code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowercase__ ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCamelCase__ ( nn.Module ): def __init__(self : Dict , snake_case_ : Optional[int] ): super().__init__() __a : str = torchvision.models.resnetaaa(pretrained=lowerCamelCase__ ) __a : Any = list(model.children() )[:-2] __a : List[Any] = nn.Sequential(*lowerCamelCase__ ) __a : Any = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase (self : List[Any] , snake_case_ : Any ): __a : Optional[int] = self.pool(self.model(lowerCamelCase__ ) ) __a : str = torch.flatten(lowerCamelCase__ , start_dim=2 ) __a : Optional[int] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCamelCase__ ( __lowerCAmelCase ): def __init__(self : Optional[int] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : str ): __a : Dict = [json.loads(lowerCamelCase__ ) for l in open(lowerCamelCase__ )] __a : List[Any] = os.path.dirname(lowerCamelCase__ ) __a : Optional[int] = tokenizer __a : Optional[Any] = labels __a : Optional[int] = len(lowerCamelCase__ ) __a : Dict = max_seq_length __a : str = transforms def __len__(self : str ): return len(self.data ) def __getitem__(self : List[str] , snake_case_ : List[str] ): __a : Any = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowerCamelCase__ ) ) __a : List[str] = sentence[0], sentence[1:-1], sentence[-1] __a : List[Any] = sentence[: self.max_seq_length] __a : Optional[Any] = torch.zeros(self.n_classes ) __a : int = 1 __a : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) __a : str = self.transforms(lowerCamelCase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase (self : Dict ): __a : int = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): __a : Optional[int] = [len(row['''sentence'''] ) for row in batch] __a : Optional[Any] = len(lowerCAmelCase__ ), max(lowerCAmelCase__ ) __a : Optional[int] = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long ) __a : Dict = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ): __a : Any = input_row['''sentence'''] __a : Optional[Any] = 1 __a : Union[str, Any] = torch.stack([row['''image'''] for row in batch] ) __a : Dict = torch.stack([row['''label'''] for row in batch] ) __a : Any = torch.stack([row['''image_start_token'''] for row in batch] ) __a : int = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase ( ): return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
216
def _a ( SCREAMING_SNAKE_CASE : int = 1000000 ): """simple docstring""" UpperCamelCase__ : Any = set(range(3 , SCREAMING_SNAKE_CASE , 2 ) ) primes.add(2 ) for p in range(3 , SCREAMING_SNAKE_CASE , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase__ : Union[str, Any] = [float(SCREAMING_SNAKE_CASE ) for n in range(limit + 1 )] for p in primes: for n in range(SCREAMING_SNAKE_CASE , limit + 1 , SCREAMING_SNAKE_CASE ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
146
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Load configuration defined in the metadata file with open(snake_case_ ) as metadata_file: _A : List[str] = json.load(snake_case_ ) _A : str = LukeConfig(use_entity_aware_attention=snake_case_,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _A : List[str] = torch.load(snake_case_,map_location="""cpu""" ) # Load the entity vocab file _A : Dict = load_entity_vocab(snake_case_ ) _A : Tuple = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _A : List[Any] = AddedToken("""<ent>""",lstrip=snake_case_,rstrip=snake_case_ ) _A : List[Any] = AddedToken("""<ent2>""",lstrip=snake_case_,rstrip=snake_case_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ),"""w""" ) as f: json.dump(snake_case_,snake_case_ ) _A : Any = LukeTokenizer.from_pretrained(snake_case_ ) # Initialize the embeddings of the special tokens _A : str = state_dict["""embeddings.word_embeddings.weight"""] _A : int = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) _A : Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) _A : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _A : Any = f'''encoder.layer.{layer_index}.attention.self.''' _A : Optional[Any] = state_dict[prefix + matrix_name] _A : List[Any] = state_dict[prefix + matrix_name] _A : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _A : str = state_dict["""entity_embeddings.entity_embeddings.weight"""] _A : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]] _A : Dict = LukeModel(config=snake_case_ ).eval() _A , _A : Tuple = model.load_state_dict(snake_case_,strict=snake_case_ ) if not (len(snake_case_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'''Missing keys {", ".join(snake_case_ )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs _A : str = LukeTokenizer.from_pretrained(snake_case_,task="""entity_classification""" ) _A : Dict = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) _A : int = (39, 42) _A : Optional[int] = tokenizer(snake_case_,entity_spans=[span],add_prefix_space=snake_case_,return_tensors="""pt""" ) _A : List[Any] = model(**snake_case_ ) # Verify word hidden states if model_size == "large": _A : List[str] = torch.Size((1, 42, 1024) ) _A : Optional[Any] = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base _A : Tuple = torch.Size((1, 42, 768) ) _A : str = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3],snake_case_,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _A : Optional[Any] = torch.Size((1, 1, 1024) ) _A : str = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base _A : int = torch.Size((1, 1, 768) ) _A : Dict = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3],snake_case_,atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case_ ) ) model.save_pretrained(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Any = {} with open(snake_case_,"""r""",encoding="""utf-8""" ) as f: for index, line in enumerate(snake_case_ ): _A , _A : List[str] = line.rstrip().split("""\t""" ) _A : str = index return entity_vocab if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
343
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) class lowercase_ ( __A ): __UpperCAmelCase = ['input_features', 'attention_mask'] def __init__( self , a=80 , a=1_60_00 , a=0.0 , a=10 , a=25 , a="hamming_window" , a=3_27_68.0 , a=0.97 , a=1.0 , a=True , a=True , a=False , **a , ): super().__init__(feature_size=a , sampling_rate=a , padding_value=a , **a ) UpperCamelCase__ = feature_size UpperCamelCase__ = sampling_rate UpperCamelCase__ = padding_value UpperCamelCase__ = hop_length UpperCamelCase__ = win_length UpperCamelCase__ = frame_signal_scale UpperCamelCase__ = preemphasis_coeff UpperCamelCase__ = mel_floor UpperCamelCase__ = normalize_means UpperCamelCase__ = normalize_vars UpperCamelCase__ = win_function UpperCamelCase__ = return_attention_mask UpperCamelCase__ = win_length * sampling_rate // 10_00 UpperCamelCase__ = hop_length * sampling_rate // 10_00 UpperCamelCase__ = optimal_fft_length(self.sample_size ) UpperCamelCase__ = (self.n_fft // 2) + 1 def __a ( self , a ): if self.win_function == "hamming_window": UpperCamelCase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=a ) else: UpperCamelCase__ = window_function(window_length=self.sample_size , name=self.win_function ) UpperCamelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCamelCase__ = spectrogram( one_waveform * self.frame_signal_scale , window=a , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=a , preemphasis=self.preemphasis_coeff , mel_filters=a , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def __a ( self , a , a , a ): if self.normalize_means: UpperCamelCase__ = x[:input_length].mean(axis=0 ) UpperCamelCase__ = np.subtract(a , a ) if self.normalize_vars: UpperCamelCase__ = x[:input_length].std(axis=0 ) UpperCamelCase__ = np.divide(a , a ) if input_length < x.shape[0]: UpperCamelCase__ = padding_value # make sure array is in float32 UpperCamelCase__ = x.astype(np.floataa ) return x def __a ( self , a , a = None ): UpperCamelCase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(a , a , self.padding_value ) for x, n in zip(a , a )] def __call__( self , a , a = False , a = None , a = False , a = None , a = None , a = None , a = None , **a , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ = [np.asarray(a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): UpperCamelCase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ = [raw_speech] # extract fbank features UpperCamelCase__ = [self._extract_mfsc_features(a ) for one_waveform in raw_speech] # convert into correct format for padding UpperCamelCase__ = BatchFeature({"input_features": features} ) UpperCamelCase__ = self.pad( a , padding=a , max_length=a , truncation=a , pad_to_multiple_of=a , return_attention_mask=a , **a , ) # make sure list is in array format UpperCamelCase__ = padded_inputs.get("input_features" ) if isinstance(input_features[0] , a ): UpperCamelCase__ = [np.asarray(a , dtype=np.floataa ) for feature in input_features] UpperCamelCase__ = padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCamelCase__ = [np.asarray(a , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCamelCase__ = ( np.array(a , dtype=np.intaa ) if self._get_padding_strategies(a , max_length=a ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCamelCase__ = self.normalize( padded_inputs["input_features"] , attention_mask=a ) if return_tensors is not None: UpperCamelCase__ = padded_inputs.convert_to_tensors(a ) return padded_inputs
80
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ = get_logger(__name__) class _UpperCamelCase ( enum.Enum ): '''simple docstring''' lowerCamelCase__ ='all_checks' lowerCamelCase__ ='basic_checks' lowerCamelCase__ ='no_checks' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' def lowerCamelCase__ ( _a , _a , _a=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(_a) - set(_a)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_a) - set(_a))) if len(set(_a) - set(_a)) > 0: raise UnexpectedDownloadedFile(str(set(_a) - set(_a))) SCREAMING_SNAKE_CASE : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE : Tuple = " for " + verification_name if verification_name is not None else "" if len(_a) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error") logger.info("All the checksums matched successfully" + for_verification_name) class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' def lowerCamelCase__ ( _a , _a): if expected_splits is None: logger.info("Unable to verify splits sizes.") return if len(set(_a) - set(_a)) > 0: raise ExpectedMoreSplits(str(set(_a) - set(_a))) if len(set(_a) - set(_a)) > 0: raise UnexpectedSplits(str(set(_a) - set(_a))) SCREAMING_SNAKE_CASE : List[str] = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_a) > 0: raise NonMatchingSplitsSizesError(str(_a)) logger.info("All the splits matched successfully.") def lowerCamelCase__ ( _a , _a = True): if record_checksum: SCREAMING_SNAKE_CASE : List[str] = shaaaa() with open(_a , "rb") as f: for chunk in iter(lambda: f.read(1 << 20) , b""): m.update(_a) SCREAMING_SNAKE_CASE : Optional[int] = m.hexdigest() else: SCREAMING_SNAKE_CASE : List[str] = None return {"num_bytes": os.path.getsize(_a), "checksum": checksum} def lowerCamelCase__ ( _a): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
76
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCamelCase_ : Dict = sys.version_info >= (3, 1_0) def _A ( lowercase=None , lowercase=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=lowercase ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 @dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = field(default="toto", metadata={"help": "help message"} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = None class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "titi" __lowerCAmelCase = "toto" class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "titi" __lowerCAmelCase = "toto" __lowerCAmelCase = 42 @dataclass class __A : """simple docstring""" __lowerCAmelCase = "toto" def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =BasicEnum(self.foo ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = "toto" def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =MixedTypeEnum(self.foo ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "help message"} ) __lowerCAmelCase = None __lowerCAmelCase = list_field(default=[] ) __lowerCAmelCase = list_field(default=[] ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = list_field(default=[] ) __lowerCAmelCase = list_field(default=[1, 2, 3] ) __lowerCAmelCase = list_field(default=["Hallo", "Bonjour", "Hello"] ) __lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field() __lowerCAmelCase = field() __lowerCAmelCase = field() def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =BasicEnum(self.required_enum ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = field() __lowerCAmelCase = None __lowerCAmelCase = field(default="toto", metadata={"help": "help message"} ) __lowerCAmelCase = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __A : """simple docstring""" __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = None @dataclass class __A : """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "help message"} ) __lowerCAmelCase = None __lowerCAmelCase = list_field(default=[] ) __lowerCAmelCase = list_field(default=[] ) class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Optional[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): a ={k: v for k, v in vars(__A ).items() if k != '''container'''} a ={k: v for k, v in vars(__A ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __A ) and yy.get('''choices''' , __A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__A ) , yy['''type'''](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__A , required=__A ) expected.add_argument('''--bar''' , type=__A , required=__A ) expected.add_argument('''--baz''' , type=__A , required=__A ) expected.add_argument('''--flag''' , type=__A , default=__A , const=__A , nargs='''?''' ) self.argparsersEqual(__A , __A ) a =['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((a ) , ) =parser.parse_args_into_dataclasses(__A , look_for_args_file=__A ) self.assertFalse(example.flag ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=__A ) expected.add_argument('''--baz''' , default='''toto''' , type=__A , help='''help message''' ) self.argparsersEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__A , default=__A , const=__A , nargs='''?''' ) expected.add_argument('''--baz''' , type=__A , default=__A , const=__A , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__A , dest='''baz''' ) expected.add_argument('''--opt''' , type=__A , default=__A ) a =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: a =HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) a =parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) a =parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) a =parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) a =parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) a =parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(__A , __A ) a =parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) a =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) a =parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) a =parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) a =parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) a =parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def SCREAMING_SNAKE_CASE ( self ) -> int: @dataclass class __A : """simple docstring""" __lowerCAmelCase = "toto" a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(__A , __A ) a =parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) a =parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) a =parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__A ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__A ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__A ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__A ) self.argparsersEqual(__A , __A ) a =parser.parse_args([] ) self.assertEqual( __A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) a =parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__A , type=__A ) expected.add_argument('''--bar''' , default=__A , type=__A , help='''help message''' ) expected.add_argument('''--baz''' , default=__A , type=__A ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__A ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__A ) a =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: a =HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) a =parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , bar=__A , baz=__A , ces=[] , des=[] ) ) a =parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__A , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__A , required=__A ) expected.add_argument('''--required_str''' , type=__A , required=__A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__A , ) self.argparsersEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =HfArgumentParser(__A ) a =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__A , required=__A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__A , ) expected.add_argument('''--opt''' , type=__A , default=__A ) expected.add_argument('''--baz''' , default='''toto''' , type=__A , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__A ) self.argparsersEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =HfArgumentParser(__A ) a ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } a =parser.parse_dict(__A )[0] a =BasicExample(**__A ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =HfArgumentParser(__A ) a ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(__A , parser.parse_dict , __A , allow_extra_keys=__A ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =HfArgumentParser(__A ) a ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: a =os.path.join(__A , '''temp_json''' ) os.mkdir(__A ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__A , __A ) a =parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] a =BasicExample(**__A ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =HfArgumentParser(__A ) a ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: a =os.path.join(__A , '''temp_yaml''' ) os.mkdir(__A ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__A , __A ) a =parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] a =BasicExample(**__A ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =HfArgumentParser(__A ) self.assertIsNotNone(__A )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Union[str, Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = XLMRobertaTokenizer lowercase__ = XLMRobertaTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Tuple = XLMRobertaTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[int] = '<pad>' _UpperCamelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(lowerCamelCase__ ) ,1002 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1002 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : str = XLMRobertaTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) _UpperCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _UpperCamelCase : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) _UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def UpperCamelCase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tempfile.mkdtemp() _UpperCamelCase : str = tokenizer_r.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _UpperCamelCase : str = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase : int = tokenizer_r.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase : str = tempfile.mkdtemp() _UpperCamelCase : Any = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase : Tuple = tokenizer_r.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : Dict = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) _UpperCamelCase : int = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ ,f.name ) _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer(f.name ,keep_accents=lowerCamelCase__ ) _UpperCamelCase : str = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer() _UpperCamelCase : Any = 'I was born in 92000, and this is falsé.' _UpperCamelCase : str = tokenizer.tokenize(lowerCamelCase__ ) _UpperCamelCase : Any = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Tuple = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Tuple = self.get_rust_tokenizer() _UpperCamelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'Hello World!' _UpperCamelCase : str = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ ,self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _UpperCamelCase : str = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ ,self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # fmt: off _UpperCamelCase : Union[str, Any] = {'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='xlm-roberta-base' ,revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' ,)
83
import numpy class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray , __lowercase : numpy.ndarray ): """simple docstring""" snake_case_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. snake_case_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. snake_case_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. snake_case_ = numpy.random.rand(3 , 1 ) # Real output values provided. snake_case_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. snake_case_ = numpy.zeros(output_array.shape ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. snake_case_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. snake_case_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) snake_case_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) snake_case_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case__ ( self : Optional[Any] , __lowercase : numpy.ndarray , __lowercase : int , __lowercase : bool ): """simple docstring""" for iteration in range(1 , iterations + 1 ): snake_case_ = self.feedforward() self.back_propagation() if give_loss: snake_case_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"Iteration {iteration} Loss: {loss}" ) def snake_case__ ( self : Union[str, Any] , __lowercase : numpy.ndarray ): """simple docstring""" snake_case_ = input_arr snake_case_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) snake_case_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) snake_case_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase__ ( _A ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( _A ): '''simple docstring''' return (value) * (1 - (value)) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. snake_case_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. snake_case_ = TwoHiddenLayerNeuralNetwork( input_array=_A , output_array=_A ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_A , iterations=10 , give_loss=_A ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
187
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCamelCase_ : int = logging.getLogger(__name__) class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None ): UpperCamelCase_: List[str] = self.layer[current_layer](snake_case_ , snake_case_ , head_mask[current_layer] ) UpperCamelCase_: Optional[int] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __UpperCamelCase , ) class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , snake_case_ : Union[str, Any] ): super().__init__(snake_case_ ) UpperCamelCase_: int = BertEncoderWithPabee(snake_case_ ) self.init_weights() UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: int = 0 UpperCamelCase_: str = 0 UpperCamelCase_: List[str] = 0 def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Tuple ): UpperCamelCase_: List[Any] = threshold def lowerCAmelCase__ ( self : Any , snake_case_ : str ): UpperCamelCase_: Any = patience def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Dict = 0 UpperCamelCase_: List[Any] = 0 def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = self.inference_layers_num / self.inference_instances_num UpperCamelCase_: Optional[Any] = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(snake_case_ ) @add_start_docstrings_to_model_forward(snake_case_ ) def lowerCAmelCase__ ( self : Any , snake_case_ : str=None , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : int=None , snake_case_ : List[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None , snake_case_ : Optional[int]=None , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : Optional[int]=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: UpperCamelCase_: List[Any] = input_ids.size() elif inputs_embeds is not None: UpperCamelCase_: List[Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) UpperCamelCase_: Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase_: str = torch.ones(snake_case_ , device=snake_case_ ) if token_type_ids is None: UpperCamelCase_: int = torch.zeros(snake_case_ , dtype=torch.long , device=snake_case_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase_: torch.Tensor = self.get_extended_attention_mask(snake_case_ , snake_case_ , snake_case_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCamelCase_: Union[str, Any] = encoder_hidden_states.size() UpperCamelCase_: Any = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCamelCase_: Optional[int] = torch.ones(snake_case_ , device=snake_case_ ) UpperCamelCase_: str = self.invert_attention_mask(snake_case_ ) else: UpperCamelCase_: int = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase_: Optional[Any] = self.get_head_mask(snake_case_ , self.config.num_hidden_layers ) UpperCamelCase_: Optional[Any] = self.embeddings( input_ids=snake_case_ , position_ids=snake_case_ , token_type_ids=snake_case_ , inputs_embeds=snake_case_ ) UpperCamelCase_: Tuple = embedding_output if self.training: UpperCamelCase_: Optional[Any] = [] for i in range(self.config.num_hidden_layers ): UpperCamelCase_: Dict = self.encoder.adaptive_forward( snake_case_ , current_layer=snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ ) UpperCamelCase_: Optional[Any] = self.pooler(snake_case_ ) UpperCamelCase_: Any = output_layers[i](output_dropout(snake_case_ ) ) res.append(snake_case_ ) elif self.patience == 0: # Use all layers for inference UpperCamelCase_: List[Any] = self.encoder( snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) UpperCamelCase_: List[Any] = self.pooler(encoder_outputs[0] ) UpperCamelCase_: Union[str, Any] = [output_layers[self.config.num_hidden_layers - 1](snake_case_ )] else: UpperCamelCase_: Dict = 0 UpperCamelCase_: Optional[int] = None UpperCamelCase_: Optional[int] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCamelCase_: Optional[int] = self.encoder.adaptive_forward( snake_case_ , current_layer=snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ ) UpperCamelCase_: Union[str, Any] = self.pooler(snake_case_ ) UpperCamelCase_: Optional[Any] = output_layers[i](snake_case_ ) if regression: UpperCamelCase_: List[Any] = logits.detach() if patient_result is not None: UpperCamelCase_: int = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCamelCase_: Any = 0 else: UpperCamelCase_: Any = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCamelCase_: str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(snake_case_ ) ): patient_counter += 1 else: UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: List[Any] = logits if patient_counter == self.patience: break UpperCamelCase_: Any = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __UpperCamelCase , ) class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Any , snake_case_ : Union[str, Any] ): super().__init__(snake_case_ ) UpperCamelCase_: Optional[int] = config.num_labels UpperCamelCase_: Tuple = BertModelWithPabee(snake_case_ ) UpperCamelCase_: List[str] = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase_: Any = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(snake_case_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : int=None , snake_case_ : int=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : Union[str, Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple=None , ): UpperCamelCase_: Dict = self.bert( input_ids=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCamelCase_: int = (logits[-1],) if labels is not None: UpperCamelCase_: Any = None UpperCamelCase_: Union[str, Any] = 0 for ix, logits_item in enumerate(snake_case_ ): if self.num_labels == 1: # We are doing regression UpperCamelCase_: Dict = MSELoss() UpperCamelCase_: Dict = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase_: Optional[Any] = CrossEntropyLoss() UpperCamelCase_: int = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCamelCase_: Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCamelCase_: Tuple = (total_loss / total_weights,) + outputs return outputs
356
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase : Optional[datasets.Features] = None __UpperCamelCase : str = "utf-8" __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[str] = None __UpperCamelCase : bool = True # deprecated __UpperCamelCase : Optional[int] = None # deprecated __UpperCamelCase : int = 10 << 20 # 10MB __UpperCamelCase : Optional[bool] = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase : Tuple = JsonConfig def lowerCAmelCase__ ( self : int ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCamelCase_: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [files] UpperCamelCase_: Any = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase_: Dict = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Tuple = [files] UpperCamelCase_: Optional[int] = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase__ ( self : str , snake_case_ : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase_: Union[str, Any] = self.config.features.arrow_schema.field(snake_case_ ).type UpperCamelCase_: Tuple = pa_table.append_column(snake_case_ , pa.array([None] * len(snake_case_ ) , type=snake_case_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(snake_case_ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] ): for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Dict = json.load(snake_case_ ) # We keep only the field we are interested in UpperCamelCase_: Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case_ , (list, tuple) ): UpperCamelCase_: Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: int = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} else: UpperCamelCase_: Optional[int] = dataset UpperCamelCase_: List[str] = pa.Table.from_pydict(snake_case_ ) yield file_idx, self._cast_table(snake_case_ ) # If the file has one json object per line else: with open(snake_case_ , """rb""" ) as f: UpperCamelCase_: Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase_: Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase_: Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: UpperCamelCase_: int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase_: Tuple = batch.decode(self.config.encoding , errors=snake_case_ ).encode("""utf-8""" ) try: while True: try: UpperCamelCase_: Tuple = paj.read_json( io.BytesIO(snake_case_ ) , read_options=paj.ReadOptions(block_size=snake_case_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case_ , pa.ArrowInvalid ) and "straddling" not in str(snake_case_ ) or block_size > len(snake_case_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(snake_case_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Optional[Any] = json.load(snake_case_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case_ , snake_case_ ): # list is the only sequence type supported in JSON try: UpperCamelCase_: Any = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: List[str] = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} UpperCamelCase_: int = pa.Table.from_pydict(snake_case_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(snake_case_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) batch_idx += 1
223
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def _lowerCamelCase( lowercase__ , lowercase__=None ) -> List[str]: '''simple docstring''' require_version(deps[pkg] , lowercase__ )
295
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Any =PriorTransformer UpperCamelCase_ : List[str] ='''hidden_states''' @property def _A (self ): __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _A (self ): return (4, 8) @property def _A (self ): return (4, 8) def _A (self ): __lowercase= { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __lowercase= self.dummy_input return init_dict, inputs_dict def _A (self ): __lowercase, __lowercase= PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase ) __lowercase= model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _A (self ): __lowercase, __lowercase= self.prepare_init_args_and_inputs_for_common() __lowercase= self.model_class(**lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase ) def _A (self ): __lowercase= PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowercase= model.to(lowerCAmelCase ) if hasattr(lowerCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowercase= self.get_dummy_seed_input() with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] __lowercase= output[0, :5].flatten().cpu() print(lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase= torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): def _A (self , lowerCAmelCase=1 , lowerCAmelCase=7_6_8 , lowerCAmelCase=7_7 , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= batch_size __lowercase= embedding_dim __lowercase= num_embeddings __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase ) __lowercase= self.get_dummy_seed_input(seed=lowerCAmelCase ) with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] assert list(sample.shape ) == [1, 7_6_8] __lowercase= sample[0, :8].flatten().cpu() print(lowerCAmelCase ) __lowercase= torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1E-3 )
295
1
"""simple docstring""" from collections.abc import Generator from math import sin def a__ ( snake_case__ ) -> bytes: if len(snake_case__ ) != 32: raise ValueError("""Input must be of length 32""" ) lowerCamelCase = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( snake_case__ ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCamelCase = format(snake_case__ , """08x""" )[-8:] lowerCamelCase = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def a__ ( snake_case__ ) -> bytes: lowerCamelCase = b"""""" for char in message: bit_string += format(snake_case__ , """08b""" ).encode("""utf-8""" ) lowerCamelCase = format(len(snake_case__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(snake_case__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def a__ ( snake_case__ ) -> Generator[list[int], None, None]: if len(snake_case__ ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(snake_case__ ) , 5_12 ): lowerCamelCase = bit_string[pos : pos + 5_12] lowerCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def a__ ( snake_case__ ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCamelCase = format(snake_case__ , """032b""" ) lowerCamelCase = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(snake_case__ , 2 ) def a__ ( snake_case__ , snake_case__ ) -> int: return (a + b) % 2**32 def a__ ( snake_case__ , snake_case__ ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def a__ ( snake_case__ ) -> bytes: lowerCamelCase = preprocess(snake_case__ ) lowerCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase = 0x6745_2301 lowerCamelCase = 0xefcd_ab89 lowerCamelCase = 0x98ba_dcfe lowerCamelCase = 0x1032_5476 lowerCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(snake_case__ ): lowerCamelCase = aa lowerCamelCase = ba lowerCamelCase = ca lowerCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase = d ^ (b & (c ^ d)) lowerCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase = c ^ (d & (b ^ c)) lowerCamelCase = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase = b ^ c ^ d lowerCamelCase = (3 * i + 5) % 16 else: lowerCamelCase = c ^ (b | not_aa(snake_case__ )) lowerCamelCase = (7 * i) % 16 lowerCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase = d lowerCamelCase = c lowerCamelCase = b lowerCamelCase = sum_aa(snake_case__ , left_rotate_aa(snake_case__ , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase = sum_aa(snake_case__ , snake_case__ ) lowerCamelCase = sum_aa(snake_case__ , snake_case__ ) lowerCamelCase = sum_aa(snake_case__ , snake_case__ ) lowerCamelCase = sum_aa(snake_case__ , snake_case__ ) lowerCamelCase = reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = False, False, False @dataclass class __magic_name__ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __UpperCamelCase = field(default="Audio" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ): """simple docstring""" return self.pa_type def _lowerCAmelCase ( self , _a ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(_a , _a ): return {"bytes": None, "path": value} elif isinstance(_a , _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase = BytesIO() sf.write(_a , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: lowerCamelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 lowerCamelCase = BytesIO(bytes() ) sf.write(_a , _a , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowerCamelCase , lowerCamelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowerCamelCase = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowerCamelCase = token_per_repo_id or {} lowerCamelCase = path.split("""::""" )[-1] try: lowerCamelCase = string_to_dict(_a , config.HUB_DATASETS_URL )["""repo_id"""] lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase = None with xopen(_a , """rb""" , use_auth_token=_a ) as f: lowerCamelCase , lowerCamelCase = sf.read(_a ) else: lowerCamelCase , lowerCamelCase = sf.read(_a ) lowerCamelCase = array.T if self.mono: lowerCamelCase = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase = librosa.resample(_a , orig_sr=_a , target_sr=self.sampling_rate ) lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCAmelCase ( self ): """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _lowerCAmelCase ( self , _a ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowerCamelCase = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCamelCase = storage.field("""bytes""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCamelCase = storage.field("""path""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_a , self.pa_type ) def _lowerCAmelCase ( self , _a ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(_a , """rb""" ) as f: lowerCamelCase = f.read() return bytes_ lowerCamelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_a , self.pa_type )
168
0
"""simple docstring""" def lowercase ( __snake_case : Optional[Any]=2_8_1_2_3 ): lowercase_ : Optional[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ : Any = set() lowercase_ : int = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCamelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
33
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=2 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=2 , ): UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : Optional[int] = max_length UpperCAmelCase__ : int = num_mel_bins UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = scope UpperCAmelCase__ : str = frequency_stride UpperCAmelCase__ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ : Dict = frequency_out_dimension * time_out_dimension UpperCAmelCase__ : Dict = num_patches + 2 def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Dict = self.get_config() return config, input_values, labels def snake_case__ ( self): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = ASTModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self): UpperCAmelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Any = {"""input_values""": input_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase :List[str] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase :List[Any] = False lowerCAmelCase :Any = False lowerCAmelCase :Optional[int] = False lowerCAmelCase :int = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = ASTModelTester(self) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""") def snake_case__ ( self): pass def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear)) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase) UpperCAmelCase__ : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""input_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = ASTModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) def _UpperCamelCase ( ): UpperCAmelCase__ : Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase__ , UpperCAmelCase__ : int = torchaudio.load(UpperCamelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""") if is_torchaudio_available() else None ) @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.default_feature_extractor UpperCAmelCase__ : List[str] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""").to(_lowerCamelCase) UpperCAmelCase__ : str = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ : Dict = prepare_audio() UpperCAmelCase__ : Dict = audio.squeeze().numpy() UpperCAmelCase__ : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_lowerCamelCase) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , _lowerCamelCase) UpperCAmelCase__ : Tuple = torch.tensor([-0.8760, -7.0042, -8.6602]).to(_lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4))
163
0
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : list[str] ) -> str: lowerCamelCase_ : Optional[Any] ="" for word_or_phrase in separated: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
209
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A__ : List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } A__ : Optional[int] = { 'facebook/blenderbot_small-90M': 512, } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = BlenderbotSmallTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : str=None , snake_case__ : Any="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : str=False , snake_case__ : int=True , **snake_case__ : Tuple , ): super().__init__( ByteLevelBPETokenizer( vocab=snake_case__ , merges=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , ) , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Optional[int] =add_prefix_space def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str]=None ): lowerCamelCase_ : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : int =[self.sep_token_id] lowerCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
209
1
import math import sys import cva import numpy as np def a ( A__ : np.ndarray , A__ : float ) -> np.ndarray: """simple docstring""" _lowercase =math.sqrt(snake_case__ ) _lowercase =1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def a ( A__ : np.ndarray , A__ : int , A__ : int , A__ : int ) -> np.ndarray: """simple docstring""" _lowercase =kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def a ( A__ : int , A__ : float ) -> np.ndarray: """simple docstring""" _lowercase =np.zeros((kernel_size, kernel_size) ) for i in range(0 , snake_case__ ): for j in range(0 , snake_case__ ): _lowercase =math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case__ , snake_case__ ) def a ( A__ : np.ndarray , A__ : float , A__ : float , A__ : int , ) -> np.ndarray: """simple docstring""" _lowercase =np.zeros(img.shape ) _lowercase =get_gauss_kernel(snake_case__ , snake_case__ ) _lowercase , _lowercase =img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _lowercase =get_slice(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowercase =img_s - img_s[kernel_size // 2, kernel_size // 2] _lowercase =vec_gaussian(snake_case__ , snake_case__ ) _lowercase =np.multiply(snake_case__ , snake_case__ ) _lowercase =np.multiply(snake_case__ , snake_case__ ) _lowercase =np.sum(snake_case__ ) / np.sum(snake_case__ ) _lowercase =val return imga def a ( A__ : list ) -> tuple: """simple docstring""" _lowercase =args[1] if args[1:] else '../image_data/lena.jpg' _lowercase =float(args[2] ) if args[2:] else 1.0 _lowercase =float(args[3] ) if args[3:] else 1.0 if args[4:]: _lowercase =int(args[4] ) _lowercase =kernel_size + abs(kernel_size % 2 - 1 ) else: _lowercase =5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase_ , lowercase_ , lowercase_ , lowercase_ = parse_args(sys.argv) lowercase_ = cva.imread(filename, 0) cva.imshow('input image', img) lowercase_ = img / 2_5_5 lowercase_ = out.astype('float32') lowercase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase_ = out * 2_5_5 lowercase_ = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
205
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[Any] ): lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCAmelCase = BlipProcessor(lowerCAmelCase , lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).tokenizer def __lowercase ( self : List[Any] , **lowerCAmelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def __lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : List[str] ): lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowerCAmelCase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowerCAmelCase ) lowerCAmelCase = tokenizer(lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def __lowercase ( self : List[Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowerCAmelCase ) lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
155
0
'''simple docstring''' import random class A__ : @staticmethod def A ( _a : str ) -> tuple[list[int], list[int]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[ord(_a ) for i in text] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i in plain: _SCREAMING_SNAKE_CASE =random.randint(1 , 300 ) _SCREAMING_SNAKE_CASE =(i + k) * k cipher.append(_a ) key.append(_a ) return cipher, key @staticmethod def A ( _a : list[int] , _a : list[int] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_a ) ) return "".join(_a ) if __name__ == "__main__": lowerCamelCase , lowerCamelCase : Optional[Any] = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
114
'''simple docstring''' import os def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =os.path.dirname(os.path.realpath(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , 'triangle.txt' ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =[] for line in triangle: _SCREAMING_SNAKE_CASE =[] for number in line.strip().split(' ' ): numbers_from_line.append(int(_UpperCamelCase ) ) a.append(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): for j in range(len(a[i] ) ): _SCREAMING_SNAKE_CASE =a[i - 1][j] if j != len(a[i - 1] ) else 0 _SCREAMING_SNAKE_CASE =a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCamelCase , _UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
114
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class a_ ( lowerCamelCase ): def __init__( self , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""bs4"""] ) super().__init__(**_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase = parent.find_all(child.name , recursive=_SCREAMING_SNAKE_CASE ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_SCREAMING_SNAKE_CASE ) else next(i for i, s in enumerate(_SCREAMING_SNAKE_CASE , 1 ) if s is child ) ) UpperCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = BeautifulSoup(_SCREAMING_SNAKE_CASE , """html.parser""" ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for element in html_code.descendants: if type(_SCREAMING_SNAKE_CASE ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase = html.unescape(_SCREAMING_SNAKE_CASE ).strip() if not text_in_this_tag: continue all_doc_strings.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase = self.xpath_soup(_SCREAMING_SNAKE_CASE ) stringaxtag_seq.append(_SCREAMING_SNAKE_CASE ) stringaxsubs_seq.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = """""" for tagname, subs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): xpath += F"/{tagname}" if subs != 0: xpath += F"[{subs}]" return xpath def __call__( self , _SCREAMING_SNAKE_CASE ) -> BatchFeature: """simple docstring""" UpperCamelCase = False # Check that strings has a valid type if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = True elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): if len(_SCREAMING_SNAKE_CASE ) == 0 or isinstance(html_strings[0] , _SCREAMING_SNAKE_CASE ): UpperCamelCase = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"but is of type {type(_SCREAMING_SNAKE_CASE )}." ) UpperCamelCase = bool(isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(html_strings[0] , _SCREAMING_SNAKE_CASE )) ) if not is_batched: UpperCamelCase = [html_strings] # Get nodes + xpaths UpperCamelCase = [] UpperCamelCase = [] for html_string in html_strings: UpperCamelCase ,UpperCamelCase ,UpperCamelCase = self.get_three_from_single(_SCREAMING_SNAKE_CASE ) nodes.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [] for node, tag_list, sub_list in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = self.construct_xpath(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) xpath_strings.append(_SCREAMING_SNAKE_CASE ) xpaths.append(_SCREAMING_SNAKE_CASE ) # return as Dict UpperCamelCase = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase = BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_inputs
321
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
321
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _snake_case : Dict = logging.get_logger(__name__) def a_ ( ): __lowerCAmelCase = os.getenv('SM_HP_MP_PARAMETERS', '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_A ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv('SM_FRAMEWORK_PARAMS', '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_A ) if not mpi_options.get('sagemaker_mpi_enabled', _A ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def lowercase ( self : List[str] ) -> Dict: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , snake_case__ , ) @cached_property def lowercase ( self : str ) -> int: logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: __lowerCAmelCase = torch.device('cpu' ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device('cuda' , snake_case__ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) __lowerCAmelCase = torch.device('cuda' , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device('cuda' , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case__ ) return device @property def lowercase ( self : List[Any] ) -> Optional[int]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowercase ( self : List[Any] ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def lowercase ( self : Dict ) -> Optional[Any]: return False
353
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Union[str, Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def lowercase ( self : List[str] ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : str ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : List[Any] ) -> List[str]: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
207
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = '▁' __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Dict = BertGenerationTokenizer UpperCAmelCase_ :str = False UpperCAmelCase_ :Union[str, Any] = True def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() lowerCAmelCase_ :Dict = BertGenerationTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = """<s>""" lowerCAmelCase_ :Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__A ) , 1002 ) def __lowerCAmelCase ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = BertGenerationTokenizer(__A , keep_accents=__A ) lowerCAmelCase_ :str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase_ :Tuple = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase_ :Dict = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __lowerCAmelCase ( self ) -> Dict: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Dict = """Hello World!""" lowerCAmelCase_ :Optional[Any] = [1_8536, 2260, 101] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @slow def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase_ :Tuple = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase_ :Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase_ :str = """ """.join(__A ) lowerCAmelCase_ :Tuple = self.big_tokenizer.encode_plus(__A , return_tensors="""pt""" , return_token_type_ids=__A ) lowerCAmelCase_ :Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__A ) lowerCAmelCase_ :int = BertGenerationConfig() lowerCAmelCase_ :Tuple = BertGenerationEncoder(__A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__A ) model(**__A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off lowerCAmelCase_ :Tuple = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
84
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Union[str, Any]: """simple docstring""" a_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a_ = '' else: a_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[ : config.hidden_size, : ] a_ = in_proj_bias[: config.hidden_size] a_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ = in_proj_weight[ -config.hidden_size :, : ] a_ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = dct.pop(UpperCAmelCase_ ) a_ = val def UpperCamelCase ( ) ->Union[str, Any]: """simple docstring""" a_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a_ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) ->List[Any]: """simple docstring""" a_ = ViTConfig() # patch_size if model_name[-1] == "8": a_ = 8 # set labels if required if not base_model: a_ = 1_000 a_ = 'huggingface/label-files' a_ = 'imagenet-1k-id2label.json' a_ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a_ = 384 a_ = 1_536 a_ = 12 a_ = 6 # load original model from torch hub a_ = torch.hub.load("facebookresearch/dino:main" , UpperCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys a_ = original_model.state_dict() if base_model: remove_classification_head_(UpperCAmelCase_ ) a_ = create_rename_keys(UpperCAmelCase_ , base_model=UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model if base_model: a_ = ViTModel(UpperCAmelCase_ , add_pooling_layer=UpperCAmelCase_ ).eval() else: a_ = ViTForImageClassification(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor a_ = ViTImageProcessor() a_ = image_processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding['pixel_values'] a_ = model(UpperCAmelCase_ ) if base_model: a_ = original_model(UpperCAmelCase_ ) assert torch.allclose(UpperCAmelCase_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: a_ = original_model(UpperCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase_ , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
357
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _a : def __init__( self : List[str] , lowercase : Optional[int] , lowercase : List[str]=None , lowercase : Tuple=None , lowercase : int=None , lowercase : List[str]="resnet50" , lowercase : Optional[Any]=3 , lowercase : str=32 , lowercase : List[Any]=3 , lowercase : int=True , lowercase : Any=True , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = out_indices if out_indices is not None else [4] UpperCAmelCase = stage_names UpperCAmelCase = out_features UpperCAmelCase = backbone UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = use_pretrained_backbone UpperCAmelCase = is_training def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def A ( self : Optional[int] ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = TimmBackbone(config=lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(lowercase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class _a ( __a , __a , __a , unittest.TestCase ): __a : Optional[int] = (TimmBackbone,) if is_torch_available() else () __a : Dict = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} __a : Optional[Any] = False __a : List[str] = False __a : int = False __a : Optional[Any] = False def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = TimmBackboneModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def A ( self : str ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = '''resnet18''' UpperCAmelCase = '''microsoft/resnet-18''' UpperCAmelCase = AutoBackbone.from_pretrained(lowercase , use_timm_backbone=lowercase ) UpperCAmelCase = AutoBackbone.from_pretrained(lowercase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCAmelCase = AutoBackbone.from_pretrained(lowercase , use_timm_backbone=lowercase , out_indices=[1, 2, 3] ) UpperCAmelCase = AutoBackbone.from_pretrained(lowercase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def A ( self : Any ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def A ( self : Tuple ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def A ( self : Dict ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def A ( self : Tuple ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def A ( self : Any ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : int ): '''simple docstring''' pass def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCAmelCase = self.all_model_classes[0] UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) UpperCAmelCase = self._prepare_for_class(lowercase , lowercase ) UpperCAmelCase = model(**lowercase ) UpperCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models UpperCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(**lowercase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCAmelCase = copy.deepcopy(lowercase ) UpperCAmelCase = None UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(**lowercase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCAmelCase = copy.deepcopy(lowercase ) UpperCAmelCase = False UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(**lowercase )
34
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'van' def __init__( self : List[str] , _lowerCamelCase : Dict=224 , _lowerCamelCase : str=3 , _lowerCamelCase : List[str]=[7, 3, 3, 3] , _lowerCamelCase : Tuple=[4, 2, 2, 2] , _lowerCamelCase : Union[str, Any]=[64, 128, 320, 512] , _lowerCamelCase : Optional[int]=[3, 3, 12, 3] , _lowerCamelCase : str=[8, 8, 4, 4] , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Any=0.02 , _lowerCamelCase : str=1E-6 , _lowerCamelCase : Union[str, Any]=1E-2 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Any=0.0 , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : int = image_size A_ : int = num_channels A_ : Any = patch_sizes A_ : List[Any] = strides A_ : Tuple = hidden_sizes A_ : Any = depths A_ : Dict = mlp_ratios A_ : Optional[int] = hidden_act A_ : str = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = layer_scale_init_value A_ : Optional[int] = drop_path_rate A_ : Optional[Any] = dropout_rate
360
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
0
"""simple docstring""" class _UpperCAmelCase : def __init__( self :Optional[Any] , __UpperCamelCase :list ): A = set_counts A = max(__UpperCamelCase ) A = len(__UpperCamelCase ) A = [1] * num_sets A = list(range(__UpperCamelCase ) ) def lowerCamelCase ( self :str , __UpperCamelCase :int , __UpperCamelCase :int ): A = self.get_parent(__UpperCamelCase ) A = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A = 0 A = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A = 0 A = src_parent A = self.set_counts[src_parent] A = max(self.max_set , __UpperCamelCase ) return True def lowerCamelCase ( self :str , __UpperCamelCase :int ): if self.parents[disj_set] == disj_set: return disj_set A = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
292
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def lowerCamelCase ( *__UpperCamelCase :List[Any] , **__UpperCamelCase :List[Any] ): pass def A__ ( UpperCamelCase ): A = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] ): A = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[int] , __UpperCamelCase :Optional[Any] ): A = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __UpperCamelCase ) import datasets A = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) A = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase ( self :Optional[Any] ): pass @slow @require_torch def lowerCamelCase ( self :Optional[Any] ): A = "Intel/dpt-large" A = pipeline("depth-estimation" , model=__UpperCamelCase ) A = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) A = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase ( self :Optional[Any] ): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
292
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = {'''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Optional[Any] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class lowerCamelCase (_snake_case ): """simple docstring""" UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = ["input_ids", "attention_mask"] UpperCAmelCase_ = None def __init__( self : int, _UpperCAmelCase : Optional[Any]=None, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Dict=None, _UpperCAmelCase : Any="<unk>", _UpperCAmelCase : Dict="<s>", _UpperCAmelCase : Optional[Any]="</s>", _UpperCAmelCase : List[str]="<pad>", _UpperCAmelCase : Tuple=False, _UpperCAmelCase : Tuple=False, **_UpperCAmelCase : List[Any], ) -> Optional[Any]: """simple docstring""" super().__init__( UpperCamelCase__, UpperCamelCase__, tokenizer_file=UpperCamelCase__, unk_token=UpperCamelCase__, bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, pad_token=UpperCamelCase__, add_prefix_space=UpperCamelCase__, clean_up_tokenization_spaces=UpperCamelCase__, **UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space", UpperCamelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ : str = getattr(UpperCamelCase__, pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE__ : Any = pre_tok_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = add_prefix_space def A_ ( self : Optional[int], *_UpperCAmelCase : Any, **_UpperCAmelCase : str ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.get("is_split_into_words", UpperCamelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__, **UpperCamelCase__ ) def A_ ( self : Any, *_UpperCAmelCase : Union[str, Any], **_UpperCAmelCase : Tuple ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.get("is_split_into_words", UpperCamelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__, **UpperCamelCase__ ) def A_ ( self : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Tuple = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self._tokenizer.model.save(UpperCamelCase__, name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def A_ ( self : Dict, _UpperCAmelCase : int ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: SCREAMING_SNAKE_CASE__ : Any = input_ids[-self.model_max_length :] return input_ids
363
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Any = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) SCREAMING_SNAKE_CASE__ : str = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _a ( SCREAMING_SNAKE_CASE__ : int = 30 ) -> int: '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
191
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _UpperCamelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _UpperCamelCase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __UpperCAmelCase : List[Any] = bs[:] __UpperCAmelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : int = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[int] = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : int = char return pairs class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token __UpperCAmelCase : Optional[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token __UpperCAmelCase : List[str] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token __UpperCAmelCase : str = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token __UpperCAmelCase : Optional[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : List[str] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: __UpperCAmelCase : Union[str, Any] = json.load(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : List[str] = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding="""utf-8""" ) as merges_handle: __UpperCAmelCase : Dict = merges_handle.read().split("""\n""" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Optional[Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : Any = {} __UpperCAmelCase : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Union[str, Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __A ( self ) -> str: '''simple docstring''' return len(self.encoder ) def __A ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCAmelCase : int = tuple(__UpperCAmelCase ) __UpperCAmelCase : List[str] = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : str = bigram __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[str] = 0 while i < len(__UpperCAmelCase ): try: __UpperCAmelCase : Any = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[Any] = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[str] = tuple(__UpperCAmelCase ) __UpperCAmelCase : str = new_word if len(__UpperCAmelCase ) == 1: break else: __UpperCAmelCase : List[Any] = get_pairs(__UpperCAmelCase ) __UpperCAmelCase : str = """ """.join(__UpperCAmelCase ) __UpperCAmelCase : str = word return word def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [] for token in re.findall(self.pat , __UpperCAmelCase ): __UpperCAmelCase : Tuple = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(""" """ ) ) return bpe_tokens def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' return self.decoder.get(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = """""".join(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : List[str] = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : Dict = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : int = 0 with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __UpperCAmelCase : Dict = token_index writer.write(""" """.join(__UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : str = """ """ + text return (text, kwargs) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def __A ( self , __UpperCAmelCase ) -> List[int]: '''simple docstring''' __UpperCAmelCase : int = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__UpperCAmelCase ) __UpperCAmelCase : Tuple = """ """.join(__UpperCAmelCase ) __UpperCAmelCase : Any = self.encode(__UpperCAmelCase ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCAmelCase : Any = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
254
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : list[list[int]] = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __UpperCAmelCase : str = 1 for n in range(m + 1 ): for k in range(1 , lowerCAmelCase__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _UpperCamelCase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _UpperCamelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
254
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if not isinstance(a__ , a__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase : Optional[Any] = str(abs(a__ ) ) lowercase : int = [list(a__ ) for char in range(len(a__ ) )] for index in range(len(a__ ) ): num_transpositions[index].pop(a__ ) return max( int("""""".join(list(a__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
360
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[Any] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __snake_case ( lowerCAmelCase ): _a : Dict= "mobilenet_v1" def __init__( self ,snake_case=3 ,snake_case=224 ,snake_case=1.0 ,snake_case=8 ,snake_case="relu6" ,snake_case=True ,snake_case=0.999 ,snake_case=0.02 ,snake_case=0.001 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowercase : int = num_channels lowercase : Union[str, Any] = image_size lowercase : int = depth_multiplier lowercase : Tuple = min_depth lowercase : Dict = hidden_act lowercase : Dict = tf_padding lowercase : Dict = classifier_dropout_prob lowercase : int = initializer_range lowercase : List[str] = layer_norm_eps class __snake_case ( lowerCAmelCase ): _a : int= version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4
285
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = KandinskyVaaPipeline a__ = [ """image_embeds""", """negative_image_embeds""", ] a__ = ["""image_embeds""", """negative_image_embeds"""] a__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ = False @property def _lowercase ( self : Tuple ) -> str: """simple docstring""" return 32 @property def _lowercase ( self : int ) -> Tuple: """simple docstring""" return 32 @property def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.time_input_dim @property def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return 100 @property def _lowercase ( self : Any ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __magic_name__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __magic_name__ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self : Dict ) -> Dict: """simple docstring""" __magic_name__ = self.dummy_unet __magic_name__ = self.dummy_movq __magic_name__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCamelCase__ , ) __magic_name__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=0 ) -> List[str]: """simple docstring""" __magic_name__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) __magic_name__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): __magic_name__ = torch.manual_seed(UpperCamelCase__ ) else: __magic_name__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) __magic_name__ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" __magic_name__ = """cpu""" __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**UpperCamelCase__ ) __magic_name__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) __magic_name__ = output.images __magic_name__ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] __magic_name__ = image[0, -3:, -3:, -1] __magic_name__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Tuple ) -> Any: """simple docstring""" __magic_name__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) __magic_name__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) __magic_name__ = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) __magic_name__ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ = """red cat, 4k photo""" __magic_name__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) __magic_name__ , __magic_name__ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) __magic_name__ = pipeline( image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , output_type="""np""" , ) __magic_name__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
88
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __UpperCamelCase : def __init__( self ): """simple docstring""" lowerCamelCase_ ='''''' lowerCamelCase_ ='''''' lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =256 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =cva.imread(lowerCAmelCase, 0 ) lowerCamelCase_ =copy.deepcopy(self.img ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =plt.hist(self.img.ravel(), 256, [0, 256], label='''x''' ) lowerCamelCase_ =np.sum(lowerCAmelCase ) for i in range(len(lowerCAmelCase ) ): lowerCamelCase_ =x[i] / self.k self.sk += prk lowerCamelCase_ =(self.L - 1) * self.sk if self.rem != 0: lowerCamelCase_ =int(last % last ) lowerCamelCase_ =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase ) lowerCamelCase_ =int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase_ =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase_ =self.img[j][i] if num != self.last_list[num]: lowerCamelCase_ =self.last_list[num] cva.imwrite('''output_data/output.jpg''', self.img ) def lowercase__ ( self ): """simple docstring""" plt.hist(self.img.ravel(), 256, [0, 256] ) def lowercase__ ( self ): """simple docstring""" cva.imshow('''Output-Image''', self.img ) cva.imshow('''Input-Image''', self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": a_ : str = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") a_ : Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
75
0
from __future__ import annotations lowerCamelCase_ = 1.6_021E-19 # units = C def __magic_name__ ( __a : float , __a : float , __a : float , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
178
import argparse from collections import defaultdict import yaml lowerCamelCase_ = '''docs/source/en/_toctree.yml''' def __magic_name__ ( __a : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 UpperCamelCase__ = [key for key, value in counts.items() if value > 1] UpperCamelCase__ = [] for duplicate_key in duplicates: UpperCamelCase__ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def __magic_name__ ( __a : int=False ): '''simple docstring''' with open(__a , encoding="""utf-8""" ) as f: UpperCamelCase__ = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCamelCase__ = api_doc[model_idx]["""sections"""] UpperCamelCase__ = [(idx, section) for idx, section in enumerate(__a ) if """sections""" in section] UpperCamelCase__ = False for idx, modality_doc in modalities_docs: UpperCamelCase__ = modality_doc["""sections"""] UpperCamelCase__ = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: UpperCamelCase__ = True if overwrite: UpperCamelCase__ = new_modality_doc if diff: if overwrite: UpperCamelCase__ = model_doc UpperCamelCase__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase_ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
178
1
def __lowerCAmelCase ( a__ ) -> Union[str, Any]: __a = set() # edges = list of graph's edges __a = get_edges(_lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __a = edges.pop() chosen_vertices.add(_lowerCamelCase ) chosen_vertices.add(_lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase ) return chosen_vertices def __lowerCAmelCase ( a__ ) -> int: __a = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
6
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase__ : List[Any] = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str=None ): __SCREAMING_SNAKE_CASE : Optional[int] = True while ask_again: __SCREAMING_SNAKE_CASE : Tuple = input(_lowerCamelCase ) try: if default is not None and len(_lowerCamelCase ) == 0: return default return convert_value(_lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any]=[] , _lowerCamelCase: List[Any]=None , _lowerCamelCase: Optional[Any]=0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = BulletMenu(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = menu.run(default_choice=_lowerCamelCase ) return convert_value(_lowerCamelCase ) if convert_value is not None else result def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Tuple = int(_lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : int = int(_lowerCamelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): return {"yes": True, "no": False}[value.lower()] class _UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = usage.replace("""<command> [<args>] """ , """""" ) return usage
112
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __A ( __lowerCamelCase ) -> bool: a = int(number**0.5 ) return number == sq * sq def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]: a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a = x_den * y_den * z_den a = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __A ( __lowerCamelCase = 35 ) -> int: a = set() a = 42 a = Fraction(0 ) a = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a = x_num * y_den + x_den * y_num a = x_den * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 a = x_num * y_num a = x_den * y_num + x_num * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = x_num * x_num * y_num * y_num a = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
358
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width __UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCamelCase : str = 1 / 100 __UpperCamelCase : Optional[int] = "" __UpperCamelCase : List[Any] = "" __UpperCamelCase : Union[str, Any] = "" __UpperCamelCase : Tuple = 250 def __A ( ) -> None: a , a = get_dataset(__lowerCamelCase , __lowerCamelCase ) for index in range(__lowerCamelCase ): a = random.sample(range(len(__lowerCamelCase ) ) , 4 ) a , a , a = update_image_and_anno( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a = random_chars(32 ) a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) a = [] for anno in new_annos: a = anno[3] - anno[1] a = anno[4] - anno[2] a = anno[1] + width / 2 a = anno[2] + height / 2 a = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__lowerCamelCase ) with open(f'{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]: a = [] a = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ): a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCamelCase ) as in_file: a = in_file.readlines() a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' ) a = [] for obj_list in obj_lists: a = obj_list.rstrip("""\n""" ).split(""" """ ) a = float(obj[1] ) - float(obj[3] ) / 2 a = float(obj[2] ) - float(obj[4] ) / 2 a = float(obj[1] ) + float(obj[3] ) / 2 a = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]: a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a = int(scale_x * output_size[1] ) a = int(scale_y * output_size[0] ) a = [] a = [] for i, index in enumerate(__lowerCamelCase ): a = all_img_list[index] path_list.append(__lowerCamelCase ) a = all_annos[index] a = cva.imread(__lowerCamelCase ) if i == 0: # top-left a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) ) a = img for bbox in img_annos: a = bbox[1] * scale_x a = bbox[2] * scale_y a = bbox[3] * scale_x a = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) a = img for bbox in img_annos: a = scale_x + bbox[1] * (1 - scale_x) a = bbox[2] * scale_y a = scale_x + bbox[3] * (1 - scale_x) a = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) a = img for bbox in img_annos: a = bbox[1] * scale_x a = scale_y + bbox[2] * (1 - scale_y) a = bbox[3] * scale_x a = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right a = cva.resize( __lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) a = img for bbox in img_annos: a = scale_x + bbox[1] * (1 - scale_x) a = scale_y + bbox[2] * (1 - scale_y) a = scale_x + bbox[3] * (1 - scale_x) a = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: a = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __A ( __lowerCamelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" a = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
347
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Tuple = LDMTextToImagePipeline lowerCamelCase__: Optional[int] = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } lowerCamelCase__: Tuple = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } lowerCamelCase__: Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__: str = False def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase : Any = CLIPTextModel(__lowerCamelCase ) __UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Tuple = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=0 ) -> Any: if str(__lowerCamelCase ).startswith("mps" ): __UpperCAmelCase : int = torch.manual_seed(__lowerCamelCase ) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self: int ) -> Optional[int]: __UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[Any] = self.get_dummy_components() __UpperCAmelCase : Optional[int] = LDMTextToImagePipeline(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : str = self.get_dummy_inputs(__lowerCamelCase ) __UpperCAmelCase : Tuple = pipe(**__lowerCamelCase ).images __UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Union[str, Any] ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any]=torch.floataa , __lowerCamelCase: Dict=0 ) -> List[str]: __UpperCAmelCase : Tuple = torch.manual_seed(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : Any = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) __UpperCAmelCase : int = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self: Dict ) -> Tuple: __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : List[str] = self.get_inputs(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = pipe(**__lowerCamelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_56, 2_56, 3) __UpperCAmelCase : int = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] ) __UpperCAmelCase : List[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: int ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict=torch.floataa , __lowerCamelCase: Optional[int]=0 ) -> Any: __UpperCAmelCase : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : Optional[int] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) __UpperCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self: Tuple ) -> List[Any]: __UpperCAmelCase : Dict = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : List[str] = self.get_inputs(__lowerCamelCase ) __UpperCAmelCase : str = pipe(**__lowerCamelCase ).images[0] __UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) __UpperCAmelCase : str = np.abs(expected_image - image ).max() assert max_diff < 1e-3
157
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["input_features"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=80 , __lowerCamelCase: Optional[Any]=1_60_00 , __lowerCamelCase: Any=1_60 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: List[str]=4_00 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=False , **__lowerCamelCase: Dict , ) -> Any: super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = n_fft __UpperCAmelCase : List[str] = hop_length __UpperCAmelCase : Optional[Any] = chunk_length __UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate __UpperCAmelCase : Any = self.n_samples // hop_length __UpperCAmelCase : Tuple = sampling_rate __UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: np.array ) -> np.ndarray: __UpperCAmelCase : List[Any] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __UpperCAmelCase : Union[str, Any] = log_spec[:, :-1] __UpperCAmelCase : List[Any] = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 ) __UpperCAmelCase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase : Tuple = np.array(__lowerCamelCase , np.intaa ) __UpperCAmelCase : Dict = [] for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ): __UpperCAmelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : Dict = padding_value normed_input_values.append(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: Dict , __lowerCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[str] = "max_length" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCAmelCase : List[Any] = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : str = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] __UpperCAmelCase : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : List[str] = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __UpperCAmelCase : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format __UpperCAmelCase : Any = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Dict = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCamelCase ): __UpperCAmelCase : str = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : int = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs def _lowerCamelCase ( self: str ) -> Dict[str, Any]: __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
157
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE_ ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
355
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' lowerCAmelCase : str = ['input_values', 'padding_mask'] def __init__( self : Optional[Any] , __snake_case : int = 1 , __snake_case : int = 2_40_00 , __snake_case : float = 0.0 , __snake_case : float = None , __snake_case : float = None , **__snake_case : Dict , ): super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = overlap @property def lowerCamelCase_ ( self : List[str] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase_ ( self : List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : List[str] , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Optional[Union[bool, str, PaddingStrategy]] = None , __snake_case : Optional[bool] = False , __snake_case : Optional[int] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs UpperCAmelCase_ = True UpperCAmelCase_ = bool( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ = [np.asarray(__snake_case , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__snake_case , np.ndarray ): UpperCAmelCase_ = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase_ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ = [np.asarray(__snake_case ).T] # verify inputs are valid for idx, example in enumerate(__snake_case ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) UpperCAmelCase_ = None UpperCAmelCase_ = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase_ = min(array.shape[0] for array in raw_audio ) UpperCAmelCase_ = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase_ = max(array.shape[0] for array in raw_audio ) UpperCAmelCase_ = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase_ = '''max_length''' else: UpperCAmelCase_ = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase_ = self.pad( __snake_case , max_length=__snake_case , truncation=__snake_case , padding=__snake_case , return_attention_mask=__snake_case , ) if padding: UpperCAmelCase_ = padded_inputs.pop('''attention_mask''' ) UpperCAmelCase_ = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: UpperCAmelCase_ = example[..., None] input_values.append(example.T ) UpperCAmelCase_ = input_values if return_tensors is not None: UpperCAmelCase_ = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
177
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def a ( *_lowercase : List[Any] , **_lowercase : Any ): pass def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): a__ : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def a ( self : str , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : Dict ): __UpperCAmelCase = DepthEstimationPipeline(model=UpperCamelCase__ , image_processor=UpperCamelCase__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : str ): __UpperCAmelCase = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , UpperCamelCase__ ) import datasets __UpperCAmelCase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __UpperCAmelCase = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , UpperCamelCase__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def a ( self : Union[str, Any] ): pass @slow @require_torch def a ( self : str ): __UpperCAmelCase = '''Intel/dpt-large''' __UpperCAmelCase = pipeline('''depth-estimation''' , model=UpperCamelCase__ ) __UpperCAmelCase = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) __UpperCAmelCase = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def a ( self : Optional[Any] ): self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
332
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCamelCase ( _A = 3 ): if isinstance(_A , _A ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_A ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) lowerCAmelCase_ = QuantumRegister(_A , '''qr''' ) lowerCAmelCase_ = ClassicalRegister(_A , '''cr''' ) lowerCAmelCase_ = QuantumCircuit(_A , _A ) lowerCAmelCase_ = number_of_qubits for i in range(_A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _A , _A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_A , _A ) # simulate with 10000 shots lowerCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) lowerCAmelCase_ = execute(_A , _A , shots=10000 ) return job.result().get_counts(_A ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
278
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
254
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" lowerCAmelCase__ :int = credit_card_number lowerCAmelCase__ :Tuple = 0 lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowerCAmelCase__ :Optional[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCAmelCase__ :str = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" lowerCAmelCase__ :Optional[int] = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
254
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : Tuple = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __SCREAMING_SNAKE_CASE : List[str] = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] , **lowerCAmelCase__ :Dict ) -> Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , **lowerCAmelCase__ :Any ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , **lowerCAmelCase__ :int ) -> Optional[int]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> str: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : int = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : int = self.get_image_processor(do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Dict = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCAmelCase__ , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowerCAmelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Dict = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' __SCREAMING_SNAKE_CASE : Dict = processor(text=lowerCAmelCase__ , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __magic_name__( self :str ) -> str: __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''lower newer''' __SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = '''google/owlvit-base-patch32''' __SCREAMING_SNAKE_CASE : str = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = ['''cat''', '''nasa badge'''] __SCREAMING_SNAKE_CASE : Dict = processor(text=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = '''google/owlvit-base-patch32''' __SCREAMING_SNAKE_CASE : Dict = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = [['''cat''', '''nasa badge'''], ['''person''']] __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 16 __SCREAMING_SNAKE_CASE : List[str] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = '''google/owlvit-base-patch32''' __SCREAMING_SNAKE_CASE : Any = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = ['''cat''', '''nasa badge'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = 16 __SCREAMING_SNAKE_CASE : List[str] = inputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __magic_name__( self :str ) -> str: __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : int = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : str = processor.batch_decode(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A : Optional[int] = logging.get_logger(__name__) A : Any = {'''vocab_file''': '''spiece.model'''} A : Tuple = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCamelCase (A__ ): """simple docstring""" def __init__( self : int , __magic_name__ : List[Any] , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Any=False , __magic_name__ : List[Any]="<s>" , __magic_name__ : str="</s>" , __magic_name__ : Dict="<unk>" , __magic_name__ : Any="<sep>" , __magic_name__ : Dict="<pad>" , __magic_name__ : Optional[Any]="<cls>" , __magic_name__ : Optional[int]="<mask>" , __magic_name__ : List[str]=["<eop>", "<eod>"] , __magic_name__ : str = None , **__magic_name__ : int , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) SCREAMING_SNAKE_CASE_ = jieba SCREAMING_SNAKE_CASE_ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A ( self : List[str] ) -> List[Any]: return len(self.sp_model ) def __A ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None return state def __setstate__( self : str , __magic_name__ : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self : int , __magic_name__ : Any ) -> List[Any]: if self.remove_space: SCREAMING_SNAKE_CASE_ = " ".join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE_ = inputs SCREAMING_SNAKE_CASE_ = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: SCREAMING_SNAKE_CASE_ = unicodedata.normalize("NFKD" , lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = "".join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ = outputs.lower() return outputs def __A ( self : int , __magic_name__ : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.preprocess_text(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE_ = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def __A ( self : Dict , __magic_name__ : int ) -> int: return self.sp_model.PieceToId(lowerCamelCase__ ) def __A ( self : Tuple , __magic_name__ : str ) -> Union[str, Any]: return self.sp_model.IdToPiece(lowerCamelCase__ ) def __A ( self : List[str] , __magic_name__ : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = "".join(lowerCamelCase__ ).replace(lowerCamelCase__ , " " ).strip() return out_string def __A ( self : List[str] , __magic_name__ : Any , __magic_name__ : List[Any] = None ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : Any = None , __magic_name__ : List[Any] = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def __A ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict = None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] = None ) -> str: if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , "wb" ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def __A ( self : Any , *__magic_name__ : Optional[int] , **__magic_name__ : int ) -> Dict: SCREAMING_SNAKE_CASE_ = super()._decode(*lowerCamelCase__ , **lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
357
from collections.abc import Generator from math import sin def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) != 3_2: raise ValueError("Input must be of length 32" ) SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "08x" )[-8:] SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = b"" for char in message: bit_string += format(__UpperCamelCase , "08b" ).encode("utf-8" ) SCREAMING_SNAKE_CASE_ = format(len(__UpperCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCamelCase ) , 5_1_2 ): SCREAMING_SNAKE_CASE_ = bit_string[pos : pos + 5_1_2] SCREAMING_SNAKE_CASE_ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "032b" ) SCREAMING_SNAKE_CASE_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (a + b) % 2**3_2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = preprocess(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states SCREAMING_SNAKE_CASE_ = 0X67452301 SCREAMING_SNAKE_CASE_ = 0Xefcdab89 SCREAMING_SNAKE_CASE_ = 0X98badcfe SCREAMING_SNAKE_CASE_ = 0X10325476 SCREAMING_SNAKE_CASE_ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = aa SCREAMING_SNAKE_CASE_ = ba SCREAMING_SNAKE_CASE_ = ca SCREAMING_SNAKE_CASE_ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE_ = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE_ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE_ = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE_ = (5 * i + 1) % 1_6 elif i <= 4_7: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = (3 * i + 5) % 1_6 else: SCREAMING_SNAKE_CASE_ = c ^ (b | not_aa(__UpperCamelCase )) SCREAMING_SNAKE_CASE_ = (7 * i) % 1_6 SCREAMING_SNAKE_CASE_ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 SCREAMING_SNAKE_CASE_ = d SCREAMING_SNAKE_CASE_ = c SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bool: if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : int = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCamelCase ) if number < 0: return False lowerCamelCase__ : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
41
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Optional[int] = [1] for i in range(2 , a_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :Optional[Any] = list(range(a_ ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE :Optional[int] = factorials.pop() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = divmod(a_ , a_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
191
0
from __future__ import annotations from collections import namedtuple def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
354
def __UpperCamelCase ( _A = 4000000 ): lowerCAmelCase_ = [0, 1] lowerCAmelCase_ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase_ = 0 for j in range(len(_A ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"{solution() = }")
167
0
import argparse import struct import unittest class __magic_name__ : def __init__( self : Dict , lowerCamelCase__ : bytes ) -> None: '''simple docstring''' UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : List[str] = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] UpperCamelCase__ : int = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase__ ( lowerCamelCase__ : bytes ) -> bytes: '''simple docstring''' UpperCamelCase__ : int = b'''\x80''' + (b'''\x00''' * (63 - (len(lowerCamelCase__ ) + 8) % 64)) UpperCamelCase__ : Optional[Any] = struct.pack('''>Q''' , (len(lowerCamelCase__ ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase__ ( self : List[str] ) -> None: '''simple docstring''' UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Optional[Any] = list(struct.unpack('''>16L''' , lowerCamelCase__ ) ) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : int = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Union[str, Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : Optional[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression UpperCamelCase__ : int = self.ror(lowerCamelCase__ , 6 ) ^ self.ror(lowerCamelCase__ , 11 ) ^ self.ror(lowerCamelCase__ , 25 ) UpperCamelCase__ : Union[str, Any] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) UpperCamelCase__ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 UpperCamelCase__ : Optional[int] = self.ror(lowerCamelCase__ , 2 ) ^ self.ror(lowerCamelCase__ , 13 ) ^ self.ror(lowerCamelCase__ , 22 ) UpperCamelCase__ : Optional[int] = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : int = (sa + maj) % 0x1_00_00_00_00 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) UpperCamelCase__ : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Any = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] UpperCamelCase__ : List[Any] = ''''''.join([hex(lowerCamelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> int: '''simple docstring''' return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : str ) -> None: '''simple docstring''' import hashlib UpperCamelCase__ : int = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(lowerCamelCase__ ).hash , hashlib.shaaaa(lowerCamelCase__ ).hexdigest() ) def _a ( ): """simple docstring""" import doctest doctest.testmod() UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCamelCase__ : Dict = f.read() else: UpperCamelCase__ : str = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
146
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=13 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=0.6 , lowerCamelCase__ : int=None , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : List[Any] = image_size UpperCamelCase__ : str = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : int = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = type_sequence_label_size UpperCamelCase__ : str = initializer_range UpperCamelCase__ : str = mask_ratio UpperCamelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : Optional[int] = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = ViTMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) UpperCamelCase__ : int = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : int = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Any = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A: Union[str, Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} A: Any = False A: str = False A: Optional[int] = False A: Any = False def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = ViTMAEModelTester(self ) UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : Union[str, Any] = pt_noise super().check_pt_tf_models(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ : int = outputs[0].cpu().numpy() UpperCamelCase__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Any = model_class.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) # Make sure we don't have nans UpperCamelCase__ : Union[str, Any] = after_outputs[0].cpu().numpy() UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = ViTMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : Dict = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : str = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Tuple = ViTMAEConfig() UpperCamelCase__ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ , noise=torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) ) # verify the logits UpperCamelCase__ : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase__ ) , atol=1E-4 ) )
146
1
"""simple docstring""" from itertools import product def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Any = sides_number lowerCAmelCase__ :Dict = max_face_number * dice_number lowerCAmelCase__ :Optional[Any] = [0] * (max_total + 1) lowerCAmelCase__ :List[str] = 1 lowerCAmelCase__ :Dict = range(_SCREAMING_SNAKE_CASE , max_face_number + 1 ) for dice_numbers in product(_SCREAMING_SNAKE_CASE , repeat=_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = sum(_SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def __A () ->float: """simple docstring""" lowerCAmelCase__ :str = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase__ :Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase__ :Tuple = 0 lowerCAmelCase__ :List[str] = 9 lowerCAmelCase__ :Any = 4 * 9 lowerCAmelCase__ :Optional[int] = 6 for peter_total in range(_SCREAMING_SNAKE_CASE , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase__ :Optional[int] = (4**9) * (6**6) lowerCAmelCase__ :int = peter_wins_count / total_games_number lowerCAmelCase__ :Tuple = round(_SCREAMING_SNAKE_CASE , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
254
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __A (_SCREAMING_SNAKE_CASE = "" ) ->dict[str, float]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' lowerCAmelCase__ :str = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) lowerCAmelCase__ :List[Any] = soup.find_all('td' , attrs='titleColumn' ) lowerCAmelCase__ :Optional[int] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) } def __A (_SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" lowerCAmelCase__ :Any = get_imdb_top_aaa_movies() with open(_SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: lowerCAmelCase__ :Dict = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
254
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): UpperCAmelCase : Dict = True from torch.cuda.amp import autocast UpperCAmelCase : Tuple = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase : Optional[bool] = field( default=a_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCamelCase : Optional[bool] = field( default=a_ , metadata={"help": "Whether to log verbose messages or not."} , ) UpperCamelCase : Optional[float] = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) UpperCamelCase : Optional[float] = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) UpperCamelCase : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={"help": "Decay of gumbel temperature during training."} ) def __lowerCamelCase ( lowerCamelCase__ : ModelArguments , lowerCamelCase__ : TrainingArguments ): '''simple docstring''' logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCamelCase = logging.WARNING if model_args.verbose_logging: lowerCamelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowerCamelCase = logging.INFO logger.setLevel(lowerCamelCase__ ) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : str = field( default=a_ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCamelCase : Optional[str] = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) UpperCamelCase : Optional[str] = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) UpperCamelCase : Optional[str] = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) UpperCamelCase : bool = field( default=a_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCamelCase : Optional[int] = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCamelCase : Optional[float] = field( default=2_0.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : WavaVecaForPreTraining UpperCamelCase : WavaVecaFeatureExtractor UpperCamelCase : Union[bool, str] = "longest" UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None def __call__( self , A ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowerCamelCase = self.feature_extractor.pad( A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) lowerCamelCase = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) lowerCamelCase = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCamelCase = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) lowerCamelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCamelCase = 1 lowerCamelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCamelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=A , min_masks=2 , ) return batch class __lowercase ( a_ ): """simple docstring""" def __init__( self , *A , A=1 , A=0 , A=1.0 , **A ) -> List[Any]: '''simple docstring''' super().__init__(*A , **A ) lowerCamelCase = 0 lowerCamelCase = max_gumbel_temp lowerCamelCase = min_gumbel_temp lowerCamelCase = gumbel_temp_decay def __A ( self , A , A ) -> torch.Tensor: '''simple docstring''' model.train() lowerCamelCase = self._prepare_inputs(A ) if self.use_amp: with autocast(): lowerCamelCase = self.compute_loss(A , A ) else: lowerCamelCase = self.compute_loss(A , A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCamelCase = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowerCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A ).backward() elif self.use_apex: with amp.scale_loss(A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_args_into_dataclasses() configure_logger(lowerCamelCase__ , lowerCamelCase__ ) # Downloading and loading a dataset from the hub. lowerCamelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCamelCase = DatasetDict() lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCamelCase = DatasetDict() lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCamelCase__ ) def prepare_dataset(lowerCamelCase__ : List[Any] ): # check that all files have the correct sampling rate lowerCamelCase , lowerCamelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowerCamelCase = datasets.map( lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long lowerCamelCase = vectorized_datasets.filter( lambda lowerCamelCase__ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase__ : Optional[Any] ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowerCamelCase = vectorized_datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCamelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) lowerCamelCase = WavaVecaForPreTraining(lowerCamelCase__ ) lowerCamelCase = DataCollatorForWavaVecaPretraining(model=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) lowerCamelCase = WavaVecaPreTrainer( model=lowerCamelCase__ , data_collator=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=lowerCamelCase__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
252
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Tuple = "naver-clova-ix/donut-base-finetuned-docvqa" UpperCamelCase : Optional[int] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCamelCase : Optional[Any] = "document_qa" UpperCamelCase : Any = AutoProcessor UpperCamelCase : Optional[int] = VisionEncoderDecoderModel UpperCamelCase : Any = ["image", "text"] UpperCamelCase : str = ["text"] def __init__( self , *A , **A ) -> Optional[Any]: '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*A , **A ) def __A ( self , A , A ) -> int: '''simple docstring''' lowerCamelCase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCamelCase = task_prompt.replace("""{user_input}""" , A ) lowerCamelCase = self.pre_processor.tokenizer( A , add_special_tokens=A , return_tensors="""pt""" ).input_ids lowerCamelCase = self.pre_processor(A , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __A ( self , A ) -> Optional[Any]: '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=A , ).sequences def __A ( self , A ) -> int: '''simple docstring''' lowerCamelCase = self.pre_processor.batch_decode(A )[0] lowerCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowerCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowerCamelCase = re.sub(r"""<.*?>""" , """""" , A , count=1 ).strip() # remove first task start token lowerCamelCase = self.pre_processor.tokenajson(A ) return sequence["answer"]
252
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A , A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
334
1
'''simple docstring''' def lowercase ( __magic_name__ , __magic_name__ = False ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase : List[str] = F"Expected string as input, found {type(__magic_name__ )}" raise ValueError(__magic_name__ ) if not isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase : Union[str, Any] = F"Expected boolean as use_pascal parameter, found {type(__magic_name__ )}" raise ValueError(__magic_name__ ) UpperCAmelCase : List[Any] = input_str.split("_" ) UpperCAmelCase : str = 0 if use_pascal else 1 UpperCAmelCase : Optional[Any] = words[start_index:] UpperCAmelCase : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase : List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
311
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
262
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __A ( unittest.TestCase ): def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCamelCase =Vector() def _snake_case ( self ): lowerCamelCase =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase_ ) , """(0,0,0,0,0,1)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2] ) lowerCamelCase =Vector([1, 2, 3, 4, 5] ) lowerCamelCase =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCamelCase =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([2, -1, 4] ) # for test of dot product lowerCamelCase =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _snake_case ( self ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _snake_case ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase_ , UpperCAmelCase_ ) ) , """(3,4,7)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 0, 0, 0, 0, 0] ) lowerCamelCase =x.copy() self.assertEqual(str(UpperCAmelCase_ ) , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase_ ) , """(0,1,0)""" ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCamelCase =Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _snake_case ( self ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
262
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Any , _A : str = "▁" , _A : bool = True , _A : Union[str, AddedToken] = "<unk>" , _A : Union[str, AddedToken] = "</s>" , _A : Union[str, AddedToken] = "<pad>" , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __SCREAMING_SNAKE_CASE : int = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __SCREAMING_SNAKE_CASE : Any = token_dict['''token'''] __SCREAMING_SNAKE_CASE : Optional[int] = Tokenizer(Unigram() ) __SCREAMING_SNAKE_CASE : List[str] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) __SCREAMING_SNAKE_CASE : Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_A , add_prefix_space=_A ), pre_tokenizers.Digits(individual_digits=_A ), pre_tokenizers.Punctuation(), ] ) __SCREAMING_SNAKE_CASE : Tuple = decoders.Metaspace(replacement=_A , add_prefix_space=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) __SCREAMING_SNAKE_CASE : Dict = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_A , _A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : Union[str, List[str]] , _A : int = 8000 , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = trainers.UnigramTrainer( vocab_size=_A , special_tokens=self.special_tokens_list , show_progress=_A , ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Tuple = [files] self._tokenizer.train(_A , trainer=_A ) self.add_unk_id() def UpperCAmelCase__ ( self : Tuple , _A : Union[Iterator[str], Iterator[Iterator[str]]] , _A : int = 8000 , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = trainers.UnigramTrainer( vocab_size=_A , special_tokens=self.special_tokens_list , show_progress=_A , ) self._tokenizer.train_from_iterator(_A , trainer=_A ) self.add_unk_id() def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self._tokenizer.to_str() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.special_tokens['''unk''']['''id'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = Tokenizer.from_str(json.dumps(_A ) )
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , ): UpperCamelCase_: str = parent UpperCamelCase_: Optional[int] = batch_size UpperCamelCase_: Tuple = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: List[Any] = num_channels UpperCamelCase_: List[Any] = embed_dim UpperCamelCase_: int = depths UpperCamelCase_: List[Any] = num_heads UpperCamelCase_: Any = window_size UpperCamelCase_: Optional[Any] = mlp_ratio UpperCamelCase_: Optional[Any] = qkv_bias UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Tuple = drop_path_rate UpperCamelCase_: Dict = hidden_act UpperCamelCase_: str = use_absolute_embeddings UpperCamelCase_: Optional[Any] = patch_norm UpperCamelCase_: Optional[int] = layer_norm_eps UpperCamelCase_: Any = initializer_range UpperCamelCase_: Union[str, Any] = is_training UpperCamelCase_: Union[str, Any] = scope UpperCamelCase_: List[str] = use_labels UpperCamelCase_: Optional[int] = type_sequence_label_size UpperCamelCase_: Optional[int] = encoder_stride def _a ( self ): UpperCamelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: Optional[int] = None if self.use_labels: UpperCamelCase_: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = SwinvaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[str] = model(_lowerCamelCase ) UpperCamelCase_: Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_: List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = SwinvaForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Tuple = SwinvaForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.type_sequence_label_size UpperCamelCase_: Optional[Any] = SwinvaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: str = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = config_and_inputs UpperCamelCase_: Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[Any] =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a : str =( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) a : Union[str, Any] =False a : Tuple =False a : str =False a : List[str] =False def _a ( self ): UpperCamelCase_: List[str] = SwinvaModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 ) def _a ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def _a ( self ): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: int = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Tuple = [*signature.parameters.keys()] UpperCamelCase_: Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: List[str] = True for model_class in self.all_model_classes: UpperCamelCase_: Tuple = True UpperCamelCase_: List[Any] = False UpperCamelCase_: List[str] = True UpperCamelCase_: List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: Any = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: List[Any] = outputs.attentions UpperCamelCase_: str = len(self.model_tester.depths ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase_: Optional[Any] = True UpperCamelCase_: Optional[int] = config.window_size**2 UpperCamelCase_: int = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Dict = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCamelCase_: List[Any] = len(_lowerCamelCase ) # Check attention is always last and order is fine UpperCamelCase_: List[Any] = True UpperCamelCase_: Dict = True UpperCamelCase_: Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCamelCase_: Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCamelCase_: List[str] = 2 self.assertEqual(out_len + added_hidden_states , len(_lowerCamelCase ) ) UpperCamelCase_: str = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: str = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: List[str] = outputs.hidden_states UpperCamelCase_: int = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swinv2 has a different seq_length UpperCamelCase_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase_: Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: str = reshaped_hidden_states[0].shape UpperCamelCase_: List[str] = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase_: Any = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Optional[Any] = 3 UpperCamelCase_: str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_: Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_: Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase_: int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Tuple = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = SwinvaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Optional[Any] = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: str = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def _a ( self ): UpperCamelCase_: str = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _lowerCamelCase ) UpperCamelCase_: List[Any] = self.default_image_processor UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: Any = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: str = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Dict = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
292
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _lowerCamelCase ): raise NotImplementedError() @abstractmethod def _a ( self ): raise NotImplementedError()
292
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowercase ( lowerCAmelCase__ : SplitDict ) -> List[Any]: __a = split_dict._to_yaml_list() assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) __a = SplitDict._from_yaml_list(lowerCAmelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __a = None # the split name of split_dict takes over the name of the split info object __a = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase__ ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowercase ( lowerCAmelCase__ : int ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __a = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
45
"""simple docstring""" import numpy as np def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> np.ndarray: return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = TransfoXLTokenizer __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = '''<unk> UNwanted , running''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''<unk> unwanted, running''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.tokenize('''<unk> UNwanted , running''') self.assertListEqual(lowercase_ , ['''<unk>''', '''unwanted''', ''',''', '''running''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [0, 4, 8, 7]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = TransfoXLTokenizer(lower_case=lowercase_) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = TransfoXLTokenizer(lower_case=lowercase_) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = TransfoXLTokenizer(lower_case=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' SCREAMING_SNAKE_CASE_ : Tuple = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowercase_) , lowercase_) self.assertEqual(tokenizer.convert_tokens_to_string(lowercase_) , lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = len(lowercase_) tokenizer.add_tokens(['''new1''', '''new2''']) tokenizer.move_added_token('''new1''' , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowercase_) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''') , [1]) self.assertEqual(tokenizer.decode([1]) , '''new1''')
318
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _A (__a , __a , __a=1e-12 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config) SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype) SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,)) def __call__( self : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE_ : Tuple = 0.0 SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01 SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = "clip_input" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ): '''simple docstring''' if input_shape is None: SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng} SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params'''] return random_params def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1)) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
318
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ViTImageProcessor if is_vision_available() else None @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = (3, 32, 128) __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) __lowerCamelCase = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } __lowerCamelCase = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCamelCase = Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) return image_input def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __lowerCamelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='np' ) __lowerCamelCase = processor(images=lowerCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = "test" __lowerCamelCase = processor(text=lowerCamelCase__ ) __lowerCamelCase = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = "test" __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.char_decode(lowerCamelCase__ ) __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ ) __lowerCamelCase = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = None __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowerCamelCase = torch.randn(1 , 27 , 38 ) __lowerCamelCase = torch.randn(1 , 27 , 50_257 ) __lowerCamelCase = torch.randn(1 , 27 , 30_522 ) __lowerCamelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
90
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A : Dict , A : Dict=7 , A : Optional[int]=3 , A : Optional[int]=18 , A : Dict=30 , A : List[Any]=400 , A : Union[str, Any]=True , A : Tuple=None , A : List[Any]=True , A : int=None , A : Optional[int]=True , ): _UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 20} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : int = min_resolution _UpperCAmelCase : Optional[int] = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Optional[Any] = size _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Optional[int] = crop_size _UpperCAmelCase : Optional[Any] = do_flip_channel_order def _A ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Tuple = MobileViTImageProcessor if is_vision_available() else None def _A ( self : List[Any] ): _UpperCAmelCase : Any = MobileViTImageProcessingTester(self ) @property def _A ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Tuple ): _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "size" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "center_crop" ) ) self.assertTrue(hasattr(A , "do_flip_channel_order" ) ) def _A ( self : Any ): _UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Any ): pass def _A ( self : Dict ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processing _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Any ): # Initialize image_processing _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Any = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( UpperCAmelCase__ ): lowerCamelCase : Any =["image_processor", "tokenizer"] lowerCamelCase : Union[str, Any] ="BlipImageProcessor" lowerCamelCase : Optional[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , a : str , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = False super().__init__(a , a ) __lowerCamelCase = self.image_processor def __call__( self : int , a : ImageInput = None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __lowerCamelCase = self.tokenizer __lowerCamelCase = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding # add pixel_values __lowerCamelCase = self.image_processor(a , return_tensors=a ) if text is not None: __lowerCamelCase = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) else: __lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self : List[str] , *a : Tuple , **a : str ): """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *a : int , **a : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
237
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def a__ ( A_, A_=False ): '''simple docstring''' try: __magic_name__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __magic_name__ = default else: # KEY is set, convert it to True or False. try: __magic_name__ = strtobool(A_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value __lowerCAmelCase : Tuple = parse_flag_from_env('RUN_SLOW', default=False) __lowerCAmelCase : str = parse_flag_from_env('RUN_REMOTE', default=False) __lowerCAmelCase : List[Any] = parse_flag_from_env('RUN_LOCAL', default=True) __lowerCAmelCase : List[str] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression __lowerCAmelCase : Optional[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') __lowerCAmelCase : Optional[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') __lowerCAmelCase : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio __lowerCAmelCase : Tuple = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam __lowerCAmelCase : Union[str, Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility __lowerCAmelCase : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows __lowerCAmelCase : Optional[Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def a__ ( A_ ): '''simple docstring''' try: import faiss # noqa except ImportError: __magic_name__ = unittest.skip("""test requires faiss""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' try: import regex # noqa except ImportError: __magic_name__ = unittest.skip("""test requires regex""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __magic_name__ = unittest.skip("""test requires elasticsearch""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __magic_name__ = unittest.skip("""test requires sqlalchemy""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not config.TORCH_AVAILABLE: __magic_name__ = unittest.skip("""test requires PyTorch""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not config.TF_AVAILABLE: __magic_name__ = unittest.skip("""test requires TensorFlow""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not config.JAX_AVAILABLE: __magic_name__ = unittest.skip("""test requires JAX""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not config.PIL_AVAILABLE: __magic_name__ = unittest.skip("""test requires Pillow""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(A_ ) else: return test_case def a__ ( A_ ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(A_ ) else: return test_case def a__ ( A_ ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(A_ ) else: return test_case def a__ ( A_ ): '''simple docstring''' def _require_spacy_model(A_ ): try: import spacy # noqa F401 spacy.load(A_ ) except ImportError: return unittest.skip("""test requires spacy""" )(A_ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(A_ ) )(A_ ) else: return test_case return _require_spacy_model def a__ ( A_ ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(A_ ) else: return test_case def a__ ( A_ ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(A_ ) else: return test_case def a__ ( A_ ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __magic_name__ = unittest.skip("""test is slow""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __magic_name__ = unittest.skip("""test is local""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __magic_name__ = unittest.skip("""test is packaged""" )(A_ ) return test_case def a__ ( A_ ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __magic_name__ = unittest.skip("""test requires remote""" )(A_ ) return test_case def a__ ( *A_ ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(A_ ) and name.startswith("""test""" ): for decorator in decorators: __magic_name__ = decorator(A_ ) setattr(cls, A_, A_ ) return cls return decorate class UpperCAmelCase_ ( _A ): '''simple docstring''' pass class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 0 a__ = 1 a__ = 2 @contextmanager def a__ ( A_=OfflineSimulationMode.CONNECTION_FAILS, A_=1e-16 ): '''simple docstring''' __magic_name__ = requests.Session().request def timeout_request(A_, A_, A_, **A_ ): # Change the url to an invalid url so that the connection hangs __magic_name__ = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __magic_name__ = timeout try: return online_request(A_, A_, **A_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __magic_name__ = url __magic_name__ = e.args[0] __magic_name__ = (max_retry_error.args[0].replace("""10.255.255.1""", f'''OfflineMock[{url}]''' ),) __magic_name__ = (max_retry_error,) raise def raise_connection_error(A_, A_, **A_ ): raise requests.ConnectionError("""Offline mode is enabled.""", request=A_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""", A_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""", A_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""", A_ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def a__ ( *A_, **A_ ): '''simple docstring''' __magic_name__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*A_, **A_ ) as tmp_dir: try: os.chdir(A_ ) yield finally: os.chdir(A_ ) @contextmanager def a__ ( ): '''simple docstring''' import gc gc.collect() __magic_name__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def a__ ( ): '''simple docstring''' import gc gc.collect() __magic_name__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def a__ ( A_, A_ ): '''simple docstring''' return deepcopy(A_ ).integers(0, 100, 10 ).tolist() == deepcopy(A_ ).integers(0, 100, 10 ).tolist() def a__ ( A_ ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(A_, *A_, **A_ ): try: return func(*A_, **A_ ) except HTTPError as err: if str(A_ ).startswith("""500""" ) or str(A_ ).startswith("""502""" ): pytest.xfail(str(A_ ) ) raise err return decorator.decorator(_wrapper, A_ ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = returncode __magic_name__ = stdout __magic_name__ = stderr async def a__ ( A_, A_ ): '''simple docstring''' while True: __magic_name__ = await stream.readline() if line: callback(A_ ) else: break async def a__ ( A_, A_=None, A_=None, A_=None, A_=False, A_=False ): '''simple docstring''' if echo: print("""\nRunning: """, """ """.join(A_ ) ) __magic_name__ = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=A_, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=A_, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __magic_name__ = [] __magic_name__ = [] def tee(A_, A_, A_, A_="" ): __magic_name__ = line.decode("""utf-8""" ).rstrip() sink.append(A_ ) if not quiet: print(A_, A_, file=A_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda A_ : tee(A_, A_, sys.stdout, label="""stdout:""" ) ), _read_stream(p.stderr, lambda A_ : tee(A_, A_, sys.stderr, label="""stderr:""" ) ), ], timeout=A_, ) return _RunOutput(await p.wait(), A_, A_ ) def a__ ( A_, A_=None, A_=None, A_=180, A_=False, A_=True ): '''simple docstring''' __magic_name__ = asyncio.get_event_loop() __magic_name__ = loop.run_until_complete( _stream_subprocess(A_, env=A_, stdin=A_, timeout=A_, quiet=A_, echo=A_ ) ) __magic_name__ = """ """.join(A_ ) if result.returncode > 0: __magic_name__ = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def a__ ( ): '''simple docstring''' __magic_name__ = os.environ.get("""PYTEST_XDIST_WORKER""", """gw0""" ) __magic_name__ = re.sub(R"""^gw""", """""", A_, 0, re.M ) return int(A_ ) def a__ ( ): '''simple docstring''' __magic_name__ = 29500 __magic_name__ = pytest_xdist_worker_id() return port + uniq_delta
88
_a = 65_521 def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = 1 lowerCamelCase__ = 0 for plain_chr in plain_text: lowerCamelCase__ = (a + ord(__snake_case )) % MOD_ADLER lowerCamelCase__ = (b + a) % MOD_ADLER return (b << 16) | a
209
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = TaConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
370
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case :Optional[Any] = logging.get_logger(__name__) __snake_case :List[Any] = '''▁''' __snake_case :List[Any] = {'''vocab_file''': '''spiece.model'''} __snake_case :Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } __snake_case :List[Any] = { '''google/reformer-crime-and-punishment''': 52_4288, } class _A ( __UpperCAmelCase ): UpperCamelCase__ : int = VOCAB_FILES_NAMES UpperCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<unk>" , __SCREAMING_SNAKE_CASE : Any=[] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.sp_model.get_piece_size() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Dict): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' if index < self.sp_model.get_piece_size(): __a = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) return token def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE) + token __a = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE) return out_string.strip() def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,)
131
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = 'huggingface/label-files' lowerCAmelCase = 'imagenet-1k-id2label.json' lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase = BitConfig( conv_layer=lowerCAmelCase_ , num_labels=1_0_0_0 , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: if "stem.conv" in name: lowerCAmelCase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowerCAmelCase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowerCAmelCase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowerCAmelCase = 'bit.' + name if "bit" not in name and "classifier" not in name: lowerCAmelCase = 'bit.encoder.' + name return name def SCREAMING_SNAKE_CASE_ ( ) -> str: lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=False ) -> Optional[int]: lowerCAmelCase = get_config(lowerCAmelCase_ ) # load original model from timm lowerCAmelCase = create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model lowerCAmelCase = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase = state_dict.pop(lowerCAmelCase_ ) lowerCAmelCase = val.squeeze() if 'head' in key else val # load HuggingFace model lowerCAmelCase = BitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # create image processor lowerCAmelCase = create_transform(**resolve_data_config({} , model=lowerCAmelCase_ ) ) lowerCAmelCase = transform.transforms lowerCAmelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCAmelCase = BitImageProcessor( do_resize=lowerCAmelCase_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase = prepare_img() lowerCAmelCase = transform(lowerCAmelCase_ ).unsqueeze(0 ) lowerCAmelCase = processor(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) # verify logits with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase_ ) lowerCAmelCase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(f"ybelkada/{model_name}" ) processor.push_to_hub(f"ybelkada/{model_name}" ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) lowercase__ : List[str] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
0
'''simple docstring''' from manim import * class __magic_name__ ( _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase_ : Dict = [mem.copy() for i in range(6 )] lowercase_ : Dict = [mem.copy() for i in range(6 )] lowercase_ : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : int = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : Optional[int] = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : str = Text("""CPU""" , font_size=24 ) lowercase_ : int = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) lowercase_ : Union[str, Any] = [mem.copy() for i in range(4 )] lowercase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : List[Any] = Text("""GPU""" , font_size=24 ) lowercase_ : int = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) lowercase_ : Tuple = [mem.copy() for i in range(6 )] lowercase_ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : Any = Text("""Model""" , font_size=24 ) lowercase_ : int = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) lowercase_ : Tuple = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase_ : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) lowercase_ : Tuple = [mem.copy() for i in range(6 )] lowercase_ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : int = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase_ : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase_ : Optional[int] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) lowercase_ : List[str] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase_ : str = MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) lowercase_ : Optional[Any] = [] lowercase_ : Any = [] for i, rect in enumerate(lowercase_ ): lowercase_ : Tuple = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) lowercase_ : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
21
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import numpy # List of input, output pairs a : str = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) a : Any = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) a : Tuple = [2, 4, 1, 5] a : Any = len(train_data) a : Any = 0.0_0_9 def __lowerCamelCase ( _lowercase , _lowercase="train" ) -> Dict: return calculate_hypothesis_value(_lowercase , _lowercase ) - output( _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : List[str] = 0 for i in range(len(_lowercase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCamelCase ( _lowercase , _lowercase=m ) -> Tuple: UpperCAmelCase : int = 0 for i in range(_lowercase ): if index == -1: summation_value += _error(_lowercase ) else: summation_value += _error(_lowercase ) * train_data[i][0][index] return summation_value def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Tuple = summation_of_cost_derivative(_lowercase , _lowercase ) / m return cost_derivative_value def __lowerCamelCase ( ) -> Any: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.00_0002 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : int = 0 while True: j += 1 UpperCAmelCase : Optional[int] = [0, 0, 0, 0] for i in range(0 , len(_lowercase ) ): UpperCAmelCase : Tuple = get_cost_derivative(i - 1 ) UpperCAmelCase : int = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ): break UpperCAmelCase : List[Any] = temp_parameter_vector print(("""Number of iterations:""", j) ) def __lowerCamelCase ( ) -> Optional[int]: for i in range(len(_lowercase ) ): print(("""Actual output value:""", output(_lowercase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_lowercase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
265
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return getitem, k def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return setitem, k, v def __lowerCamelCase ( _lowercase ) -> int: return delitem, k def __lowerCamelCase ( _lowercase , _lowercase , *_lowercase ) -> Optional[Any]: try: return fun(_lowercase , *_lowercase ), None except Exception as e: return None, e a : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a : int = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a : List[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = HashMap(initial_block_size=4 ) UpperCAmelCase : Dict = {} for _, (fun, *args) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = _run_operation(_lowercase , _lowercase , *_lowercase ) UpperCAmelCase , UpperCAmelCase : Any = _run_operation(_lowercase , _lowercase , *_lowercase ) assert my_res == py_res assert str(_lowercase ) == str(_lowercase ) assert set(_lowercase ) == set(_lowercase ) assert len(_lowercase ) == len(_lowercase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowercase ) -> bool: return not name.startswith("""_""" ) UpperCAmelCase : int = {name for name in dir({} ) if is_public(_lowercase )} UpperCAmelCase : Any = {name for name in dir(HashMap() ) if is_public(_lowercase )} assert dict_public_names > hash_public_names
265
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : snake_case__ : int snake_case__ : TreeNode | None = None snake_case__ : TreeNode | None = None lowerCAmelCase__ = namedtuple('''CoinsDistribResult''', '''moves excess''') def snake_case_ ( A_ : List[Any] ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A_ : Optional[int] ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A_ : Any ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__SCREAMING_SNAKE_CASE ) != count_coins(__SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(A_ : List[Any] ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0, 1 ) _lowerCamelCase : Optional[Any] = get_distrib(node.left ) _lowerCamelCase : Optional[int] = get_distrib(node.right ) _lowerCamelCase : Any = 1 - left_distrib_excess _lowerCamelCase : str = 1 - right_distrib_excess _lowerCamelCase : Dict = ( left_distrib_moves + right_distrib_moves + abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) ) _lowerCamelCase : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) return get_distrib(__SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __snake_case ( _lowercase): snake_case__ : List[Any] = "xglm" snake_case__ : Dict = ["past_key_values"] snake_case__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __lowerCAmelCase : List[Any]=2_5_6_0_0_8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : Dict=1_0_2_4 , __lowerCAmelCase : List[str]=4_0_9_6 , __lowerCAmelCase : Tuple=2_4 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : int = d_model _lowerCamelCase : Optional[Any] = ffn_dim _lowerCamelCase : Any = num_layers _lowerCamelCase : Union[str, Any] = attention_heads _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Union[str, Any] = dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : List[str] = init_std _lowerCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : str = use_cache super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
175
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : Optional[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowerCAmelCase : Dict = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : str = BartTokenizer def __init__( self : Any , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Dict="replace" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Optional[int]="<pad>" , lowerCAmelCase__ : List[str]="<mask>" , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : Optional[int] , ): super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__) != add_prefix_space: SCREAMING_SNAKE_CASE_: List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop("type")) SCREAMING_SNAKE_CASE_: str = add_prefix_space SCREAMING_SNAKE_CASE_: Optional[Any] = pre_tok_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_: Tuple = "post_processor" SCREAMING_SNAKE_CASE_: Optional[Any] = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_: Optional[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_: Any = tuple(state["sep"]) if "cls" in state: SCREAMING_SNAKE_CASE_: Optional[Any] = tuple(state["cls"]) SCREAMING_SNAKE_CASE_: Optional[Any] = False if state.get("add_prefix_space" , lowerCAmelCase__) != add_prefix_space: SCREAMING_SNAKE_CASE_: Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE_: List[Any] = True if state.get("trim_offsets" , lowerCAmelCase__) != trim_offsets: SCREAMING_SNAKE_CASE_: Optional[int] = trim_offsets SCREAMING_SNAKE_CASE_: int = True if changes_to_apply: SCREAMING_SNAKE_CASE_: List[str] = getattr(lowerCAmelCase__ , state.pop("type")) SCREAMING_SNAKE_CASE_: str = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : int): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else value SCREAMING_SNAKE_CASE_: List[str] = value def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[int] = kwargs.get("is_split_into_words" , lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: int = kwargs.get("is_split_into_words" , lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): SCREAMING_SNAKE_CASE_: Tuple = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def a__ ( snake_case__ ) -> str: if not sentence: return "" lowerCamelCase = dict(zip(__snake_case , __snake_case ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
364
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def a__ ( snake_case__ ) -> int: lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCamelCase = emb.weight.data return lin_layer def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCamelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCamelCase = checkpoint["""model"""] remove_ignore_keys_(snake_case__ ) lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowerCamelCase = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase = XGLMForCausalLM(snake_case__ ) lowerCamelCase = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) lowerCamelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() lowerCAmelCase : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
168
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Initialise PyTorch model __snake_case : List[str] = MobileBertConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) __snake_case : int = MobileBertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint __snake_case : Optional[int] = load_tf_weights_in_mobilebert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
123
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Any: __snake_case : List[Any] = dataset __snake_case : Optional[int] = process __snake_case : str = params def __len__( self : Optional[Any] ) -> Any: return len(self.dataset ) def __getitem__( self : Dict , lowerCamelCase : List[Any] ) -> List[str]: __snake_case : List[Any] = self.dataset[i] __snake_case : Tuple = self.process(lowerCamelCase , **self.params ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict=None ) -> int: __snake_case : List[Any] = loader __snake_case : Dict = infer __snake_case : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping __snake_case : int = None __snake_case : Optional[int] = None def __len__( self : Optional[Any] ) -> Tuple: return len(self.loader ) def __iter__( self : str ) -> Tuple: __snake_case : int = iter(self.loader ) return self def __snake_case ( self : int ) -> Any: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase , lowerCamelCase ): # Convert ModelOutput to tuple first __snake_case : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __snake_case : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase , lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : str = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __snake_case : Union[str, Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : Optional[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __snake_case : Tuple = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __snake_case : str = self._loader_batch_data.__class__(lowerCamelCase ) self._loader_batch_index += 1 return result def __snake_case ( self : Dict ) -> Union[str, Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __snake_case : List[str] = next(self.iterator ) __snake_case : int = self.infer(lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : List[Any] = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : List[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[str] = len(lowerCamelCase ) else: __snake_case : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch __snake_case : Union[str, Any] = processed __snake_case : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None ) -> Any: super().__init__(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __iter__( self : Optional[int] ) -> Optional[int]: __snake_case : Union[str, Any] = iter(self.loader ) __snake_case : int = None return self def __snake_case ( self : List[Any] ) -> List[Any]: if self.subiterator is None: __snake_case : Optional[int] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __snake_case : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __snake_case : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) __snake_case : int = next(self.subiterator ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __iter__( self : Any ) -> Optional[Any]: __snake_case : str = iter(self.loader ) return self def __snake_case ( self : Tuple ) -> str: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __snake_case : Dict = False __snake_case : Dict = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __snake_case : Union[str, Any] = self.loader_batch_item() __snake_case : Any = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator while not is_last: __snake_case : str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : Optional[int] = processed else: __snake_case : Union[str, Any] = list(processed.keys() )[0] __snake_case : Optional[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = len(lowerCamelCase ) else: __snake_case : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Dict = observed_batch_size __snake_case : Union[str, Any] = processed __snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: __snake_case : str = self.loader_batch_item() __snake_case : str = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator else: __snake_case : List[str] = processed __snake_case : Tuple = item.pop("is_last" ) accumulator.append(lowerCamelCase ) return accumulator class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Dataset , lowerCamelCase : str ) -> Optional[Any]: __snake_case : int = dataset __snake_case : Union[str, Any] = key def __len__( self : Tuple ) -> Union[str, Any]: return len(self.dataset ) def __getitem__( self : Optional[Any] , lowerCamelCase : str ) -> Optional[int]: return self.dataset[i][self.key] class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : Dataset , lowerCamelCase : str , lowerCamelCase : str ) -> List[str]: __snake_case : Any = dataset __snake_case : Any = keya __snake_case : Union[str, Any] = keya def __len__( self : Optional[int] ) -> Tuple: return len(self.dataset ) def __getitem__( self : Tuple , lowerCamelCase : List[str] ) -> Optional[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
123
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _a : Any= trt.Logger(trt.Logger.WARNING) _a : Optional[int]= absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _a : Any= logging.getLogger(__name__) _a : Union[str, Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) _a : Optional[Any]= parser.parse_args() if args.tokenizer_name: _a : Optional[Any]= AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) _a : List[Any]= args.per_device_eval_batch_size _a : Tuple= (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _a : str= True _a : int= "temp_engine/bert-fp32.engine" if args.fpaa: _a : List[str]= "temp_engine/bert-fp16.engine" if args.inta: _a : Optional[Any]= "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") _a : Optional[int]= 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _a : Tuple= [network.get_input(i) for i in range(network.num_inputs)] _a : Optional[int]= [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _a : int= 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _a : List[Any]= builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _a : int= builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) __snake_case : str = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) __snake_case : Union[str, Any] = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , UpperCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , UpperCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , UpperCAmelCase_ ) # start time __snake_case : str = time.time() # Run inference context.execute_async( bindings=[int(UpperCAmelCase_ ) for d_inp in d_inputs] + [int(UpperCAmelCase_ ), int(UpperCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) cuda.memcpy_dtoh_async(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __snake_case : str = time.time() __snake_case : int = end_time - start_time __snake_case : List[str] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _a : Tuple= Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a : Dict= load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _a : Union[str, Any]= raw_datasets["validation"].column_names _a : Any= "question" if "question" in column_names else column_names[0] _a : List[Any]= "context" if "context" in column_names else column_names[1] _a : Tuple= "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _a : List[Any]= tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _a : str= min(args.max_seq_length, tokenizer.model_max_length) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __snake_case : Any = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=UpperCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __snake_case : Optional[int] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __snake_case : Optional[Any] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __snake_case : Optional[int] = tokenized_examples.sequence_ids(UpperCAmelCase_ ) __snake_case : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __snake_case : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __snake_case : Optional[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples _a : List[Any]= raw_datasets["validation"] # Validation Feature Creation _a : Dict= eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) _a : Optional[int]= default_data_collator _a : Tuple= eval_dataset.remove_columns(["example_id", "offset_mapping"]) _a : List[Any]= DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str="eval" ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = postprocess_qa_predictions( examples=UpperCAmelCase_ , features=UpperCAmelCase_ , predictions=UpperCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=UpperCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __snake_case : Dict = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: __snake_case : Optional[int] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] __snake_case : Union[str, Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=UpperCAmelCase_ , label_ids=UpperCAmelCase_ ) _a : List[Any]= load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' return trt.volume(engine.get_binding_shape(UpperCAmelCase_ ) ) * engine.get_binding_dtype(UpperCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. _a : Dict= [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _a : Dict= cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _a : int= cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _a : List[str]= cuda.mem_alloc(h_outputa.nbytes) _a : Optional[Any]= cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _a : Optional[Any]= cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') _a : Union[str, Any]= 0.0 _a : Union[str, Any]= 0 _a : str= timeit.default_timer() _a : List[str]= None for step, batch in enumerate(eval_dataloader): _a : Dict= model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _a : Optional[int]= outputs _a : Optional[Any]= torch.tensor(start_logits) _a : List[str]= torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _a : List[Any]= accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _a : str= accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _a : Any= (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _a : List[str]= logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _a : List[Any]= nested_truncate(all_preds, len(eval_dataset)) _a : Optional[Any]= timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1_000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1_000)) logger.info("Total Number of Inference = %d", niter) _a : int= post_processing_function(eval_examples, eval_dataset, all_preds) _a : Any= metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
355
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 ) -> int: '''simple docstring''' __snake_case : str = right or len(UpperCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase_ , UpperCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
0
from __future__ import annotations def __UpperCamelCase ( _A : list[int] , _A : list[int] , _A : list[int] , _A : list[list[str]] , _A : int , ) ->None: """simple docstring""" lowerCamelCase_ =len(_A ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_A ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _A , _A , ) def __UpperCamelCase ( _A : int ) ->None: """simple docstring""" lowerCamelCase_ =[] depth_first_search([] , [] , [] , _A , _A ) # Print all the boards for board in boards: for column in board: print(_A ) print("""""" ) print(len(_A ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
154
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : Any , _A : Optional[int] ) ->List[str]: """simple docstring""" lowerCamelCase_ =s.rsplit(_A , _A ) return new.join(_A ) def __UpperCamelCase ( _A : List[Any] ) ->Dict: """simple docstring""" # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( _A : str ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase_ =key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowerCamelCase_ =key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowerCamelCase_ =rreplace(_A , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowerCamelCase_ =rreplace(_A , """.b""" , """.bias""" , 1 ) lowerCamelCase_ =value.float() return upgrade @torch.no_grad() def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any]=None , _A : Dict=True ) ->Optional[int]: """simple docstring""" from dall_e import Encoder lowerCamelCase_ =Encoder() if os.path.exists(_A ): lowerCamelCase_ =torch.load(_A ) else: lowerCamelCase_ =torch.hub.load_state_dict_from_url(_A ) if isinstance(_A , _A ): lowerCamelCase_ =ckpt.state_dict() encoder.load_state_dict(_A ) if config_path is not None: lowerCamelCase_ =FlavaImageCodebookConfig.from_pretrained(_A ) else: lowerCamelCase_ =FlavaImageCodebookConfig() lowerCamelCase_ =FlavaImageCodebook(_A ).eval() lowerCamelCase_ =encoder.state_dict() lowerCamelCase_ =upgrade_state_dict(_A ) hf_model.load_state_dict(_A ) lowerCamelCase_ =hf_model.state_dict() lowerCamelCase_ =count_parameters(_A ) lowerCamelCase_ =count_parameters(_A ) assert torch.allclose(_A , _A , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_A ) else: return hf_state_dict if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __A : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
154
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __magic_name__ = logging.get_logger(__name__) class snake_case__ ( _lowerCAmelCase ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
361
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class snake_case__ ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int: super().__init__() __magic_name__ : Any = pad_token_id __magic_name__ : Any = max_length __magic_name__ : List[str] = vocab __magic_name__ : List[Any] = merges __magic_name__ : int = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: __magic_name__ : Union[str, Any] = [""" """.join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : Union[str, Any] = tokenizer.get_vocab() return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: __magic_name__ : Optional[Any] = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ ) -> List[Any]: return cls(**lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> int: __magic_name__ : Dict = self.tf_tokenizer(lowerCAmelCase__ ) __magic_name__ : Dict = tf.ones_like(lowerCAmelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ ,__magic_name__ : List[Any] = pad_model_inputs( lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
138
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def lowerCamelCase__ ( a , a , a ) -> Any: _A: str = hf_hub_url(repo_id=a , path=a , revision=a ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(a )}"""
121
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase__ ( a , a=10_00 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _A: List[Any] = n - 1 _A: Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _A: List[str] = 0 while count < prec: _A: Optional[int] = random.randint(2 , n - 1 ) _A: Union[str, Any] = bin_exp_mod(a , a , a ) if b != 1: _A: Optional[Any] = True for _ in range(a ): if b == n - 1: _A: int = False break _A: Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase__ : Dict = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
121
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="pt" ): lowercase__ = {"add_prefix_space": True} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not line.startswith(" " ) else {} lowercase__ = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE_ , padding="max_length" if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , ): lowercase__ = input_ids.ne(SCREAMING_SNAKE_CASE_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _snake_case ( lowercase__): def __init__( self : List[str], __lowercase : str, __lowercase : Optional[Any], __lowercase : Optional[Any], __lowercase : Tuple, __lowercase : int="train", __lowercase : List[Any]=None, __lowercase : List[str]=None, __lowercase : int=None, __lowercase : Tuple="", ): super().__init__() lowercase__ = Path(__lowercase ).joinpath(type_path + ".source" ) lowercase__ = Path(__lowercase ).joinpath(type_path + ".target" ) lowercase__ = self.get_char_lens(self.src_file ) lowercase__ = max_source_length lowercase__ = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' lowercase__ = tokenizer lowercase__ = prefix if n_obs is not None: lowercase__ = self.src_lens[:n_obs] lowercase__ = src_lang lowercase__ = tgt_lang def __len__( self : str ): return len(self.src_lens ) def __getitem__( self : Tuple, __lowercase : Optional[Any] ): lowercase__ = index + 1 # linecache starts at 1 lowercase__ = self.prefix + linecache.getline(str(self.src_file ), __lowercase ).rstrip("\n" ) lowercase__ = linecache.getline(str(self.tgt_file ), __lowercase ).rstrip("\n" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer, __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer, __lowercase ) else self.tokenizer ) lowercase__ = self.tokenizer.generator if isinstance(self.tokenizer, __lowercase ) else self.tokenizer lowercase__ = encode_line(__lowercase, __lowercase, self.max_source_length, "right" ) lowercase__ = encode_line(__lowercase, __lowercase, self.max_target_length, "right" ) lowercase__ = source_inputs["input_ids"].squeeze() lowercase__ = target_inputs["input_ids"].squeeze() lowercase__ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A__ ( __lowercase : Optional[int] ): return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def A__ ( self : Union[str, Any], __lowercase : List[Any] ): lowercase__ = torch.stack([x["input_ids"] for x in batch] ) lowercase__ = torch.stack([x["attention_mask"] for x in batch] ) lowercase__ = torch.stack([x["decoder_input_ids"] for x in batch] ) lowercase__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, __lowercase ) else self.tokenizer.pad_token_id ) lowercase__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, __lowercase ) else self.tokenizer.pad_token_id ) lowercase__ = trim_batch(__lowercase, __lowercase ) lowercase__ , lowercase__ = trim_batch(__lowercase, __lowercase, attention_mask=__lowercase ) lowercase__ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ = getLogger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = get_git_info() save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , "git_log.json" ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=4 , **SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( ): lowercase__ = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE_ ) lowercase__ = { "repo_id": str(SCREAMING_SNAKE_CASE_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return list(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: return pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): def remove_articles(SCREAMING_SNAKE_CASE_ ): return re.sub(r"\b(a|an|the)\b" , " " , SCREAMING_SNAKE_CASE_ ) def white_space_fix(SCREAMING_SNAKE_CASE_ ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE_ ): lowercase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() lowercase__ = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() lowercase__ = Counter(SCREAMING_SNAKE_CASE_ ) & Counter(SCREAMING_SNAKE_CASE_ ) lowercase__ = sum(common.values() ) if num_same == 0: return 0 lowercase__ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) lowercase__ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) lowercase__ = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) lowercase__ = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): em += exact_match_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: em /= len(SCREAMING_SNAKE_CASE_ ) return {"em": em} def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return model_prefix.startswith("rag" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase__ = "dropout_rate" for p in extra_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not hasattr(SCREAMING_SNAKE_CASE_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue lowercase__ = p if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return hparams, config
367
from __future__ import annotations def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
224
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a__( A__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = VideoToVideoSDPipeline UpperCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {"image", "width", "height"} UpperCAmelCase_ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {"image"} UpperCAmelCase_ : int = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase_ : Union[str, Any] = False # No `output_type`. UpperCAmelCase_ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase = CLIPTextModel(__A) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=0): """simple docstring""" lowerCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__A)).to(__A) if str(__A).startswith("""mps"""): lowerCAmelCase = torch.manual_seed(__A) else: lowerCAmelCase = torch.Generator(device=__A).manual_seed(__A) lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def a_ ( self): """simple docstring""" lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = VideoToVideoSDPipeline(**__A) lowerCAmelCase = sd_pipe.to(__A) sd_pipe.set_progress_bar_config(disable=__A) lowerCAmelCase = self.get_dummy_inputs(__A) lowerCAmelCase = """np""" lowerCAmelCase = sd_pipe(**__A).frames lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCAmelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__A , expected_max_diff=5E-3) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""") def a_ ( self): """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""") def a_ ( self): """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""") def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa) pipe.enable_model_cpu_offload() # 10 frames lowerCAmelCase = torch.Generator(device="""cpu""").manual_seed(0) lowerCAmelCase = torch.randn((1, 10, 3, 1024, 576) , generator=__A) lowerCAmelCase = video.to("""cuda""") lowerCAmelCase = """Spiderman is surfing""" lowerCAmelCase = pipe(__A , video=__A , generator=__A , num_inference_steps=3 , output_type="""pt""").frames lowerCAmelCase = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656]) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array).sum() < 1E-2
272
"""simple docstring""" from PIL import Image def _snake_case ( lowercase__ : Image , lowercase__ : float ) -> Image: '''simple docstring''' def brightness(lowercase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 __UpperCAmelCase = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
84
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Dict=None ) -> str: # Recurse if needed if "." in tensor_name: snake_case = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) snake_case = new_module snake_case = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) snake_case = tensor_name in module._buffers snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) snake_case = False snake_case = False if is_buffer or not is_bitsandbytes_available(): snake_case = False snake_case = False else: snake_case = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): snake_case = value.to("""cpu""" ) if value.dtype == torch.inta: snake_case = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: snake_case = torch.tensor(__lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: snake_case = new_value.T snake_case = old_value.__dict__ if is_abit: snake_case = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: snake_case = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) snake_case = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: snake_case = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): snake_case = value.to(__lowerCAmelCase ) else: snake_case = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: snake_case = new_value else: snake_case = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) snake_case = new_value def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : str=False ) -> Dict: for name, module in model.named_children(): if current_key_name is None: snake_case = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case , snake_case = module.weight.shape else: snake_case = module.in_features snake_case = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case = True # Store the module class in case we need to transpose the weight later snake_case = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: snake_case , snake_case = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=None ) -> List[Any]: snake_case = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert snake_case , snake_case = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowerCamelCase ( *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> str: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( *__lowerCAmelCase : int , **__lowerCAmelCase : Any ) -> str: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> List[Any]: snake_case = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case = sum(__lowerCAmelCase , [] ) snake_case = len(__lowerCAmelCase ) > 0 # Check if it is a base model snake_case = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case = list(model.named_children() ) snake_case = [list_modules[-1][0]] # add last module together with tied weights snake_case = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) snake_case = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys snake_case = [""".weight""", """.bias"""] snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
_lowerCamelCase =8.3144598 def _a ( lowerCamelCase, lowerCamelCase ): if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _lowerCamelCase =3_0_0 _lowerCamelCase =2_8 _lowerCamelCase =rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
287
def _a ( lowerCamelCase ): if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCamelCase : Any = 4 lowerCamelCase : List[str] = (1 << p) - 1 for _ in range(p - 2 ): lowerCamelCase : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
287
1
import numpy as np def A_ ( A__ ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def A_ ( A__ ) -> np.ndarray: return vector * sigmoid(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
362
def A_ ( A__ ) -> int: if not isinstance(A__ , A__ ): raise TypeError('only integers accepted as input' ) else: a__ : List[Any] = str(abs(A__ ) ) a__ : Optional[int] = [list(A__ ) for char in range(len(A__ ) )] for index in range(len(A__ ) ): num_transpositions[index].pop(A__ ) return max( int(''.join(list(A__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
225
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } lowerCamelCase = { """google/reformer-crime-and-punishment""": 52_4288, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : int=[] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : Optional[int] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str): '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase =self.sp_model.IdToPiece(_lowerCAmelCase) return token def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =[] __lowercase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase) + token __lowercase =[] else: current_sub_tokens.append(_lowerCAmelCase) out_string += self.sp_model.decode(_lowerCAmelCase) return out_string.strip() def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
166
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : List[str] ) -> str: snake_case = logging.get_logger() # the current default level is logging.WARNING snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__A ) def UpperCAmelCase(self : List[Any] ) -> Dict: snake_case = logging.get_verbosity() snake_case = logging.get_logger("transformers.models.bart.tokenization_bart" ) snake_case = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__A ) as cl: logger.warning(__A ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__A ) as cl: logger.warning(__A ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__A ) as cl: logger.warning(__A ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(__A ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def UpperCAmelCase(self : str ) -> Optional[Any]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var snake_case = logging.get_logger("transformers.models.bart.tokenization_bart" ) snake_case = os.getenv("TRANSFORMERS_VERBOSITY" , __A ) snake_case = logging.log_levels[env_level_str] snake_case = logging.get_verbosity() self.assertEqual( __A , __A , f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level snake_case = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def UpperCAmelCase(self : str ) -> Any: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() snake_case = logging.logging.getLogger() with CaptureLogger(__A ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def UpperCAmelCase(self : str ) -> Any: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() snake_case = logging.get_logger("transformers.models.bart.tokenization_bart" ) snake_case = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(__A ) as cl: logger.warning_advice(__A ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__A ) as cl: logger.warning_advice(__A ) self.assertEqual(cl.out , msg + "\n" ) def lowercase_ ( ) -> List[str]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
351
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__(self : Union[str, Any] , _A : Any , _A : Tuple=1_3 , _A : Optional[int]=7 , _A : Any=True , _A : str=True , _A : Union[str, Any]=True , _A : Optional[int]=True , _A : str=9_9 , _A : str=2_4 , _A : int=2 , _A : Optional[Any]=6 , _A : int=3_7 , _A : List[Any]="gelu" , _A : str=0.1 , _A : Dict=0.1 , _A : Dict=5_1_2 , _A : Tuple=1_6 , _A : List[str]=2 , _A : Dict=0.02 , _A : List[str]=3 , _A : Optional[Any]=None , _A : Dict=1_0_0_0 , ) -> Any: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = scope snake_case = range_bbox def UpperCAmelCase(self : List[str] ) -> List[str]: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case = bbox[i, j, 3] snake_case = bbox[i, j, 1] snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case = bbox[i, j, 2] snake_case = bbox[i, j, 0] snake_case = t snake_case = None if self.use_input_mask: snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase(self : Tuple ) -> Tuple: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase(self : List[str] , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : Dict , _A : str , _A : Optional[Any] , _A : Tuple , ) -> Dict: snake_case = LiltModel(config=_A ) model.to(_A ) model.eval() snake_case = model(_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) snake_case = model(_A , bbox=_A , token_type_ids=_A ) snake_case = model(_A , bbox=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase(self : Optional[Any] , _A : Optional[int] , _A : Dict , _A : List[Any] , _A : Tuple , _A : Optional[int] , _A : Tuple , _A : Union[str, Any] , ) -> Optional[int]: snake_case = self.num_labels snake_case = LiltForTokenClassification(config=_A ) model.to(_A ) model.eval() snake_case = model( _A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase(self : str , _A : List[Any] , _A : Union[str, Any] , _A : Any , _A : List[str] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , ) -> Optional[int]: snake_case = LiltForQuestionAnswering(config=_A ) model.to(_A ) model.eval() snake_case = model( _A , bbox=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase(self : str ) -> str: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( A_ , A_ , A_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[int] = False def UpperCAmelCase(self : Dict , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : int , _A : Union[str, Any] ) -> int: return True def UpperCAmelCase(self : str ) -> Tuple: snake_case = LiltModelTester(self ) snake_case = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def UpperCAmelCase(self : Optional[int] ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase(self : Tuple ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase(self : int ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase(self : Optional[Any] ) -> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCAmelCase(self : Optional[Any] ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = LiltModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @slow class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Tuple ) -> Optional[int]: snake_case = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_A ) snake_case = torch.tensor([[1, 2]] , device=_A ) snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_A ) # forward pass with torch.no_grad(): snake_case = model(input_ids=_A , bbox=_A ) snake_case = torch.Size([1, 2, 7_6_8] ) snake_case = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_A , ) self.assertTrue(outputs.last_hidden_state.shape , _A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _A , atol=1E-3 ) )
137
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=_UpperCamelCase ): A = ['note_seq'] def __init__( self : Tuple,*_A : List[Any],**_A : str ): """simple docstring""" requires_backends(self,["note_seq"] ) @classmethod def __UpperCamelCase ( cls : List[Any],*_A : str,**_A : Optional[Any] ): """simple docstring""" requires_backends(cls,["note_seq"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any],*_A : Dict,**_A : Any ): """simple docstring""" requires_backends(cls,["note_seq"] )
18
'''simple docstring''' __lowerCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = set() # keep track of all the paths to be checked _a : Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _a : Tuple = queue.pop(0 ) # get the last node from the path _a : Tuple = path[-1] if node not in explored: _a : Optional[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _a : Any = list(lowerCAmelCase_ ) new_path.append(lowerCAmelCase_ ) queue.append(lowerCAmelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase_ ) # in case there's no path between the 2 nodes return [] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _a : Optional[int] = [start] _a : Dict = set(lowerCAmelCase_ ) # Keep tab on distances from `start` node. _a : Dict = {start: 0, target: -1} while queue: _a : List[str] = queue.pop(0 ) if node == target: _a : Any = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase_ ) queue.append(lowerCAmelCase_ ) _a : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
89
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=__lowerCAmelCase , ) assert hasattr(self , """env""" ) def a_ ( self : List[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" A__ = { """enabled""": True, """processes_per_host""": 8, } A__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } A__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} A__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 5_00, } , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="""py36""" , ) def a_ ( self : List[str] , __lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" TrainingJobAnalytics(__lowerCAmelCase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def a_ ( self : Dict , __lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" A__ = self.create_estimator(__lowerCAmelCase ) # run training estimator.fit() # result dataframe A__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) A__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCAmelCase )
356
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
276
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=0.6 , _lowerCamelCase=None , ): UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : int = patch_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Dict = mask_ratio UpperCAmelCase__ : Optional[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def snake_case__ ( self): UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def snake_case__ ( self): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = ViTMAEModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : int = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = ViTMAEForPreTraining(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : List[str] = model(_lowerCamelCase) UpperCAmelCase__ : Dict = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase) UpperCAmelCase__ : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def snake_case__ ( self): UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase :Tuple = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase :Any = False lowerCAmelCase :Tuple = False lowerCAmelCase :Any = False lowerCAmelCase :int = False def snake_case__ ( self): UpperCAmelCase__ : str = ViTMAEModelTester(self) UpperCAmelCase__ : Any = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""") def snake_case__ ( self): pass def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(_lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear)) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): # make masks reproducible np.random.seed(2) UpperCAmelCase__ : Any = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCAmelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCAmelCase__ : Optional[Any] = torch.from_numpy(_lowerCamelCase) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Tuple = pt_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase)) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : int = model_class.from_pretrained(_lowerCamelCase) model.to(_lowerCamelCase) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase)) # Make sure we don't have nans UpperCAmelCase__ : str = after_outputs[0].cpu().numpy() UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Tuple = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_lowerCamelCase , 1e-5) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def snake_case__ ( self): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def snake_case__ ( self): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def snake_case__ ( self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def snake_case__ ( self): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def snake_case__ ( self): pass @slow def snake_case__ ( self): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) def _UpperCamelCase ( ): UpperCAmelCase__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""") if is_vision_available() else None @slow def snake_case__ ( self): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCAmelCase__ : Optional[Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""").to(_lowerCamelCase) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[str] = ViTMAEConfig() UpperCAmelCase__ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCAmelCase__ : str = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**_lowerCamelCase , noise=torch.from_numpy(_lowerCamelCase).to(device=_lowerCamelCase)) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , _lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCamelCase) , atol=1e-4))
163
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False): UpperCAmelCase__ : str = scheduler UpperCAmelCase__ : Dict = optimizers if isinstance(_lowerCamelCase , (list, tuple)) else [optimizers] UpperCAmelCase__ : List[Any] = split_batches UpperCAmelCase__ : Tuple = step_with_optimizer UpperCAmelCase__ : Union[str, Any] = GradientState() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase__ : Dict = AcceleratorState().num_processes for _ in range(_lowerCamelCase): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps"""): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_last_lr() def snake_case__ ( self): return self.scheduler.state_dict() def snake_case__ ( self , _lowerCamelCase): self.scheduler.load_state_dict(_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_lr() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase)
163
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = "sgugger/tiny-distilbert-classification" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , only_pretrain_model=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , torchscript=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # set architectures equal to `None` lowerCAmelCase__ = None lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Any ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def a ( self : int ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : List[Any] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , save_to_csv=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) ).exists() ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE__ : List[Any] ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "sequential" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "cumulative" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "current" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) , log_print=SCREAMING_SNAKE_CASE__ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) ).exists() )
221
import random def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase_ ) elif element > pivot: greater.append(lowerCAmelCase_ ) else: equal.append(lowerCAmelCase_ ) return less, equal, greater def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int ): """simple docstring""" if index >= len(lowerCAmelCase_ ) or index < 0: return None lowerCAmelCase__ = items[random.randint(0 , len(lowerCAmelCase_ ) - 1 )] lowerCAmelCase__ = 0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _partition(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase_ , lowerCAmelCase_ ) # must be in larger else: return quick_select(lowerCAmelCase_ , index - (m + count) )
221
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : List[Any] ): UpperCamelCase :int = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__lowercase ).to(__lowercase ) UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) UpperCamelCase :List[str] = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids UpperCamelCase :int = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids UpperCamelCase :str = model(input_ids.to(__lowercase ) , labels=labels.to(__lowercase ) ).loss UpperCamelCase :Tuple = -(labels.shape[-1] * loss.item()) UpperCamelCase :Optional[Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
38
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''README.md''') print(F"""Generating {path}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(lowerCamelCase) # make sure we are under the root of the project _UpperCAmelCase : Dict = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Optional[int] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = model_name.split("""-""") _UpperCAmelCase : Union[str, Any] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
174
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __a = 2_99_79_24_58 # Symbols __a , __a , __a , __a = symbols('''ct x y z''') def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" return 1 / sqrt(1 - beta(_UpperCamelCase ) ** 2 ) def __lowercase ( _UpperCamelCase ) ->np.ndarray: """simple docstring""" return np.array( [ [gamma(_UpperCamelCase ), -gamma(_UpperCamelCase ) * beta(_UpperCamelCase ), 0, 0], [-gamma(_UpperCamelCase ) * beta(_UpperCamelCase ), gamma(_UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->np.ndarray: """simple docstring""" if event is None: lowercase : List[Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __a = transform(29_97_92_45) print('''Example of four vector: ''') print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __a = {ct: c, x: 1, y: 1, z: 1} __a = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
173
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : int = 0 @slow def __lowerCamelCase ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Check that tokenizer_type ≠ model_type lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowercase : str = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCamelCase ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase : Any = TOKENIZER_MAPPING.values() lowercase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = '''Hello, world. How are you?''' lowercase : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : int = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Check we can load the tokenizer config of an online model. lowercase : Optional[Any] = get_tokenizer_config('''bert-base-cased''' ) lowercase : str = config.pop('''_commit_hash''' , SCREAMING_SNAKE_CASE__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE__ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase : Union[str, Any] = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) lowercase : int = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCamelCase ( self ): class __SCREAMING_SNAKE_CASE ( A__ ): A : str = False class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = NewTokenizer A : Optional[int] = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): lowercase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='''aaaaaa''' ) def __lowerCamelCase ( self ): # Make sure we have cached the tokenizer. lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
173
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") _SCREAMING_SNAKE_CASE : List[Any] = f'''https://www.google.com/search?q={query}&num=100''' _SCREAMING_SNAKE_CASE : str = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: _SCREAMING_SNAKE_CASE : Dict = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: _SCREAMING_SNAKE_CASE : str = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
127
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = int(UpperCamelCase_ ) snake_case , snake_case , snake_case = t // 36_00, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=3_00 ): """simple docstring""" return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: snake_case = F'''{elt:.6f}''' if isinstance(UpperCamelCase_ ,UpperCamelCase_ ) else str(UpperCamelCase_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A__ : """simple docstring""" __magic_name__ = 5 __magic_name__ = 0.2 def __init__( self , __snake_case , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = 3_0_0 , ): snake_case = total snake_case = '''''' if prefix is None else prefix snake_case = leave snake_case = parent snake_case = width snake_case = None snake_case = None snake_case = None def a_ ( self , __snake_case , __snake_case = False , __snake_case = None ): snake_case = value if comment is not None: snake_case = comment if self.last_value is None: snake_case = snake_case = time.time() snake_case = snake_case = value snake_case = snake_case = None snake_case = self.warmup snake_case = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 snake_case = time.time() snake_case = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: snake_case = self.elapsed_time / (value - self.start_value) else: snake_case = None if value >= self.total: snake_case = self.total snake_case = None if not self.leave: self.close() elif self.average_time_per_item is not None: snake_case = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) snake_case = value snake_case = current_time if self.average_time_per_item is None: snake_case = 1 else: snake_case = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a_ ( self , __snake_case , __snake_case=None ): snake_case = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: snake_case = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: snake_case = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: snake_case = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def a_ ( self ): snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: snake_case = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def a_ ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case , __snake_case=None ): super().__init__(__snake_case ) snake_case = None if column_names is None else [column_names] snake_case = None def a_ ( self ): snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: snake_case = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def a_ ( self , __snake_case ): if self.inner_table is None: snake_case = [list(values.keys() ), list(values.values() )] else: snake_case = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) snake_case = columns self.inner_table.append([values[c] for c in columns] ) def a_ ( self , __snake_case , __snake_case=None , __snake_case=3_0_0 ): snake_case = NotebookProgressBar(__snake_case , prefix=__snake_case , parent=self , width=__snake_case ) return self.child_bar def a_ ( self ): snake_case = None self.display() class A__ ( snake_case__ ): """simple docstring""" def __init__( self ): snake_case = None snake_case = None snake_case = False def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' snake_case = 0 snake_case = 0 snake_case = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) snake_case = NotebookTrainingTracker(state.max_steps , __snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) snake_case = False def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: snake_case = self.training_tracker.add_child(len(__snake_case ) ) else: snake_case = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): if self.prediction_bar is not None: self.prediction_bar.close() snake_case = None def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: snake_case = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy snake_case = state.global_step self.training_tracker.write_line(__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): if self.training_tracker is not None: snake_case = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: snake_case = log['''loss'''] break if self.first_column == "Epoch": snake_case = int(state.epoch ) else: snake_case = state.global_step snake_case = '''eval''' for k in metrics: if k.endswith('''_loss''' ): snake_case = re.sub(R'''\_loss$''' , '''''' , __snake_case ) snake_case = metrics.pop('''total_flos''' , __snake_case ) snake_case = metrics.pop('''epoch''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_runtime''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , __snake_case ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': snake_case = v else: snake_case = k.split('''_''' ) snake_case = ''' '''.join([part.capitalize() for part in splits[1:]] ) snake_case = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() snake_case = None # Evaluation takes a long time so we should force the next update. snake_case = True def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__snake_case ) snake_case = None
127
1
"""simple docstring""" import math import os import sys def a__ ( lowerCAmelCase ) -> str: UpperCAmelCase__ : Dict = """""" try: with open(lowerCAmelCase , """rb""" ) as binary_file: UpperCAmelCase__ : List[Any] = binary_file.read() for dat in data: UpperCAmelCase__ : Optional[int] = F"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> None: lexicon.pop(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = last_match_id if math.loga(lowerCAmelCase ).is_integer(): for curr_key in lexicon: UpperCAmelCase__ : List[Any] = """0""" + lexicon[curr_key] UpperCAmelCase__ : Tuple = bin(lowerCAmelCase )[2:] def a__ ( lowerCAmelCase ) -> str: UpperCAmelCase__ : Tuple = {"""0""": """0""", """1""": """1"""} UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = """""", """""" UpperCAmelCase__ : str = len(lowerCAmelCase ) for i in range(len(lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase__ : Union[str, Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) index += 1 UpperCAmelCase__ : Optional[Any] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCAmelCase__ : int = lexicon[curr_string] result += last_match_id return result def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : int = os.path.getsize(lowerCAmelCase ) UpperCAmelCase__ : int = bin(lowerCAmelCase )[2:] UpperCAmelCase__ : Optional[int] = len(lowerCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: UpperCAmelCase__ : Optional[Any] = 8 try: with open(lowerCAmelCase , """wb""" ) as opened_file: UpperCAmelCase__ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCAmelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: UpperCAmelCase__ : Optional[Any] = read_file_binary(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = compress_data(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = add_file_length(lowerCAmelCase , lowerCAmelCase ) write_file_binary(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
166
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'transfo-xl' SCREAMING_SNAKE_CASE = ['mems'] SCREAMING_SNAKE_CASE = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , _lowerCamelCase=267735 , _lowerCamelCase=[20000, 40000, 200000] , _lowerCamelCase=1024 , _lowerCamelCase=1024 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase=4096 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=18 , _lowerCamelCase=1600 , _lowerCamelCase=1000 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=-1 , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="normal" , _lowerCamelCase=0.01 , _lowerCamelCase=0.01 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=0 , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Dict = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: UpperCAmelCase__ : Optional[int] = [False] + [True] * len(self.cutoffs ) else: UpperCAmelCase__ : List[Any] = [False] + [False] * len(self.cutoffs ) UpperCAmelCase__ : Dict = d_model UpperCAmelCase__ : Dict = d_embed UpperCAmelCase__ : List[Any] = d_head UpperCAmelCase__ : List[str] = d_inner UpperCAmelCase__ : Any = div_val UpperCAmelCase__ : str = pre_lnorm UpperCAmelCase__ : int = n_layer UpperCAmelCase__ : Optional[Any] = n_head UpperCAmelCase__ : Tuple = mem_len UpperCAmelCase__ : Dict = same_length UpperCAmelCase__ : Union[str, Any] = attn_type UpperCAmelCase__ : Optional[int] = clamp_len UpperCAmelCase__ : str = sample_softmax UpperCAmelCase__ : Any = adaptive UpperCAmelCase__ : List[Any] = dropout UpperCAmelCase__ : List[Any] = dropatt UpperCAmelCase__ : Tuple = untie_r UpperCAmelCase__ : str = init UpperCAmelCase__ : Optional[int] = init_range UpperCAmelCase__ : Tuple = proj_init_std UpperCAmelCase__ : str = init_std UpperCAmelCase__ : List[str] = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def _a (self ): """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _a (self , _lowerCamelCase ): """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
166
1
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): if not numbers: return 0 if not isinstance(UpperCAmelCase_ , (list, tuple) ) or not all( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCAmelCase = numbers[0] for i in range(1 , len(UpperCAmelCase_ ) ): # update the maximum and minimum subarray products UpperCAmelCase = numbers[i] if number < 0: UpperCAmelCase = min_till_now, max_till_now UpperCAmelCase = max(UpperCAmelCase_ , max_till_now * number ) UpperCAmelCase = min(UpperCAmelCase_ , min_till_now * number ) # update the maximum product found till now UpperCAmelCase = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_prod
78
import sys snake_case : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowerCamelCase ( UpperCAmelCase_ : str = N ): """simple docstring""" a :Optional[Any] = -sys.maxsize - 1 for i in range(len(UpperCAmelCase_ ) - 12 ): a :Dict = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a :str = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
94
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<sep>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<cls>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<eop>", "<eod>"] , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token lowercase__: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) lowercase__: Union[str, Any] = 3 lowercase__: Dict = do_lower_case lowercase__: Tuple = remove_space lowercase__: Optional[Any] = keep_accents lowercase__: Optional[Any] = vocab_file lowercase__: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) lowercase__: Union[str, Any] = jieba lowercase__: Any = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self ): lowercase__: int = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase__: int = self.__dict__.copy() lowercase__: Optional[int] = None return state def __setstate__( self , _UpperCAmelCase ): lowercase__: int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__: Union[str, Any] = {} lowercase__: Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _UpperCAmelCase ): if self.remove_space: lowercase__: Optional[int] = ''' '''.join(inputs.strip().split() ) else: lowercase__: Optional[int] = inputs lowercase__: Any = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowercase__: Union[str, Any] = unicodedata.normalize('''NFKD''' , _UpperCAmelCase ) lowercase__: Optional[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: lowercase__: Optional[int] = outputs.lower() return outputs def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = self.preprocess_text(_UpperCAmelCase ) lowercase__: int = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) lowercase__: Union[str, Any] = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase__: Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase__: Tuple = cur_pieces[1:] else: lowercase__: str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = ''''''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ''' ''' ).strip() return out_string def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = [self.sep_token_id] lowercase__: Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: List[str] = [self.sep_token_id] lowercase__: Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: List[str] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: List[str] = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Dict = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
2
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCAmelCase__() -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' ,type=__snake_case ,default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' ,type=__snake_case ,default=5 ) parser.add_argument('''--batch_size''' ,type=__snake_case ,default=6 ) parser.add_argument('''--gradient_accumulation_steps''' ,type=__snake_case ,default=1 ) parser.add_argument('''--freeze''' ,type=__snake_case ,default=__snake_case ) parser.add_argument('''--learning_rate''' ,type=__snake_case ,default=5E-4 ) parser.add_argument('''--seed''' ,type=__snake_case ,default=0 ) parser.add_argument('''--lr_scheduler_type''' ,type=__snake_case ,default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' ,type=__snake_case ,default=10 ) parser.add_argument('''--weight_decay''' ,type=__snake_case ,default=0.0_1 ) parser.add_argument('''--output_dir''' ,type=__snake_case ,default='''./results''' ) return parser.parse_args() _a = load("accuracy") def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = eval_pred lowerCamelCase__ = np.argmax(__snake_case ,axis=1 ) return metric.compute(predictions=__snake_case ,references=__snake_case ) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase ): '''simple docstring''' super().__init__() lowerCamelCase__ = trainer def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if control.should_evaluate: lowerCamelCase__ = deepcopy(__lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowerCAmelCase__() -> List[str]: '''simple docstring''' lowerCamelCase__ = get_args() set_seed(args.seed ) lowerCamelCase__ = load_dataset('''codeparrot/codecomplex''' ,split='''train''' ) lowerCamelCase__ = dataset.train_test_split(test_size=0.2 ) lowerCamelCase__ = train_test['''test'''].train_test_split(test_size=0.5 ) lowerCamelCase__ = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt ,num_labels=7 ) lowerCamelCase__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCamelCase__ = False lowerCamelCase__ = ClassLabel(num_classes=7 ,names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__snake_case ): lowerCamelCase__ = tokenizer(example['''src'''] ,truncation=__snake_case ,max_length=1024 ) lowerCamelCase__ = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCamelCase__ = train_test_validation.map( __snake_case ,batched=__snake_case ,remove_columns=train_test_validation['''train'''].column_names ,) lowerCamelCase__ = DataCollatorWithPadding(tokenizer=__snake_case ) lowerCamelCase__ = TrainingArguments( output_dir=args.output_dir ,learning_rate=args.learning_rate ,lr_scheduler_type=args.lr_scheduler_type ,evaluation_strategy='''epoch''' ,save_strategy='''epoch''' ,logging_strategy='''epoch''' ,per_device_train_batch_size=args.batch_size ,per_device_eval_batch_size=args.batch_size ,num_train_epochs=args.num_epochs ,gradient_accumulation_steps=args.gradient_accumulation_steps ,weight_decay=0.0_1 ,metric_for_best_model='''accuracy''' ,run_name='''complexity-java''' ,report_to='''wandb''' ,) lowerCamelCase__ = Trainer( model=__snake_case ,args=__snake_case ,train_dataset=tokenized_datasets['''train'''] ,eval_dataset=tokenized_datasets['''valid'''] ,tokenizer=__snake_case ,data_collator=__snake_case ,compute_metrics=__snake_case ,) print('''Training...''' ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
209
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__(__snake_case ) -> int: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__() -> Any: '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ = [1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case ,__snake_case ,num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(__snake_case ,__snake_case ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1] ) def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = [1, 2] lowerCamelCase__ = {'''a''': 1, '''b''': 2} lowerCamelCase__ = {'''a''': [1, 2], '''b''': [3, 4]} lowerCamelCase__ = {'''a''': {'''1''': 1}, '''b''': 2} lowerCamelCase__ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCamelCase__ = [2, 3] lowerCamelCase__ = {'''a''': 2, '''b''': 3} lowerCamelCase__ = {'''a''': [2, 3], '''b''': [4, 5]} lowerCamelCase__ = {'''a''': {'''1''': 2}, '''b''': 3} lowerCamelCase__ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case ,__snake_case ,num_proc=__snake_case ) == expected_map_nested_sa
209
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str]=3 , _SCREAMING_SNAKE_CASE: Union[str, Any]=7 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Optional[Any]=99 , _SCREAMING_SNAKE_CASE: List[Any]=32 , _SCREAMING_SNAKE_CASE: int=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: str=37 , _SCREAMING_SNAKE_CASE: Any="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: List[str]=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=16 , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: List[str]=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: int=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self: Any ) -> List[str]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = FalconModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = FalconModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" UpperCamelCase_ = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["hidden_states"][0] UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Any = (FalconForCausalLM,) if is_torch_available() else () _UpperCamelCase : int = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : int = False def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = FalconModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowercase ( self: str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ , *UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase_ = alibi self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "single_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = FalconForCausalLM(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = model._convert_to_rw_cache(result.past_key_values ) UpperCamelCase_ = model._convert_cache_to_standard_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for layer in range(len(_SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase ( self: Any ) -> int: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "multi_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_generative_model_classes: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_SCREAMING_SNAKE_CASE , "use_cache" ): return UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: UpperCamelCase_ = True UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase_ = ( getattr(_SCREAMING_SNAKE_CASE , "decoder_layers" , _SCREAMING_SNAKE_CASE ) or getattr(_SCREAMING_SNAKE_CASE , "num_decoder_layers" , _SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , "num_kv_heads" , config.num_attention_heads ) UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , "d_model" , config.hidden_size ) UpperCamelCase_ = embed_dim // num_attention_heads UpperCamelCase_ = outputs["past_key_values"] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = inputs["input_ids"].shape for i in range(_SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: UpperCamelCase_ = config.num_attention_heads elif config.multi_query: UpperCamelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCamelCase_ = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=19 ) UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Tuple ) -> str: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(device=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = load_tool('text-classification' ) self.tool.setup() __UpperCamelCase = load_tool('text-classification' , remote=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' )
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" A_ : str = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def lowerCamelCase_ ( _lowerCamelCase ): assert type(_lowerCamelCase ) in (int, float) and decimal == int(_lowerCamelCase ) lowerCamelCase__ : Any = int(_lowerCamelCase ) lowerCamelCase__ : Any = '' lowerCamelCase__ : int = False if decimal < 0: lowerCamelCase__ : List[str] = True decimal *= -1 while decimal > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = divmod(_lowerCamelCase , 16 ) lowerCamelCase__ : Union[str, Any] = values[remainder] + hexadecimal lowerCamelCase__ : Dict = '0x' + hexadecimal if negative: lowerCamelCase__ : List[str] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
'''simple docstring''' def UpperCamelCase_( snake_case : int ): '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
85
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ["image_processor", "tokenizer"] UpperCAmelCase__ : Dict = "ChineseCLIPImageProcessor" UpperCAmelCase__ : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Tuple = kwargs.pop('''feature_extractor''' ) _a : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : List[str] = self.image_processor def __call__( self , _a=None , _a=None , _a=None , **_a ) -> int: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _a : List[str] = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: _a : Optional[Any] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: _a : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> Any: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[Any]: _a : Any = self.tokenizer.model_input_names _a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Dict: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class
235
0
"""simple docstring""" import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
357
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case : List[Any] = 16 snake_case : Tuple = 32 def __lowerCamelCase ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 16 ): """simple docstring""" a :Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCAmelCase_ : int ): # max_length=None => use the model max length (it's actually the default) a :Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a :Optional[Any] = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a :List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCAmelCase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. a :int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a :Union[str, Any] = 16 elif accelerator.mixed_precision != "no": a :Tuple = 8 else: a :Any = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. a :List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase , drop_last=__lowerCamelCase ) a :Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): """simple docstring""" a :Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a :Dict = config['''lr'''] a :List[Any] = int(config['''num_epochs'''] ) a :Union[str, Any] = int(config['''seed'''] ) a :Dict = int(config['''batch_size'''] ) a :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation a :Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a :Optional[int] = batch_size // MAX_GPU_BATCH_SIZE a :List[str] = MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase ) a , a :str = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a :int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a :Any = model.to(accelerator.device ) # Instantiate optimizer a :Union[str, Any] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler a :Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a :str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a :Optional[Any] = model(**__lowerCamelCase ) a :Any = outputs.loss a :Any = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a :Tuple = model(**__lowerCamelCase ) a :str = outputs.logits.argmax(dim=-1 ) a , a :Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) a :Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCamelCase ) def __lowerCamelCase ( ): """simple docstring""" a :int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) a :int = parser.parse_args() a :str = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
94
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower_vision_model''' def __init__( self , A=768 , A=12 , A=3 , A=16 , A=288 , A=1 , A=1e-05 , A=False , A=True , A=False , **A , ) -> Dict: super().__init__(**A ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = stop_gradient _SCREAMING_SNAKE_CASE = share_layernorm _SCREAMING_SNAKE_CASE = remove_last_layer @classmethod def snake_case_( cls , A , **A ) -> "PretrainedConfig": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(A , **A ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower_text_model''' def __init__( self , A=5_0265 , A=768 , A=12 , A=12 , A=1 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=514 , A=1 , A=1e-05 , A=1 , A=0 , A=2 , A="absolute" , A=True , **A , ) -> Union[str, Any]: super().__init__(**A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id @classmethod def snake_case_( cls , A , **A ) -> "PretrainedConfig": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(A , **A ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower''' def __init__( self , A=True , A="gelu" , A=768 , A=1 , A=1e-05 , A=False , A="add" , A=12 , A=6 , A=False , A=False , A=None , A=None , **A , ) -> Tuple: # TODO: remove this once the Hub files are updated. _SCREAMING_SNAKE_CASE = kwargs.pop("""text_config_dict""" , A ) _SCREAMING_SNAKE_CASE = kwargs.pop("""vision_config_dict""" , A ) super().__init__(**A ) _SCREAMING_SNAKE_CASE = share_cross_modal_transformer_layers _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = share_link_tower_layers _SCREAMING_SNAKE_CASE = link_tower_type _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = tie_word_embeddings _SCREAMING_SNAKE_CASE = init_layernorm_from_vision_encoder if text_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _SCREAMING_SNAKE_CASE = BridgeTowerTextConfig(**A ) _SCREAMING_SNAKE_CASE = BridgeTowerVisionConfig(**A ) @classmethod def snake_case_( cls , A , A , **A ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE = self.text_config.to_dict() _SCREAMING_SNAKE_CASE = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
58
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Dict ={ '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =[ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _A : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _A : Optional[int] =pd.read_csv('''sample_data.csv''', header=None) _A : Any =df.shape[:1][0] # If you're using some other dataset input the target column _A : List[str] =df.iloc[:, 1:2] _A : int =actual_data.values.reshape(len_data, 1) _A : Union[str, Any] =MinMaxScaler().fit_transform(actual_data) _A : Optional[int] =10 _A : Union[str, Any] =5 _A : Union[str, Any] =20 _A : str =len_data - periods * look_back _A : List[Any] =actual_data[:division] _A : Optional[Any] =actual_data[division - look_back :] _A , _A : Tuple =[], [] _A , _A : List[str] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _A : List[Any] =np.array(train_x) _A : str =np.array(test_x) _A : List[Any] =np.array([list(i.ravel()) for i in train_y]) _A : Any =np.array([list(i.ravel()) for i in test_y]) _A : Optional[Any] =Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _A : Dict =model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _A : List[str] =model.predict(x_test)
129
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : int = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int ='roc_bert' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=True, lowerCAmelCase=0, lowerCAmelCase="absolute", lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=768, lowerCAmelCase=910, lowerCAmelCase=512, lowerCAmelCase=24_858, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =type_vocab_size lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =use_cache lowerCamelCase_ =enable_pronunciation lowerCamelCase_ =enable_shape lowerCamelCase_ =pronunciation_embed_dim lowerCamelCase_ =pronunciation_vocab_size lowerCamelCase_ =shape_embed_dim lowerCamelCase_ =shape_vocab_size lowerCamelCase_ =concat_input lowerCamelCase_ =position_embedding_type lowerCamelCase_ =classifier_dropout super().__init__(pad_token_id=lowerCAmelCase, **lowerCAmelCase )
75
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={ '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } lowerCamelCase_ ={ '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(self.tmpdirname, lowerCAmelCase ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.feature_extraction_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) # load decoder from hub lowerCamelCase_ ='''hf-internal-testing/ngram-beam-search-decoder''' def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0 ) self.assertEqual(processor.language_model.beta, 3.0 ) self.assertEqual(processor.language_model.score_boundary, -7.0 ) self.assertEqual(processor.language_model.unk_score_offset, 3 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(lowerCAmelCase, '''include''' ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =floats_list((3, 1_000) ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor(lowerCAmelCase, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ ='''This is a test string''' lowerCamelCase_ =processor(text=lowerCAmelCase ) lowerCamelCase_ =tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self, lowerCAmelCase=(2, 10, 16), lowerCAmelCase=77 ): """simple docstring""" np.random.seed(lowerCAmelCase ) return np.random.rand(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits(shape=(10, 16), seed=13 ) lowerCamelCase_ =processor.decode(lowerCAmelCase ) lowerCamelCase_ =decoder.decode_beams(lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0], decoded_processor.text ) self.assertEqual('''</s> <s> </s>''', decoded_processor.text ) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCamelCase_ =processor.batch_decode(lowerCAmelCase ) else: with get_context(lowerCAmelCase ).Pool() as pool: lowerCamelCase_ =processor.batch_decode(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =list(lowerCAmelCase ) with get_context('''fork''' ).Pool() as p: lowerCamelCase_ =decoder.decode_beams_batch(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =[], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase, decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''], decoded_processor.text ) self.assertListEqual(lowerCAmelCase, decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase, decoded_processor.lm_score ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =15 lowerCamelCase_ =-2_0.0 lowerCamelCase_ =-4.0 lowerCamelCase_ =processor.batch_decode( lowerCAmelCase, beam_width=lowerCAmelCase, beam_prune_logp=lowerCAmelCase, token_min_logp=lowerCAmelCase, ) lowerCamelCase_ =decoded_processor_out.text lowerCamelCase_ =list(lowerCAmelCase ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase_ =decoder.decode_beams_batch( lowerCAmelCase, lowerCAmelCase, beam_width=lowerCAmelCase, beam_prune_logp=lowerCAmelCase, token_min_logp=lowerCAmelCase, ) lowerCamelCase_ =[d[0][0] for d in decoded_decoder_out] lowerCamelCase_ =[d[0][2] for d in decoded_decoder_out] lowerCamelCase_ =[d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''], lowerCAmelCase ) self.assertTrue(np.array_equal(lowerCAmelCase, decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7], lowerCAmelCase, atol=1e-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase, decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4], lowerCAmelCase, atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =2.0 lowerCamelCase_ =5.0 lowerCamelCase_ =-2_0.0 lowerCamelCase_ =True lowerCamelCase_ =processor.batch_decode( lowerCAmelCase, alpha=lowerCAmelCase, beta=lowerCAmelCase, unk_score_offset=lowerCAmelCase, lm_score_boundary=lowerCAmelCase, ) lowerCamelCase_ =decoded_processor_out.text lowerCamelCase_ =list(lowerCAmelCase ) decoder.reset_params( alpha=lowerCAmelCase, beta=lowerCAmelCase, unk_score_offset=lowerCAmelCase, lm_score_boundary=lowerCAmelCase, ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase_ =decoder.decode_beams_batch( lowerCAmelCase, lowerCAmelCase, ) lowerCamelCase_ =[d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''], lowerCAmelCase ) lowerCamelCase_ =processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0 ) self.assertEqual(lm_model.beta, 5.0 ) self.assertEqual(lm_model.unk_score_offset, -2_0.0 ) self.assertEqual(lm_model.score_boundary, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase_ =Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase_ =os.listdir(lowerCAmelCase ) lowerCamelCase_ =['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =snapshot_download('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase_ =Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase_ =os.listdir(lowerCAmelCase ) lowerCamelCase_ =os.listdir(lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =floats_list((3, 1_000) ) lowerCamelCase_ =processor_wavaveca(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor_auto(lowerCAmelCase, return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum(), input_auto[key].sum(), delta=1e-2 ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =processor_wavaveca.batch_decode(lowerCAmelCase ) lowerCamelCase_ =processor_auto.batch_decode(lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text, decoded_auto.text ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_decoder() lowerCamelCase_ =WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase, feature_extractor=lowerCAmelCase, decoder=lowerCAmelCase ) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg='''`processor` and `feature_extractor` model input names do not match''', ) @staticmethod def lowercase__ ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[d[key] for d in offsets] return retrieved_list def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =self._get_dummy_logits()[0] lowerCamelCase_ =processor.decode(lowerCAmelCase, output_word_offsets=lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''], '''word''' ) ), outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''], '''word''' ), ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''], '''start_offset''' ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''], '''end_offset''' ), [1, 3, 5] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase_ =self._get_dummy_logits() lowerCamelCase_ =processor.batch_decode(lowerCAmelCase, output_word_offsets=lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(lowerCAmelCase, lowerCAmelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(lowerCAmelCase, '''word''' ) ) for o in outputs['''word_offsets''']], outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0], '''word''' ), ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0], '''start_offset''' ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0], '''end_offset''' ), [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase__ ( self ): """simple docstring""" import torch lowerCamelCase_ =load_dataset('''common_voice''', '''en''', split='''train''', streaming=lowerCAmelCase ) lowerCamelCase_ =ds.cast_column('''audio''', datasets.Audio(sampling_rate=16_000 ) ) lowerCamelCase_ =iter(lowerCAmelCase ) lowerCamelCase_ =next(lowerCAmelCase ) lowerCamelCase_ =AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) lowerCamelCase_ =WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCamelCase_ =processor(sample['''audio''']['''array'''], return_tensors='''pt''' ).input_values with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).logits.cpu().numpy() lowerCamelCase_ =processor.decode(logits[0], output_word_offsets=lowerCAmelCase ) lowerCamelCase_ =model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCamelCase_ =[ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] lowerCamelCase_ ='''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(lowerCAmelCase, '''word''' ) ), lowerCAmelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(lowerCAmelCase, '''word''' ) ), output.text ) # output times lowerCamelCase_ =torch.tensor(self.get_from_offsets(lowerCAmelCase, '''start_time''' ) ) lowerCamelCase_ =torch.tensor(self.get_from_offsets(lowerCAmelCase, '''end_time''' ) ) # fmt: off lowerCamelCase_ =torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) lowerCamelCase_ =torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=0.0_1 ) ) self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=0.0_1 ) )
75
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Tuple = '''codegen''' SCREAMING_SNAKE_CASE_ : Tuple = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,SCREAMING_SNAKE_CASE__=5_04_00 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=28 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=64 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__="gelu_new" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=1E-5 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=5_02_56 ,SCREAMING_SNAKE_CASE__=5_02_56 ,SCREAMING_SNAKE_CASE__=False ,**SCREAMING_SNAKE_CASE__ ,) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = vocab_size __SCREAMING_SNAKE_CASE :List[str] = n_ctx __SCREAMING_SNAKE_CASE :int = n_positions __SCREAMING_SNAKE_CASE :Union[str, Any] = n_embd __SCREAMING_SNAKE_CASE :str = n_layer __SCREAMING_SNAKE_CASE :List[Any] = n_head __SCREAMING_SNAKE_CASE :List[Any] = n_inner __SCREAMING_SNAKE_CASE :Optional[int] = rotary_dim __SCREAMING_SNAKE_CASE :int = activation_function __SCREAMING_SNAKE_CASE :Union[str, Any] = resid_pdrop __SCREAMING_SNAKE_CASE :Optional[int] = embd_pdrop __SCREAMING_SNAKE_CASE :List[str] = attn_pdrop __SCREAMING_SNAKE_CASE :List[Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE :str = initializer_range __SCREAMING_SNAKE_CASE :Tuple = use_cache __SCREAMING_SNAKE_CASE :Union[str, Any] = bos_token_id __SCREAMING_SNAKE_CASE :int = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = "default" ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = False ,) -> Dict: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,task=SCREAMING_SNAKE_CASE__ ,patching_specs=SCREAMING_SNAKE_CASE__ ,use_past=SCREAMING_SNAKE_CASE__ ) if not getattr(self._config ,'''pad_token_id''' ,SCREAMING_SNAKE_CASE__ ): # TODO: how to do that better? __SCREAMING_SNAKE_CASE :Dict = 0 @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction='''inputs''' ) __SCREAMING_SNAKE_CASE :Dict = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self._config.n_layer @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self._config.n_head def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = super(SCREAMING_SNAKE_CASE__ ,self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,seq_length=SCREAMING_SNAKE_CASE__ ,is_pair=SCREAMING_SNAKE_CASE__ ,framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE :Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE :int = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE :Any = seqlen + 2 __SCREAMING_SNAKE_CASE :List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE :List[str] = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE :Any = common_inputs['''attention_mask'''] if self.use_past: __SCREAMING_SNAKE_CASE :List[Any] = ordered_inputs['''attention_mask'''].dtype __SCREAMING_SNAKE_CASE :List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ )] ,dim=1 ) return ordered_inputs @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return 13
359
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} lowerCamelCase_ = [ { "type": "header", "text": { "type": "plain_text", "text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', "emoji": True, }, } ] lowerCamelCase_ = 0 for log in Path().glob("*.log"): lowerCamelCase_ = 0 with open(log, "r") as f: for line in f: lowerCamelCase_ = json.loads(line) if line.get("nodeid", "") != "": lowerCamelCase_ = line["nodeid"] if line.get("duration", None) is not None: lowerCamelCase_ = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase_ = [] log.unlink() lowerCamelCase_ = "" lowerCamelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase_ = [] lowerCamelCase_ = {} for test in failed_tests: lowerCamelCase_ = test[0].split("::") lowerCamelCase_ = data[0].split("/")[-1] if data[0] not in filesafailed: lowerCamelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase_ = [test[0] for test in failed_table] lowerCamelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase_ = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: lowerCamelCase_ = "Too many failed tests, please see the full report in the Action results." lowerCamelCase_ = len(err) + 1_0 lowerCamelCase_ = message[: 3_0_0_0 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: lowerCamelCase_ = "No failed tests! 🤗" print(f'## {message}') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient lowerCamelCase_ = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": lowerCamelCase_ = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) lowerCamelCase_ = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) lowerCamelCase_ = { "type": "context", "elements": [ { "type": "plain_text", "text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) lowerCamelCase_ = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) lowerCamelCase_ = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase_ = "" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase_ = row[0] else: lowerCamelCase_ = "" lowerCamelCase_ = { "type": "section", "text": { "type": "mrkdwn", "text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
239
0
from __future__ import annotations def lowercase_ ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int): if len(_lowerCamelCase) == 0: raise ValueError("find_max() arg is an empty sequence") if ( left >= len(_lowerCamelCase) or left < -len(_lowerCamelCase) or right >= len(_lowerCamelCase) or right < -len(_lowerCamelCase) ): raise IndexError("list index out of range") if left == right: return nums[left] lowercase__ : List[str] = (left + right) >> 1 # the middle lowercase__ : Dict = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # find max in range[left, mid] lowercase__ : Tuple = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
87
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> None: warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
107
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def a_ ( *lowerCAmelCase_ : Union[str, Any] ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = list(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def a_ ( lowerCAmelCase_ : Exception ): __lowerCAmelCase = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def a_ ( lowerCAmelCase_ : callable = None, lowerCAmelCase_ : int = 128 ): if function is None: return functools.partial(lowerCAmelCase_, starting_batch_size=lowerCAmelCase_ ) __lowerCAmelCase = starting_batch_size def decorator(*lowerCAmelCase_ : Dict, **lowerCAmelCase_ : Dict ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowerCAmelCase = list(inspect.signature(lowerCAmelCase_ ).parameters.keys() ) # Guard against user error if len(lowerCAmelCase_ ) < (len(lowerCAmelCase_ ) + 1): __lowerCAmelCase = ', '.join([F"""{arg}={value}""" for arg, value in zip(params[1:], args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(lowerCAmelCase_, *lowerCAmelCase_, **lowerCAmelCase_ ) except Exception as e: if should_reduce_batch_size(lowerCAmelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
207
from collections.abc import Sequence def a_ ( lowerCAmelCase_ : Sequence[float], lowerCAmelCase_ : bool = False ): if not arr: return 0 __lowerCAmelCase = 0 if allow_empty_subarrays else float('-inf' ) __lowerCAmelCase = 0.0 for num in arr: __lowerCAmelCase = max(0 if allow_empty_subarrays else num, curr_sum + num ) __lowerCAmelCase = max(lowerCAmelCase_, lowerCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _snake_case : Optional[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
207
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" for char in word: __magic_name__ : List[str] = ord(lowerCAmelCase ) if not _is_chinese_char(lowerCAmelCase ): return 0 return 1 def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : Dict = set() for token in tokens: __magic_name__ : int = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase ) if chinese_word: word_set.add(lowerCAmelCase ) __magic_name__ : Union[str, Any] = list(lowerCAmelCase ) return word_list def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ : Any = max([len(lowerCAmelCase ) for w in chinese_word_set] ) __magic_name__ : int = bert_tokens __magic_name__ , __magic_name__ : int = 0, len(lowerCAmelCase ) while start < end: __magic_name__ : Union[str, Any] = True if is_chinese(bert_word[start] ): __magic_name__ : List[str] = min(end - start , lowerCAmelCase ) for i in range(lowerCAmelCase , 1 , -1 ): __magic_name__ : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __magic_name__ : Union[str, Any] = '##' + bert_word[j] __magic_name__ : Any = start + i __magic_name__ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : LTP , lowerCAmelCase : BertTokenizer ): """simple docstring""" __magic_name__ : int = [] for i in range(0 , len(lowerCAmelCase ) , 100 ): __magic_name__ : str = ltp_tokenizer.seg(lines[i : i + 100] )[0] __magic_name__ : int = [get_chinese_word(lowerCAmelCase ) for r in res] ltp_res.extend(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) __magic_name__ : Optional[Any] = [] for i in range(0 , len(lowerCAmelCase ) , 100 ): __magic_name__ : Optional[int] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) __magic_name__ : List[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Union[str, Any] = [] for id in input_ids: __magic_name__ : Union[str, Any] = bert_tokenizer._convert_id_to_token(lowerCAmelCase ) input_tokens.append(lowerCAmelCase ) __magic_name__ : Union[str, Any] = add_sub_symbol(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase ): if token[:2] == "##": __magic_name__ : Optional[int] = token[2:] # save chinese tokens' pos if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ): ref_id.append(lowerCAmelCase ) ref_ids.append(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) return ref_ids def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: __magic_name__ : Optional[Any] = f.readlines() __magic_name__ : int = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ : int = LTP(args.ltp ) # faster in GPU device __magic_name__ : int = BertTokenizer.from_pretrained(args.bert ) __magic_name__ : Union[str, Any] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __magic_name__ : Optional[int] = [json.dumps(lowerCAmelCase ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') lowerCAmelCase :str = parser.parse_args() main(args)
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
"""simple docstring""" class a : def __init__( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=None ): _UpperCAmelCase = data _UpperCAmelCase = previous _UpperCAmelCase = next_node def __str__( self : Optional[Any] ): return f'''{self.data}''' def lowerCAmelCase_ ( self : Any ): return self.data def lowerCAmelCase_ ( self : Union[str, Any] ): return self.next def lowerCAmelCase_ ( self : Union[str, Any] ): return self.previous class a : def __init__( self : str , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = head def __iter__( self : Dict ): return self def lowerCAmelCase_ ( self : Optional[int] ): if not self.current: raise StopIteration else: _UpperCAmelCase = self.current.get_data() _UpperCAmelCase = self.current.get_next() return value class a : def __init__( self : Tuple ): _UpperCAmelCase = None # First node in list _UpperCAmelCase = None # Last node in list def __str__( self : Dict ): _UpperCAmelCase = self.head _UpperCAmelCase = [] while current is not None: nodes.append(current.get_data() ) _UpperCAmelCase = current.get_next() return " ".join(str(__lowerCAmelCase ) for node in nodes ) def __contains__( self : Optional[int] , __lowerCAmelCase : int ): _UpperCAmelCase = self.head while current: if current.get_data() == value: return True _UpperCAmelCase = current.get_next() return False def __iter__( self : str ): return LinkedListIterator(self.head ) def lowerCAmelCase_ ( self : Any ): if self.head: return self.head.get_data() return None def lowerCAmelCase_ ( self : str ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Node ): if self.head is None: _UpperCAmelCase = node _UpperCAmelCase = node else: self.insert_before_node(self.head , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Node ): if self.head is None: self.set_head(__lowerCAmelCase ) else: self.insert_after_node(self.tail , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = Node(__lowerCAmelCase ) if self.head is None: self.set_head(__lowerCAmelCase ) else: self.set_tail(__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ): _UpperCAmelCase = node _UpperCAmelCase = node.previous if node.get_previous() is None: _UpperCAmelCase = node_to_insert else: _UpperCAmelCase = node_to_insert _UpperCAmelCase = node_to_insert def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ): _UpperCAmelCase = node _UpperCAmelCase = node.next if node.get_next() is None: _UpperCAmelCase = node_to_insert else: _UpperCAmelCase = node_to_insert _UpperCAmelCase = node_to_insert def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = 1 _UpperCAmelCase = Node(__lowerCAmelCase ) _UpperCAmelCase = self.head while node: if current_position == position: self.insert_before_node(__lowerCAmelCase , __lowerCAmelCase ) return current_position += 1 _UpperCAmelCase = node.next self.insert_after_node(self.tail , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = self.head while node: if node.get_data() == item: return node _UpperCAmelCase = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] ): if (node := self.get_node(__lowerCAmelCase )) is not None: if node == self.head: _UpperCAmelCase = self.head.get_next() if node == self.tail: _UpperCAmelCase = self.tail.get_previous() self.remove_node_pointers(__lowerCAmelCase ) @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : Node ): if node.get_next(): _UpperCAmelCase = node.previous if node.get_previous(): _UpperCAmelCase = node.next _UpperCAmelCase = None _UpperCAmelCase = None def lowerCAmelCase_ ( self : Dict ): return self.head is None def __UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float(moles / volume ) * nfactor ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
240
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowercase ( ): print('Making key files...' ) make_key_files('rsa' , 1_0_2_4 ) print('Key files generation successful.' ) def __lowercase ( __lowerCAmelCase : int ): print('Generating prime p...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) print('Generating prime q...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) a__ = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: a__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) a__ = cryptoMath.find_mod_inverse(__lowerCAmelCase , (p - 1) * (q - 1) ) a__ = (n, e) a__ = (n, d) return (public_key, private_key) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() a__ , a__ = generate_key(__lowerCAmelCase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
240
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : int , lowercase__ : int , lowercase__ : float , **lowercase__ : Any): '''simple docstring''' lowerCAmelCase__ = feature_size lowerCAmelCase__ = sampling_rate lowerCAmelCase__ = padding_value lowerCAmelCase__ = kwargs.pop('padding_side' , 'right') lowerCAmelCase__ = kwargs.pop('return_attention_mask' , lowercase__) super().__init__(**lowercase__) def __snake_case ( self : Union[str, Any] , lowercase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowercase__ : Union[bool, str, PaddingStrategy] = True , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(lowercase__ , (list, tuple)) and isinstance(processed_features[0] , (dict, BatchFeature)): lowerCAmelCase__ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys())}""") lowerCAmelCase__ = processed_features[self.model_input_names[0]] lowerCAmelCase__ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase__) == 0: if return_attention_mask: lowerCAmelCase__ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowerCAmelCase__ = required_input[0] if isinstance(lowercase__ , (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowerCAmelCase__ = 0 while len(required_input[index]) == 0: index += 1 if index < len(lowercase__): lowerCAmelCase__ = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase__): lowerCAmelCase__ = 'tf' elif is_torch_tensor(lowercase__): lowerCAmelCase__ = 'pt' elif isinstance(lowercase__ , (int, float, list, tuple, np.ndarray)): lowerCAmelCase__ = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase__)}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.') for key, value in processed_features.items(): if isinstance(value[0] , (int, float)): lowerCAmelCase__ = to_numpy(lowercase__) else: lowerCAmelCase__ = [to_numpy(lowercase__) for v in value] # Convert padding_strategy in PaddingStrategy lowerCAmelCase__ = self._get_padding_strategies(padding=lowercase__ , max_length=lowercase__) lowerCAmelCase__ = processed_features[self.model_input_names[0]] lowerCAmelCase__ = len(lowercase__) if not all(len(lowercase__) == batch_size for v in processed_features.values()): raise ValueError('Some items in the output dictionary have a different batch size than others.') lowerCAmelCase__ = [] for i in range(lowercase__): lowerCAmelCase__ = {k: v[i] for k, v in processed_features.items()} # truncation lowerCAmelCase__ = self._truncate( lowercase__ , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , truncation=lowercase__ , ) truncated_inputs.append(lowercase__) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowerCAmelCase__ = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) lowerCAmelCase__ = PaddingStrategy.MAX_LENGTH lowerCAmelCase__ = {} for i in range(lowercase__): # padding lowerCAmelCase__ = self._pad( truncated_inputs[i] , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) for key, value in outputs.items(): if key not in batch_outputs: lowerCAmelCase__ = [] if value.dtype is np.dtype(np.floataa): lowerCAmelCase__ = value.astype(np.floataa) batch_outputs[key].append(lowercase__) return BatchFeature(lowercase__ , tensor_type=lowercase__) def __snake_case ( self : List[str] , lowercase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowercase__ : Optional[int] = None , lowercase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , ): '''simple docstring''' lowerCAmelCase__ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowerCAmelCase__ = len(lowercase__) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase__ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase__) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowerCAmelCase__ = np.ones(len(lowercase__) , dtype=np.intaa) if needs_to_be_padded: lowerCAmelCase__ = max_length - len(lowercase__) if self.padding_side == "right": if return_attention_mask: lowerCAmelCase__ = np.pad( processed_features['attention_mask'] , (0, difference)) lowerCAmelCase__ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowerCAmelCase__ = np.pad( lowercase__ , lowercase__ , 'constant' , constant_values=self.padding_value) elif self.padding_side == "left": if return_attention_mask: lowerCAmelCase__ = np.pad( processed_features['attention_mask'] , (difference, 0)) lowerCAmelCase__ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowerCAmelCase__ = np.pad( lowercase__ , lowercase__ , 'constant' , constant_values=self.padding_value) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return processed_features def __snake_case ( self : Union[str, Any] , lowercase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowercase__ : Optional[int] = None , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.') lowerCAmelCase__ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase__ = len(lowercase__) > max_length if needs_to_be_truncated: lowerCAmelCase__ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowerCAmelCase__ = processed_features['attention_mask'][:max_length] return processed_features def __snake_case ( self : int , lowercase__ : Dict=False , lowercase__ : Union[str, Any]=None): '''simple docstring''' if padding is not False: if padding is True: lowerCAmelCase__ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = PaddingStrategy(lowercase__) elif isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = padding else: lowerCAmelCase__ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""") # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.') return padding_strategy
119
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['image_processor'] UpperCAmelCase_ = 'SamImageProcessor' def __init__( self : Tuple , lowercase__ : Dict): '''simple docstring''' super().__init__(lowercase__) lowerCAmelCase__ = self.image_processor lowerCAmelCase__ = -10 lowerCAmelCase__ = self.image_processor.size['longest_edge'] def __call__( self : List[Any] , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : Tuple=None , lowercase__ : List[str]=None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase__ = encoding_image_processor['original_sizes'] if hasattr(lowercase__ , 'numpy'): # Checks if Torch or TF tensor lowerCAmelCase__ = original_sizes.numpy() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._check_and_preprocess_points( input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , ) lowerCAmelCase__ = self._normalize_and_convert( lowercase__ , lowercase__ , input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , return_tensors=lowercase__ , ) return encoding_image_processor def __snake_case ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : str=None , lowercase__ : Optional[int]=None , lowercase__ : str=None , lowercase__ : Optional[Any]="pt" , ): '''simple docstring''' if input_points is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0]) for point in input_points ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__) for point, original_size in zip(lowercase__ , lowercase__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCAmelCase__ , lowerCAmelCase__ = self._pad_points_and_labels(lowercase__ , lowercase__) lowerCAmelCase__ = np.array(lowercase__) if input_labels is not None: lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] , is_bounding_box=lowercase__) for box in input_boxes ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ , is_bounding_box=lowercase__) for box, original_size in zip(lowercase__ , lowercase__) ] lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def __snake_case ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = max([point.shape[0] for point in input_points]) lowerCAmelCase__ = [] for i, point in enumerate(lowercase__): if point.shape[0] != expected_nb_points: lowerCAmelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCAmelCase__ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(lowercase__) lowerCAmelCase__ = processed_input_points return input_points, input_labels def __snake_case ( self : Optional[Any] , lowercase__ : int , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[Any]=False): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = original_size lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor._get_preprocess_shape(lowercase__ , longest_edge=lowercase__) lowerCAmelCase__ = deepcopy(lowercase__).astype(lowercase__) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 2 , 2) lowerCAmelCase__ = coords[..., 0] * (new_w / old_w) lowerCAmelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 4) return coords def __snake_case ( self : Dict , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(lowercase__ , 'numpy'): # Checks for TF or Torch tensor lowerCAmelCase__ = input_points.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_points[0] , lowercase__): raise ValueError('Input points must be a list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__) for input_point in input_points] else: lowerCAmelCase__ = None if input_labels is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_labels.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_labels[0] , lowercase__): raise ValueError('Input labels must be a list of list integers.') lowerCAmelCase__ = [np.array(lowercase__) for label in input_labels] else: lowerCAmelCase__ = None if input_boxes is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_boxes.numpy().tolist() if ( not isinstance(lowercase__ , lowercase__) or not isinstance(input_boxes[0] , lowercase__) or not isinstance(input_boxes[0][0] , lowercase__) ): raise ValueError('Input boxes must be a list of list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__).astype(np.floataa) for box in input_boxes] else: lowerCAmelCase__ = None return input_points, input_labels, input_boxes @property def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase__)) def __snake_case ( self : int , *lowercase__ : int , **lowercase__ : int): '''simple docstring''' return self.image_processor.post_process_masks(*lowercase__ , **lowercase__)
119
1
def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: snake_case_ = max( mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' if not (isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) snake_case_ = len(lowerCAmelCase__ ) if num_items != len(lowerCAmelCase__ ): snake_case_ = ( '''The number of weights must be the same as the number of values.\n''' f"But got {num_items} weights and {len(lowerCAmelCase__ )} values" ) raise ValueError(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): if not isinstance(wt[i] , lowerCAmelCase__ ): snake_case_ = ( '''All weights must be integers but got weight of ''' f"type {type(wt[i] )} at index {i}" ) raise TypeError(lowerCAmelCase__ ) snake_case_ = knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ = set() _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return optimal_val, example_optional_set def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , i - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) else: optimal_set.add(lowerCAmelCase__ ) _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , i - 1 , j - wt[i - 1] , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : Tuple = [3, 2, 4, 4] lowercase__ : List[str] = [4, 3, 2, 3] lowercase__ : Tuple = 4 lowercase__ : str = 6 lowercase__ : Union[str, Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase__ , lowercase__ : Any = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase__ , lowercase__ : Any = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
187
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } lowercase__ ={ 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } lowercase__ ={ 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = RoFormerTokenizer def __init__(self : List[str] , snake_case_ : Optional[int]=None , snake_case_ : str=None , snake_case_ : Optional[Any]=True , snake_case_ : str="[UNK]" , snake_case_ : Dict="[SEP]" , snake_case_ : Any="[PAD]" , snake_case_ : str="[CLS]" , snake_case_ : List[Any]="[MASK]" , snake_case_ : Any=True , snake_case_ : List[str]=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , snake_case_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , snake_case_ ) != strip_accents ): __a : List[str] = getattr(snake_case_ , pre_tok_state.pop('''type''' ) ) __a : Optional[Any] = do_lower_case __a : Optional[int] = strip_accents __a : List[str] = pre_tok_class(**snake_case_ ) __a : Optional[Any] = do_lower_case def __getstate__(self : Union[str, Any] ): __a : Any = self.__dict__.copy() __a : Union[str, Any] = BertPreTokenizer() return state def __setstate__(self : Tuple , snake_case_ : Optional[Any] ): __a : Dict = d __a : str = self.__dict__['''_tokenizer'''].get_vocab() __a : Optional[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=None ): __a : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase (self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : int = [self.sep_token_id] __a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase (self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): __a : Optional[Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): __a : List[str] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
216
0
def lowerCamelCase ( a_ ): if num <= 0: raise ValueError('Input must be a positive integer' ) lowerCAmelCase_ = [True] * (num + 1) lowerCAmelCase_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): lowerCAmelCase_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
354
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ = logging.get_logger(__name__) A_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class _snake_case ( A__ , A__ ): _A : str = '''resnet''' _A : List[Any] = ['''basic''', '''bottleneck'''] def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Optional[int]=3 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=64 ,SCREAMING_SNAKE_CASE__ : Any=[256, 512, 1_024, 2_048] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=[3, 4, 6, 3] ,SCREAMING_SNAKE_CASE__ : int="bottleneck" ,SCREAMING_SNAKE_CASE__ : str="relu" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): super().__init__(**UpperCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) SCREAMING_SNAKE_CASE:Optional[Any] = num_channels SCREAMING_SNAKE_CASE:int = embedding_size SCREAMING_SNAKE_CASE:Dict = hidden_sizes SCREAMING_SNAKE_CASE:int = depths SCREAMING_SNAKE_CASE:int = layer_type SCREAMING_SNAKE_CASE:List[Any] = hidden_act SCREAMING_SNAKE_CASE:Optional[int] = downsample_in_first_stage SCREAMING_SNAKE_CASE:Tuple = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 ,len(UpperCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE:Tuple = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ ,out_indices=UpperCamelCase_ ,stage_names=self.stage_names ) class _snake_case ( A__ ): _A : List[Any] = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : List[str] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __UpperCamelCase ( self : List[str] ): return 1e-3
139
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a ( __a , __a ) -> Optional[int]: '''simple docstring''' assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :Tuple = JsonDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase__ :Tuple = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :int = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def a ( __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :int = tmp_path / '''cache''' UpperCamelCase__ :str = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCamelCase__ :Any = features.copy() if features else default_expected_features UpperCamelCase__ :Union[str, Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Any = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCamelCase__ :int = features.copy() UpperCamelCase__ :List[Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Optional[int] = tmp_path / '''cache''' UpperCamelCase__ :Dict = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[Any] = JsonDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_json_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' if issubclass(__a , __a ): UpperCamelCase__ :Union[str, Any] = jsonl_path elif issubclass(__a , __a ): UpperCamelCase__ :int = [jsonl_path] UpperCamelCase__ :Dict = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[str] = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) def a ( __a , __a , __a=("train",) ) -> Optional[Any]: '''simple docstring''' assert isinstance(__a , __a ) for split in splits: UpperCamelCase__ :Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :str = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[int] = features.copy() if features else default_expected_features UpperCamelCase__ :str = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Dict = JsonDatasetReader({'''train''': jsonl_path} , features=__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> str: '''simple docstring''' if split: UpperCamelCase__ :List[str] = {split: jsonl_path} else: UpperCamelCase__ :int = '''train''' UpperCamelCase__ :int = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCamelCase__ :Any = tmp_path / '''cache''' UpperCamelCase__ :Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Any = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a ( __a ) -> Union[str, Any]: '''simple docstring''' return json.load(__a ) def a ( __a ) -> int: '''simple docstring''' return [json.loads(__a ) for line in buffer] class lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :List[Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :Optional[int] = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :Union[str, Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :int = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' with pytest.raises(UpperCamelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' UpperCamelCase__ :Union[str, Any] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , compression=UpperCamelCase_ ).write() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :Dict = f.read() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :int = f.read() assert exported_content == original_content
97
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Optional[int]: super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( speech_model=__UpperCAmelCase , speech_processor=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , ) def UpperCAmelCase__ ( self , __UpperCAmelCase = "auto") ->int: if slice_size == "auto": a_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: self.enable_attention_slicing(__UpperCAmelCase) @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase=1_60_00 , __UpperCAmelCase = 5_12 , __UpperCAmelCase = 5_12 , __UpperCAmelCase = 50 , __UpperCAmelCase = 7.5 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 , **__UpperCAmelCase , ) ->int: a_ = self.speech_processor.feature_extractor( __UpperCAmelCase , return_tensors="pt" , sampling_rate=__UpperCAmelCase).input_features.to(self.device) a_ = self.speech_model.generate(__UpperCAmelCase , max_length=48_00_00) a_ = self.speech_processor.tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , normalize=__UpperCAmelCase)[ 0 ] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = len(__UpperCAmelCase) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase)}''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__UpperCAmelCase)}.''') # get prompt text embeddings a_ = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) a_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: a_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''') a_ = text_input_ids[:, : self.tokenizer.model_max_length] a_ = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method a_ , a_ , a_ = text_embeddings.shape a_ = text_embeddings.repeat(1 , __UpperCAmelCase , 1) a_ = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. a_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: a_ = 42 if negative_prompt is None: a_ = [""] * batch_size elif type(__UpperCAmelCase) is not type(__UpperCAmelCase): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase)} !=''' F''' {type(__UpperCAmelCase)}.''') elif isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [negative_prompt] elif batch_size != len(__UpperCAmelCase): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase)}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`.") else: a_ = negative_prompt a_ = text_input_ids.shape[-1] a_ = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) a_ = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method a_ = uncond_embeddings.shape[1] a_ = uncond_embeddings.repeat(1 , __UpperCAmelCase , 1) a_ = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a_ = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. a_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) a_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps a_ = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device="cpu" , dtype=__UpperCAmelCase).to( self.device) else: a_ = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') a_ = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand a_ = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler a_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a_ = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) a_ = {} if accepts_eta: a_ = eta for i, t in enumerate(self.progress_bar(__UpperCAmelCase)): # expand the latents if we are doing classifier free guidance a_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents a_ = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) # predict the noise residual a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase).sample # perform guidance if do_classifier_free_guidance: a_ , a_ = noise_pred.chunk(2) a_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 a_ = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = 1 / 0.18_215 * latents a_ = self.vae.decode(__UpperCAmelCase).sample a_ = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": a_ = self.numpy_to_pil(__UpperCAmelCase) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase)
303
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
1
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
238
"""simple docstring""" from __future__ import annotations _lowercase : Dict = 1.6_021E-19 # units = C def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
238
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class lowercase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta-prelayernorm''' def __init__( self : Optional[int] , _UpperCAmelCase : int=50265 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[int]=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Tuple=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : int=True , _UpperCAmelCase : str=None , **_UpperCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
367
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def a__ ( lowerCAmelCase__ ): if root is None: return 0 # Validation def count_nodes(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase__ ) != count_coins(lowerCAmelCase__ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowerCAmelCase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase__ , lowerCAmelCase__ ) return get_distrib(lowerCAmelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
241
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : str ={ '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' class _lowercase : def __init__( self: Optional[Any] ): lowerCamelCase__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode lowerCamelCase__ : List[str] = False def lowerCamelCase_ ( self: str , UpperCamelCase__: list[str] ): for word in words: self.insert(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str ): lowerCamelCase__ : List[Any] = self for char in word: if char not in curr.nodes: lowerCamelCase__ : Tuple = TrieNode() lowerCamelCase__ : List[Any] = curr.nodes[char] lowerCamelCase__ : Any = True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str ): lowerCamelCase__ : Union[str, Any] = self for char in word: if char not in curr.nodes: return False lowerCamelCase__ : Any = curr.nodes[char] return curr.is_leaf def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): def _delete(UpperCamelCase__: TrieNode , UpperCamelCase__: str , UpperCamelCase__: int ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase__ : str = False return len(curr.nodes ) == 0 lowerCamelCase__ : List[str] = word[index] lowerCamelCase__ : Dict = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase__ : List[Any] = _delete(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase__ , 0 ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> None: if node.is_leaf: print(UpperCamelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(UpperCamelCase , word + key ) def SCREAMING_SNAKE_CASE_ () -> bool: lowerCamelCase__ : str = """banana bananas bandana band apple all beast""".split() lowerCamelCase__ : Union[str, Any] = TrieNode() root.insert_many(UpperCamelCase ) # print_words(root, "") assert all(root.find(UpperCamelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> None: print(str(UpperCamelCase ) , """works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE_ () -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ () -> None: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
41
1
"""simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] __SCREAMING_SNAKE_CASE : Any = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] __SCREAMING_SNAKE_CASE : Dict = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] __SCREAMING_SNAKE_CASE : List[Any] = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] __SCREAMING_SNAKE_CASE : int = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] __SCREAMING_SNAKE_CASE : Optional[Any] = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] __SCREAMING_SNAKE_CASE : Optional[Any] = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] __SCREAMING_SNAKE_CASE : str = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
363
"""simple docstring""" import argparse from collections import defaultdict def lowerCAmelCase_( lowercase_ : str , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : str , lowercase_ : str ) -> Optional[int]: _lowerCamelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = F"""class {class_name}(""" _lowerCamelCase = F"""{4 * " "}def {test_name}(""" _lowerCamelCase = F"""{8 * " "}{correct_line.split()[0]}""" _lowerCamelCase = F"""{16 * " "}{correct_line.split()[0]}""" _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = [] for line in lines: if line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): _lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = False else: new_lines.append(lowercase_ ) with open(lowercase_ , '''w''' ) as f: for line in new_lines: f.write(lowercase_ ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : Union[str, Any]=None ) -> Any: if fail is not None: with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = {l.strip() for l in f.readlines()} else: _lowerCamelCase = None with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = defaultdict(lowercase_ ) for line in correct_lines: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
73
0