ) answer.append(_UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __a = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __a = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
173
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __lowerCAmelCase ( self , A ) -> Any: with open(__UpperCAmelCase , encoding='''utf-8''' ) as input_file: _UpperCAmelCase : List[str] = re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _UpperCAmelCase : Any = input_file.read() _UpperCAmelCase : Any = regexp.search(__UpperCAmelCase ) return match def __lowerCAmelCase ( self , A ) -> Optional[int]: with open(__UpperCAmelCase , encoding='''utf-8''' ) as input_file: _UpperCAmelCase : str = re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _UpperCAmelCase : Optional[int] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase : Any = regexp.finditer(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : str = Path('''./datasets''' ) _UpperCAmelCase : Dict = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__UpperCAmelCase ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = Path('''./datasets''' ) _UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__UpperCAmelCase ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
263
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''xlm-roberta-xl''' def __init__( self ,__UpperCAmelCase=25_0880 ,__UpperCAmelCase=2560 ,__UpperCAmelCase=36 ,__UpperCAmelCase=32 ,__UpperCAmelCase=1_0240 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=514 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-05 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0 ,__UpperCAmelCase=2 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> str: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : int = position_embedding_type lowerCAmelCase__ : Optional[Any] = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
37
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[Any] = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A_ : Union[str, Any] = logging.get_logger(__name__) A_ : str = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _a : '''simple docstring''' def __init__( self , A__=None , **A__ ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A__ : Dict = model A__ : Any = kwargs.get("""model_save_dir""" , A__ ) A__ : Optional[int] = kwargs.get("""latest_model_name""" , A__ ) def __call__( self , **A__ ): A__ : int = {k: np.array(A__ ) for k, v in kwargs.items()} return self.model.run(A__ , A__ ) @staticmethod def __A ( A__ , A__=None , A__=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A__ : List[Any] = """CPUExecutionProvider""" return ort.InferenceSession(A__ , providers=[provider] , sess_options=A__ ) def __A ( self , A__ , A__ = None , **A__ ): A__ : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A__ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A__ : Optional[int] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A__ : str = self.model_save_dir.joinpath(A__ ) if src_path.exists(): A__ : List[str] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass def __A ( self , A__ , **A__ , ): if os.path.isfile(A__ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(A__ , exist_ok=A__ ) # saving model weights/files self._save_pretrained(A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = None , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , A__ = None , **A__ , ): A__ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(A__ ): A__ : Dict = OnnxRuntimeModel.load_model( os.path.join(A__ , A__ ) , provider=A__ , sess_options=A__ ) A__ : Optional[Any] = Path(A__ ) # load model from hub else: # download model A__ : Union[str, Any] = hf_hub_download( repo_id=A__ , filename=A__ , use_auth_token=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , ) A__ : List[str] = Path(A__ ).parent A__ : str = Path(A__ ).name A__ : Optional[int] = OnnxRuntimeModel.load_model(A__ , provider=A__ , sess_options=A__ ) return cls(model=A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = True , A__ = None , A__ = None , **A__ , ): A__ : Optional[Any] = None if len(str(A__ ).split("""@""" ) ) == 2: A__ , A__ : Union[str, Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , use_auth_token=A__ , **A__ , )
141
1
from math import sqrt def _lowerCAmelCase ( lowerCAmelCase_ :int )->bool: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" snake_case_ = True # 0 and 1 are none primes. if number <= 1: snake_case_ = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case_ = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def _lowerCAmelCase ( lowerCAmelCase_ :Tuple )->Union[str, Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case_ = list(range(2 , n + 1 ) ) snake_case_ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case_ = 0 # filters actual prime numbers. snake_case_ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCAmelCase_ :List[str] )->Optional[int]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" snake_case_ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCAmelCase_ :Tuple )->int: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" snake_case_ = [] # this list will be returns of the function. # potential prime number factors. snake_case_ = 2 snake_case_ = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] )->Optional[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ = 0 # prime factorization of 'number' snake_case_ = prime_factorization(lowerCAmelCase_ ) snake_case_ = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCAmelCase_ :Dict )->Dict: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ = 0 # prime factorization of 'number' snake_case_ = prime_factorization(lowerCAmelCase_ ) snake_case_ = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Dict: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] )->List[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( lowerCAmelCase_ :List[str] )->Optional[Any]: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" snake_case_ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case_ = get_prime_numbers(lowerCAmelCase_ ) snake_case_ = len(lowerCAmelCase_ ) # run variable for while-loops. snake_case_ = 0 snake_case_ = None # exit variable. for break up the loops snake_case_ = True while i < len_pn and loop: snake_case_ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case_ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :Union[str, Any] )->List[str]: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case_ = 0 while numbera != 0: snake_case_ = numbera % numbera snake_case_ = numbera snake_case_ = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Dict )->List[str]: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case_ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case_ = prime_factorization(lowerCAmelCase_ ) snake_case_ = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: snake_case_ = [] snake_case_ = [] snake_case_ = max(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case_ = prime_fac_a.count(lowerCAmelCase_ ) snake_case_ = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: snake_case_ = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case_ = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( lowerCAmelCase_ :List[str] )->List[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" snake_case_ = 0 snake_case_ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :List[Any] )->str: '''simple docstring''' assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case_ = p_number_a + 1 # jump to the next number snake_case_ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( lowerCAmelCase_ :Tuple )->Optional[int]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" snake_case_ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( lowerCAmelCase_ :str )->List[str]: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case_ = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :int )->Any: '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case_ = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] )->Dict: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" snake_case_ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( lowerCAmelCase_ :Any )->Tuple: '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" snake_case_ = 0 snake_case_ = 1 snake_case_ = 1 # this will be return for _ in range(n - 1 ): snake_case_ = ans ans += fiba snake_case_ = tmp return ans
159
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :Union[str, Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE :Any = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = GPTaTokenizer def __init__( self : Any , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = kwargs.pop("add_bos_token" , _lowerCAmelCase ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: snake_case_ = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_lowerCAmelCase ) snake_case_ = add_prefix_space def lowerCAmelCase__ ( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : "Conversation" ) -> List[int]: """simple docstring""" snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids
159
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase: Dict = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Any = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _UpperCamelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = None ) -> list[list[str]]: '''simple docstring''' lowercase : str = word_bank or [] # create a table lowercase : int = len(_UpperCAmelCase ) + 1 lowercase : list[list[list[str]]] = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowercase : int = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
255
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCamelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class A__ ( __snake_case ): def __init__( self , **A_ ): '''simple docstring''' super().__init__(**A_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , A_ , **A_ ): '''simple docstring''' return super().__call__(A_ , **A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = {} if "candidate_labels" in kwargs: UpperCamelCase : Optional[int] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __UpperCamelCase( self , A_ , A_=None , A_="This is a photo of {}." ): '''simple docstring''' UpperCamelCase : Union[str, Any] = load_image(A_ ) UpperCamelCase : int = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase : Union[str, Any] = candidate_labels UpperCamelCase : Tuple = [hypothesis_template.format(A_ ) for x in candidate_labels] UpperCamelCase : Union[str, Any] = self.tokenizer(A_ , return_tensors=self.framework , padding=A_ ) UpperCamelCase : Union[str, Any] = [text_inputs] return inputs def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Dict = model_inputs.pop("candidate_labels" ) UpperCamelCase : Optional[Any] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , A_ ): UpperCamelCase : Optional[int] = text_inputs[0] else: # Batching case. UpperCamelCase : List[Any] = text_inputs[0][0] UpperCamelCase : int = self.model(**A_ , **A_ ) UpperCamelCase : str = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Any = model_outputs.pop("candidate_labels" ) UpperCamelCase : Optional[Any] = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase : List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase : Dict = probs.tolist() if not isinstance(A_ , A_ ): UpperCamelCase : Dict = [scores] elif self.framework == "tf": UpperCamelCase : Any = stable_softmax(A_ , axis=-1 ) UpperCamelCase : List[str] = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) UpperCamelCase : Tuple = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(A_ , A_ ) , key=lambda A_ : -x[0] ) ] return result
356
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( __snake_case ): def __init__( self , A_ , A_=None , A_=None , A_=0 ): '''simple docstring''' UpperCamelCase : Union[str, Any] = 1.0 if scale is None else scale UpperCamelCase : Optional[int] = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCamelCase( self ): '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Union[str, Any] = args_dim UpperCamelCase : str = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) UpperCamelCase : Union[str, Any] = domain_map def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A__ ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() UpperCamelCase : str = function def __UpperCamelCase( self , A_ , *A_ ): '''simple docstring''' return self.function(A_ , *A_ ) class A__ : _UpperCAmelCase :type _UpperCAmelCase :int _UpperCAmelCase :Dict[str, int] def __init__( self , A_ = 1 ): '''simple docstring''' UpperCamelCase : Tuple = dim UpperCamelCase : Union[str, Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None , ): '''simple docstring''' UpperCamelCase : str = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def __UpperCamelCase( self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.event_shape ) @property def __UpperCamelCase( self ): '''simple docstring''' return 0.0 def __UpperCamelCase( self , A_ ): '''simple docstring''' return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCamelCase( self , *A_ ): '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _UpperCAmelCase :type = StudentT @classmethod def __UpperCamelCase( cls , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase : int = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"loc": 1, "scale": 1} _UpperCAmelCase :type = Normal @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"total_count": 1, "logits": 1} _UpperCAmelCase :type = NegativeBinomial @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
140
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _lowerCamelCase : _lowerCamelCase :int _lowerCamelCase :Node | None = None _lowerCamelCase :Node | None = None def lowercase_ ( ) -> Dict: lowerCAmelCase__ : Tuple = Node(1 ) lowerCAmelCase__ : Any = Node(2 ) lowerCAmelCase__ : List[str] = Node(3 ) lowerCAmelCase__ : Any = Node(4 ) lowerCAmelCase__ : Dict = Node(5 ) return tree def lowercase_ ( __UpperCAmelCase ) -> List[str]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( __UpperCAmelCase ) -> Union[str, Any]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( __UpperCAmelCase ) -> List[Any]: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : list[Any] = [] if root is None: return output lowerCAmelCase__ : Optional[Any] = deque([root] ) while process_queue: lowerCAmelCase__ : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : list[Any] = [] def populate_output(__UpperCAmelCase , __UpperCAmelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(a_ , a_ ) return output def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : list[Any] = [] def populate_output(__UpperCAmelCase , __UpperCAmelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(a_ , a_ ) return output def lowercase_ ( __UpperCAmelCase ) -> List[str]: if root is None: return [] lowerCAmelCase__ : list[Sequence[Node | None]] = [] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = height(a_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(a_ , a_ ) ) lowerCAmelCase__ : int = 1 else: output.append(get_nodes_from_right_to_left(a_ , a_ ) ) lowerCAmelCase__ : Union[str, Any] = 0 return output def lowercase_ ( ) -> List[Any]: # Main function for testing. lowerCAmelCase__ : List[str] = make_tree() print(f"""In-order Traversal: {inorder(a_ )}""" ) print(f"""Pre-order Traversal: {preorder(a_ )}""" ) print(f"""Post-order Traversal: {postorder(a_ )}""" , """\n""" ) print(f"""Height of Tree: {height(a_ )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(a_ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(a_ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(a_ , level=a_ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
242
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''vit_msn''' def __init__( self : Optional[int] , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Optional[Any]=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=1e-06 , lowerCAmelCase__ : Union[str, Any]=2_2_4 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : str=True , **lowerCAmelCase__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Optional[int] = qkv_bias
145
0
from collections import deque class __snake_case : def __init__( self , snake_case__ , snake_case__ , snake_case__ ) -> None: '''simple docstring''' UpperCAmelCase : Optional[Any] =process_name # process name UpperCAmelCase : List[str] =arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase : int =arrival_time UpperCAmelCase : List[str] =burst_time # remaining burst time UpperCAmelCase : Any =0 # total time of the process wait in ready queue UpperCAmelCase : Any =0 # time from arrival time to completion time class __snake_case : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: '''simple docstring''' UpperCAmelCase : Any =number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase : int =time_slices # unfinished process is in this ready_queue UpperCAmelCase : Tuple =queue # current time UpperCAmelCase : Optional[int] =current_time # finished process is in this sequence queue UpperCAmelCase : deque[Process] =deque() def UpperCAmelCase__ ( self ) -> list[str]: '''simple docstring''' UpperCAmelCase : Dict =[] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase__ ( self , snake_case__ ) -> list[int]: '''simple docstring''' UpperCAmelCase : Tuple =[] for i in range(len(snake_case__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase__ ( self , snake_case__ ) -> list[int]: '''simple docstring''' UpperCAmelCase : Any =[] for i in range(len(snake_case__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase__ ( self , snake_case__ ) -> list[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =[] for i in range(len(snake_case__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase__ ( self , snake_case__ ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase__ ( self , snake_case__ ) -> deque[Process]: '''simple docstring''' UpperCAmelCase : deque[Process] =deque() # sequence deque of finished process while len(snake_case__ ) != 0: UpperCAmelCase : Dict =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(snake_case__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase : int =0 # set the process's turnaround time because it is finished UpperCAmelCase : Any =self.current_time - cp.arrival_time # set the completion time UpperCAmelCase : Tuple =self.current_time # add the process to queue that has finished queue finished.append(snake_case__ ) self.finish_queue.extend(snake_case__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' UpperCAmelCase : deque[Process] =deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(snake_case__ ) ): UpperCAmelCase : Optional[Any] =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(snake_case__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase : Any =self.current_time # locate the process behind the queue because it is not finished ready_queue.append(snake_case__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase : Optional[int] =0 # set the finish time UpperCAmelCase : Tuple =self.current_time # update the process' turnaround time because it is finished UpperCAmelCase : int =self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(snake_case__ ) self.finish_queue.extend(snake_case__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase__ ( self ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCAmelCase : Union[str, Any] =self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __snake_case = Process('''P1''', 0, 53) __snake_case = Process('''P2''', 0, 17) __snake_case = Process('''P3''', 0, 68) __snake_case = Process('''P4''', 0, 24) __snake_case = 3 __snake_case = [17, 25] __snake_case = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __snake_case = Process('''P1''', 0, 53) __snake_case = Process('''P2''', 0, 17) __snake_case = Process('''P3''', 0, 68) __snake_case = Process('''P4''', 0, 24) __snake_case = 3 __snake_case = [17, 25] __snake_case = deque([Pa, Pa, Pa, Pa]) __snake_case = MLFQ(number_of_queues, time_slices, queue, 0) __snake_case = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
361
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =tempfile.mkdtemp() UpperCAmelCase : Any =8 # DPR tok UpperCAmelCase : List[Any] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Optional[Any] =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase : Union[str, Any] =os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : int =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Optional[int] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase : str ={'''unk_token''': '''<unk>'''} UpperCAmelCase : Optional[int] =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_dataset() UpperCAmelCase : int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Union[str, Any] =dataset UpperCAmelCase : Any =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : List[str] =self.get_dummy_dataset() UpperCAmelCase : Union[str, Any] =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase : List[Any] =os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase : str =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : List[str] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , snake_case__ ) , ) return retriever def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : int =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase : Dict =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase : List[Any] ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(snake_case__ , open(snake_case__ , '''wb''' ) ) UpperCAmelCase : Tuple =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any =1 UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Optional[int] =self.get_dummy_dataset() retriever.save_pretrained(snake_case__ ) UpperCAmelCase : List[str] =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =1 UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : List[Any] =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =1 UpperCAmelCase : List[str] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : Dict =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =1 UpperCAmelCase : List[str] =self.get_dummy_legacy_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : str =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : Any =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Union[str, Any] =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : Optional[Any] =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Any =[[5, 7], [10, 11]] UpperCAmelCase : int =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : int =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase : Optional[int] =retriever( snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ , torch.Tensor ) self.assertIsInstance(snake_case__ , torch.Tensor ) self.assertIsInstance(snake_case__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : str =1 UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) retriever.set_ctx_encoder_tokenizer(snake_case__ ) UpperCAmelCase : Tuple =[[5, 7], [10, 11]] UpperCAmelCase : Dict =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Any =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ ) self.assertEqual( len(snake_case__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , snake_case__ ) # check for doc token related keys in dictionary.
78
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } _SCREAMING_SNAKE_CASE = {"""allegro/herbert-base-cased""": 5_14} _SCREAMING_SNAKE_CASE = {} class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[int] = VOCAB_FILES_NAMES __magic_name__: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: Any = PRETRAINED_INIT_CONFIGURATION __magic_name__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Dict = HerbertTokenizer def __init__( self : str , _A : Union[str, Any]=None , _A : Dict=None , _A : Union[str, Any]=None , _A : Union[str, Any]="<s>" , _A : Optional[Any]="<unk>" , _A : List[Any]="<pad>" , _A : Dict="<mask>" , _A : str="</s>" , **_A : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , sep_token=_A , **_A , ) def UpperCAmelCase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Tuple = [self.cls_token_id] snake_case_ : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def UpperCAmelCase_ ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Tuple = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Tuple , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
'''simple docstring''' import argparse import datetime def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: _SCREAMING_SNAKE_CASE = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } _SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__A ) < 11: raise ValueError("Must be 10 characters long" ) # Get month _SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) _SCREAMING_SNAKE_CASE = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day _SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator _SCREAMING_SNAKE_CASE = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year _SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation _SCREAMING_SNAKE_CASE = datetime.date(int(__A ) , int(__A ) , int(__A ) ) # Start math if m <= 2: _SCREAMING_SNAKE_CASE = y - 1 _SCREAMING_SNAKE_CASE = m + 12 # maths var _SCREAMING_SNAKE_CASE = int(str(__A )[:2] ) _SCREAMING_SNAKE_CASE = int(str(__A )[2:] ) _SCREAMING_SNAKE_CASE = int(2.6 * m - 5.3_9 ) _SCREAMING_SNAKE_CASE = int(c / 4 ) _SCREAMING_SNAKE_CASE = int(k / 4 ) _SCREAMING_SNAKE_CASE = int(d + k ) _SCREAMING_SNAKE_CASE = int(t + u + v + x ) _SCREAMING_SNAKE_CASE = int(z - (2 * c) ) _SCREAMING_SNAKE_CASE = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response _SCREAMING_SNAKE_CASE = f"""Your date {date_input}, is a {days[str(__A )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) lowerCamelCase_ = parser.parse_args() zeller(args.date_input)
111
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''deberta-v2''' def __init__( self : str , __lowerCamelCase : Union[str, Any]=1_2_8_1_0_0 , __lowerCamelCase : Optional[int]=1_5_3_6 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Tuple=6_1_4_4 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=5_1_2 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : int=1e-7 , __lowerCamelCase : Any=False , __lowerCamelCase : Any=-1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any="gelu" , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = max_relative_positions _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(__lowerCamelCase ) == str: _SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split("|" )] _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kwargs.get("pooler_hidden_size" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = pooler_dropout _SCREAMING_SNAKE_CASE = pooler_hidden_act class lowercase_ ( A ): """simple docstring""" @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return 1_2 def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : "PreTrainedTokenizerBase" = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=__lowerCamelCase , framework=__lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
111
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCAmelCase_ ( __lowerCAmelCase ) -> Any: __lowercase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: __lowercase : Optional[int] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __lowercase : Any = s_dict.pop(UpperCamelCase__ ) elif "subsample" in key: __lowercase : str = s_dict.pop(UpperCamelCase__ ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: __lowercase : Optional[Any] = emb.weight.shape __lowercase : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowercase : Union[str, Any] = emb.weight.data return lin_layer def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: __lowercase : Dict = torch.load(UpperCamelCase__ , map_location='''cpu''' ) __lowercase : Optional[int] = mam_aaa['''args'''] __lowercase : Dict = mam_aaa['''model'''] __lowercase : Any = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) __lowercase : str = state_dict['''decoder.embed_tokens.weight'''].shape[0] __lowercase : Optional[int] = args.share_decoder_input_output_embed __lowercase : Any = [int(UpperCamelCase__ ) for i in args.conv_kernel_sizes.split(''',''' )] __lowercase : Dict = SpeechaTextConfig( vocab_size=UpperCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase__ , num_beams=5 , max_length=200 , use_cache=UpperCamelCase__ , decoder_start_token_id=2 , early_stopping=UpperCamelCase__ , ) __lowercase : Tuple = SpeechaTextForConditionalGeneration(UpperCamelCase__ ) __lowercase : Optional[Any] = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F' but all the following weights are missing {missing}' ) if tie_embeds: __lowercase : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __lowercase : Any = lm_head_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __lowerCAmelCase : Optional[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
156
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase :str = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCamelCase_ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCamelCase_ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCamelCase_ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
0
from collections.abc import Sequence def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] = False ) -> Dict: if not arr: return 0 __snake_case = 0 if allow_empty_subarrays else float('''-inf''' ) __snake_case = 0.0 for num in arr: __snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) __snake_case = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) ->str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path lowerCAmelCase__ :Optional[int] = quote(_SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=_SCREAMING_SNAKE_CASE )
254
0