code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return 0 elif n == 2: return 1 else: _UpperCAmelCase : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Dict = 2 while digits < n: index += 1 _UpperCAmelCase : Union[str, Any] = len(str(fibonacci(_UpperCAmelCase ) ) ) return index def UpperCamelCase_ ( _UpperCAmelCase : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
31
__lowerCamelCase : List[Any] = 6_5521 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 for plain_chr in plain_text: SCREAMING_SNAKE_CASE__ = (a + ord(__UpperCamelCase )) % MOD_ADLER SCREAMING_SNAKE_CASE__ = (b + a) % MOD_ADLER return (b << 16) | a
219
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A_ : Optional[int] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(_lowerCamelCase ) , version.parse(_lowerCamelCase ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ : Optional[Any] = f'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = requirement, None, None else: lowerCamelCase__ : Optional[int] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , _lowerCamelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f''' got {requirement}''' ) lowerCamelCase__ , lowerCamelCase__ : Tuple = match[0] lowerCamelCase__ : Tuple = want_full.split(',' ) # there could be multiple requirements lowerCamelCase__ : Optional[int] = {} for w in want_range: lowerCamelCase__ : List[Any] = re.findall(r'^([\s!=<>]{1,2})(.+)' , _lowerCamelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f''' but got {requirement}''' ) lowerCamelCase__ , lowerCamelCase__ : Any = match[0] lowerCamelCase__ : Optional[Any] = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": lowerCamelCase__ : Union[str, Any] = '.'.join([str(_lowerCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return # check if any version is installed try: lowerCamelCase__ : Dict = importlib.metadata.version(_lowerCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(_lowerCamelCase , _lowerCamelCase )
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a (unittest.TestCase): '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : int = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Dict = is_training SCREAMING_SNAKE_CASE__ : List[str] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : Dict = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Any = num_patches + 1 def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def _a ( self , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaxViTModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : List[Any] = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE__ : int = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE__ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _a ( self , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = FlaxViTForImageClassification(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : List[str] = FlaxViTForImageClassification(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowerCamelCase ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a (A_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_a , **_a ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ : List[str] = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) SCREAMING_SNAKE_CASE__ : Any = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_lowerCamelCase )
132
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger('transformers.models.speecht5') UpperCAmelCase__ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } UpperCAmelCase__ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } UpperCAmelCase__ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } UpperCAmelCase__ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } UpperCAmelCase__ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } UpperCAmelCase__ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } UpperCAmelCase__ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } UpperCAmelCase__ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = [] UpperCAmelCase__ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> List[Any]: for attribute in key.split('''.''' ): _snake_case = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _snake_case = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value elif weight_type == "running_mean": _snake_case = value elif weight_type == "running_var": _snake_case = value elif weight_type == "num_batches_tracked": _snake_case = value else: _snake_case = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: _snake_case = [] if task == "s2t": _snake_case = hf_model.speechta.encoder.prenet.feature_encoder _snake_case = MAPPING_S2T _snake_case = IGNORE_KEYS_S2T elif task == "t2s": _snake_case = None _snake_case = MAPPING_T2S _snake_case = IGNORE_KEYS_T2S elif task == "s2s": _snake_case = hf_model.speechta.encoder.prenet.feature_encoder _snake_case = MAPPING_S2S _snake_case = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCamelCase , __lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue _snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case , _snake_case = key.split('''.*.''' ) if prefix in name and suffix in name: _snake_case = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__lowerCamelCase )[0].split('''.''' )[-2] _snake_case = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: _snake_case = '''weight_g''' elif "weight_v" in name: _snake_case = '''weight_v''' elif "bias" in name: _snake_case = '''bias''' elif "weight" in name: _snake_case = '''weight''' elif "running_mean" in name: _snake_case = '''running_mean''' elif "running_var" in name: _snake_case = '''running_var''' elif "num_batches_tracked" in name: _snake_case = '''num_batches_tracked''' else: _snake_case = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = full_name.split('''conv_layers.''' )[-1] _snake_case = name.split('''.''' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : Union[str, Any]=None , ) -> Dict: if config_path is not None: _snake_case = SpeechTaConfig.from_pretrained(__lowerCamelCase ) else: _snake_case = SpeechTaConfig() if task == "s2t": _snake_case = config.max_text_positions _snake_case = SpeechTaForSpeechToText(__lowerCamelCase ) elif task == "t2s": _snake_case = 18_76 _snake_case = 6_00 _snake_case = config.max_speech_positions _snake_case = SpeechTaForTextToSpeech(__lowerCamelCase ) elif task == "s2s": _snake_case = 18_76 _snake_case = config.max_speech_positions _snake_case = SpeechTaForSpeechToSpeech(__lowerCamelCase ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: _snake_case = SpeechTaTokenizer(__lowerCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case = AddedToken('''<mask>''' , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) _snake_case = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _snake_case = SpeechTaFeatureExtractor() _snake_case = SpeechTaProcessor(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _snake_case = torch.load(__lowerCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] , __lowerCamelCase , __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCAmelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
288
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ :Optional[int] = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class __a ( UpperCAmelCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" if self.framework == "tf": _UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_SCREAMING_SNAKE_CASE ) else: raise ValueError('Unsupported framework' ) return masked_index def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = self.get_masked_index(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: _UpperCAmelCase = self.framework _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(_SCREAMING_SNAKE_CASE ) return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model_inputs['input_ids'] return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: _UpperCAmelCase = target_ids.shape[0] _UpperCAmelCase = model_outputs['input_ids'][0] _UpperCAmelCase = model_outputs['logits'] if self.framework == "tf": _UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _UpperCAmelCase = outputs.numpy() _UpperCAmelCase = outputs[0, masked_index, :] _UpperCAmelCase = stable_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: _UpperCAmelCase = tf.gather_nd(tf.squeeze(_SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) _UpperCAmelCase = tf.expand_dims(_SCREAMING_SNAKE_CASE , 0 ) _UpperCAmelCase = tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: _UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _UpperCAmelCase = outputs[0, masked_index, :] _UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: _UpperCAmelCase = probs[..., target_ids] _UpperCAmelCase , _UpperCAmelCase = probs.topk(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] _UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: _UpperCAmelCase = target_ids[p].tolist() _UpperCAmelCase = p # Filter padding out: _UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _UpperCAmelCase = self.tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(_SCREAMING_SNAKE_CASE ) result.append(_SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [targets] try: _UpperCAmelCase = self.tokenizer.get_vocab() except Exception: _UpperCAmelCase = {} _UpperCAmelCase = [] for target in targets: _UpperCAmelCase = vocab.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if id_ is None: _UpperCAmelCase = self.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , max_length=1 , truncation=_SCREAMING_SNAKE_CASE , )['input_ids'] if len(_SCREAMING_SNAKE_CASE ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' 'We cannot replace it with anything meaningful, ignoring it' ) continue _UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) _UpperCAmelCase = list(set(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('At least one target must be provided when passed.' ) _UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) return target_ids def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" _UpperCAmelCase = {} if targets is not None: _UpperCAmelCase = self.get_target_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = target_ids if top_k is not None: _UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
185
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :List[str] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
185
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class a__ : def __init__( self : List[Any] , a : Any ): """simple docstring""" __lowerCamelCase = data __lowerCamelCase = None class a__ : def __init__( self : Any ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = None def __iter__( self : Any ): """simple docstring""" __lowerCamelCase = self.head while self.head: yield node.data __lowerCamelCase = node.next if node == self.head: break def __len__( self : Any ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ): """simple docstring""" return "->".join(str(a ) for item in iter(self ) ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Any ): """simple docstring""" self.insert_nth(len(self ) , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Any ): """simple docstring""" self.insert_nth(0 , a ) def SCREAMING_SNAKE_CASE__ ( self : int , a : int , a : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __lowerCamelCase = Node(a ) if self.head is None: __lowerCamelCase = new_node # first node points itself __lowerCamelCase = __lowerCamelCase = new_node elif index == 0: # insert at head __lowerCamelCase = self.head __lowerCamelCase = __lowerCamelCase = new_node else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = new_node if index == len(self ) - 1: # insert at tail __lowerCamelCase = new_node def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __lowerCamelCase = self.head if self.head == self.tail: # just one node __lowerCamelCase = __lowerCamelCase = None elif index == 0: # delete head node __lowerCamelCase = self.tail.next.next __lowerCamelCase = self.head.next else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = temp.next.next if index == len(self ) - 1: # delete at tail __lowerCamelCase = temp return delete_node.data def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return len(self ) == 0 def __lowerCAmelCase ( ) -> None: __lowerCamelCase = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
1
'''simple docstring''' import argparse import os import re import packaging.version a_ : Tuple = "examples/" a_ : Dict = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } a_ : Dict = { "init": "src/transformers/__init__.py", "setup": "setup.py", } a_ : List[Any] = "README.md" def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _a = f.read() _a , _a = REPLACE_PATTERNS[pattern] _a = replace.replace('VERSION' , lowerCAmelCase__ ) _a = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(lowerCAmelCase__ ) def _A (lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='examples' ) def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=False ) -> List[Any]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def _A () -> str: '''simple docstring''' _a = '🤗 Transformers currently provides the following architectures' _a = '1. Want to contribute a new model?' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _a = f.readlines() # Find the start of the list. _a = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _a = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCAmelCase__ ) def _A () -> Optional[int]: '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: _a = f.read() _a = REPLACE_PATTERNS['init'][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Any=False ) -> Any: '''simple docstring''' _a = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _a = default_version.base_version elif patch: _a = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _a = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _a = input(f'Which version are you releasing? [{default_version}]' ) if len(lowerCAmelCase__ ) == 0: _a = default_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _A () -> Optional[Any]: '''simple docstring''' _a = get_version() _a = f'{current_version.major}.{current_version.minor + 1}.0.dev0' _a = current_version.base_version # Check with the user we got that right. _a = input(f'Which version are we developing now? [{dev_version}]' ) if len(lowerCAmelCase__ ) == 0: _a = dev_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase__ ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") a_ : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
104
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A () -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _A () -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _A () -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('https://huggingface.co' )
104
1
from numpy import exp, pi, sqrt def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
26
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) _lowerCAmelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _lowerCAmelCase = DDPMScheduler() _lowerCAmelCase = AudioDiffusionPipeline(vqvae=lowerCamelCase_ , unet=self.dummy_unet , mel=lowerCamelCase_ , scheduler=lowerCamelCase_ ) _lowerCAmelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _lowerCAmelCase = pipe(generator=lowerCamelCase_ , steps=4 ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = output.images[0] _lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _lowerCAmelCase = pipe(generator=lowerCamelCase_ , steps=4 , return_dict=lowerCamelCase_ ) _lowerCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = self.dummy_vqvae_and_unet _lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCamelCase_ , scheduler=lowerCamelCase_ ) _lowerCAmelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) np.random.seed(0 ) _lowerCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _lowerCAmelCase = pipe(raw_audio=lowerCamelCase_ , generator=lowerCamelCase_ , start_step=5 , steps=10 ) _lowerCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase = self.dummy_unet_condition _lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCamelCase_ , mel=lowerCamelCase_ , scheduler=lowerCamelCase_ ) _lowerCAmelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) np.random.seed(0 ) _lowerCAmelCase = torch.rand((1, 1, 10) ) _lowerCAmelCase = pipe(generator=lowerCamelCase_ , encoding=lowerCamelCase_ ) _lowerCAmelCase = output.images[0] _lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = torch_device _lowerCAmelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _lowerCAmelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _lowerCAmelCase = pipe(generator=lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
355
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self , _lowercase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def _lowercase ( self , _lowercase ): """simple docstring""" self.neighbors.append(_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = weight def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Optional[int] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __lowerCamelCase ) def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: _lowerCAmelCase = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A (): pass if __name__ == "__main__": import doctest doctest.testmod()
229
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME A_ :int = ['''small''', '''medium''', '''large'''] A_ :Union[str, Any] = '''lm_head.decoder.weight''' A_ :Dict = '''lm_head.weight''' def A ( a_ ,a_ ) -> List[Any]: __UpperCamelCase : Optional[int] =torch.load(a_ ) __UpperCamelCase : Any =d.pop(a_ ) os.makedirs(a_ ,exist_ok=a_ ) torch.save(a_ ,os.path.join(a_ ,a_ ) ) if __name__ == "__main__": A_ :Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) A_ :str = parser.parse_args() for MODEL in DIALOGPT_MODELS: A_ :Any = os.path.join(args.dialogpt_path, f"{MODEL}_ft.pkl") A_ :Any = f"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
71
lowerCAmelCase : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
253
0
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins UpperCamelCase : List[Any] = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def A ( snake_case :Optional[Any] , snake_case :Dict ) -> str: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def A ( snake_case :Tuple ) -> Optional[Any]: config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=snake_case ) def A ( snake_case :int , snake_case :Optional[int] ) -> Dict: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(snake_case ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(snake_case ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(snake_case ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(snake_case ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(snake_case ) ) @pytest.fixture(autouse=snake_case , scope='session' ) def A ( ) -> Tuple: datasets.disable_progress_bar() @pytest.fixture(autouse=snake_case ) def A ( snake_case :List[str] ) -> str: # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , snake_case ) @pytest.fixture def A ( snake_case :Union[str, Any] ) -> Optional[Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , snake_case )
263
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = str(id_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = [] __UpperCamelCase = {} # {vertex:distance} def __lt__( self , __UpperCAmelCase ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.neighbors.append(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = weight def A ( snake_case :List[Any] , snake_case :Dict , snake_case :Any , snake_case :str ) -> List[str]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case ) graph[b - 1].add_edge(graph[a - 1] , snake_case ) def A ( snake_case :list , snake_case :Vertex ) -> list: __UpperCamelCase = [] for u in graph: __UpperCamelCase = math.inf __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = graph[:] while q: __UpperCamelCase = min(snake_case ) q.remove(snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCamelCase = u __UpperCamelCase = u.edges[v.id] for i in range(1 , len(snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A ( snake_case :list , snake_case :Vertex ) -> Iterator[tuple]: for u in graph: __UpperCamelCase = math.inf __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = list(snake_case ) hq.heapify(snake_case ) while h: __UpperCamelCase = hq.heappop(snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCamelCase = u __UpperCamelCase = u.edges[v.id] hq.heapify(snake_case ) for i in range(1 , len(snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
263
1
import argparse from collections import defaultdict import yaml __lowerCamelCase = """docs/source/en/_toctree.yml""" def UpperCamelCase ( __lowerCamelCase : List[Any] ): snake_case : Any = defaultdict(__lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case : Optional[Any] = [key for key, value in counts.items() if value > 1] snake_case : int = [] for duplicate_key in duplicates: snake_case : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : s["title"].lower() ) def UpperCamelCase ( __lowerCamelCase : List[Any]=False ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : Any = yaml.safe_load(f.read() ) # Get to the API doc snake_case : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case : str = content[api_idx]["sections"] # Then to the model doc snake_case : Dict = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case : Dict = api_doc[model_idx]["sections"] snake_case : Tuple = [(idx, section) for idx, section in enumerate(__lowerCamelCase ) if "sections" in section] snake_case : Tuple = False for idx, modality_doc in modalities_docs: snake_case : Dict = modality_doc["sections"] snake_case : int = clean_model_doc_toc(__lowerCamelCase ) if old_modality_doc != new_modality_doc: snake_case : int = True if overwrite: snake_case : Tuple = new_modality_doc if diff: if overwrite: snake_case : int = model_doc snake_case : Union[str, Any] = api_doc with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
59
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase ( A_ ): A__ : jnp.ndarray @flax_register_to_config class UpperCAmelCase ( nn.Module ,A_ ,A_ ): A__ : int = 32 A__ : int = 4 A__ : int = 4 A__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") A__ : Union[bool, Tuple[bool]] = False A__ : Tuple[int] = (3_20, 6_40, 12_80, 12_80) A__ : int = 2 A__ : Union[int, Tuple[int]] = 8 A__ : Optional[Union[int, Tuple[int]]] = None A__ : int = 12_80 A__ : float = 0.0 A__ : bool = False A__ : jnp.dtype = jnp.floataa A__ : bool = True A__ : int = 0 A__ : bool = False def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' snake_case : Dict = (1, self.in_channels, self.sample_size, self.sample_size) snake_case : Any = jnp.zeros(snake_case__ , dtype=jnp.floataa ) snake_case : List[str] = jnp.ones((1,) , dtype=jnp.intaa ) snake_case : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case , snake_case : Optional[int] = jax.random.split(snake_case__ ) snake_case : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : str = self.block_out_channels snake_case : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case : Tuple = self.num_attention_heads or self.attention_head_dim # input snake_case : Tuple = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case : Dict = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) snake_case : List[str] = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): snake_case : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case : List[Any] = [] snake_case : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case : List[Any] = output_channel snake_case : Dict = block_out_channels[i] snake_case : Optional[Any] = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case : Union[str, Any] = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) snake_case : Dict = down_blocks # mid snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case : Optional[Any] = [] snake_case : Optional[int] = list(reversed(snake_case__ ) ) snake_case : Dict = list(reversed(snake_case__ ) ) snake_case : Tuple = list(reversed(snake_case__ ) ) snake_case : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case : Optional[int] = output_channel snake_case : List[Any] = reversed_block_out_channels[i] snake_case : Union[str, Any] = reversed_block_out_channels[min(i + 1 , len(snake_case__ ) - 1 )] snake_case : int = i == len(snake_case__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case : Any = FlaxCrossAttnUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case : Optional[int] = FlaxUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case__ ) snake_case : Optional[int] = output_channel snake_case : Tuple = up_blocks # out snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : bool = True , snake_case__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(snake_case__ , jnp.ndarray ): snake_case : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case : Any = timesteps.astype(dtype=jnp.floataa ) snake_case : int = jnp.expand_dims(snake_case__ , 0 ) snake_case : str = self.time_proj(snake_case__ ) snake_case : str = self.time_embedding(snake_case__ ) # 2. pre-process snake_case : int = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) snake_case : List[Any] = self.conv_in(snake_case__ ) # 3. down snake_case : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): snake_case , snake_case : List[Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: snake_case , snake_case : str = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( snake_case__ , snake_case__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case : Optional[int] = new_down_block_res_samples # 4. mid snake_case : Optional[int] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case : int = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case : Optional[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = up_block( snake_case__ , temb=snake_case__ , encoder_hidden_states=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train , ) else: snake_case : Dict = up_block(snake_case__ , temb=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train ) # 6. post-process snake_case : List[str] = self.conv_norm_out(snake_case__ ) snake_case : Any = nn.silu(snake_case__ ) snake_case : Optional[int] = self.conv_out(snake_case__ ) snake_case : Union[str, Any] = jnp.transpose(snake_case__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case__ )
59
1
"""simple docstring""" from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[list[list[int]], list[list[int]]]: """simple docstring""" a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase ) ) ] # the reference grid a_ = 1 a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase ) ) ] # the action grid a_ = init[0] a_ = init[1] a_ = 0 a_ = g + heuristic[x][y] # cost from starting cell to destination cell a_ = [[f, g, x, y]] a_ = False # flag that is set when search is complete a_ = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() a_ = cell.pop() a_ = next_cell[2] a_ = next_cell[3] a_ = next_cell[1] if x == goal[0] and y == goal[1]: a_ = True else: for i in range(len(UpperCAmelCase ) ): # to try out different valid actions a_ = x + DIRECTIONS[i][0] a_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: a_ = g + cost a_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) a_ = 1 a_ = i a_ = [] a_ = goal[0] a_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: a_ = x - DIRECTIONS[action[x][y]][0] a_ = y - DIRECTIONS[action[x][y]][1] a_ = xa a_ = ya invpath.append([x, y] ) a_ = [] for i in range(len(UpperCAmelCase ) ): path.append(invpath[len(UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 99 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
303
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
import requests def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE_ = {"""Content-Type""": """application/json"""} SCREAMING_SNAKE_CASE_ = requests.post(_lowercase , json={'text': message_body} , headers=_lowercase ) if response.status_code != 2_00: SCREAMING_SNAKE_CASE_ = ( """Request to slack returned an error """ f"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
225
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowercase : int =logging.getLogger(__name__) @dataclass class snake_case__ : """simple docstring""" __lowerCAmelCase :Optional[str] = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __lowerCAmelCase :Optional[str] = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __lowerCAmelCase :int = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowerCAmelCase :bool = field( default=A__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __lowerCAmelCase :Optional[int] = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __lowerCAmelCase :Optional[int] = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __lowerCAmelCase :Optional[int] = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "A csv or a json file containing the training data."} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "A csv or a json file containing the validation data."} ) __lowerCAmelCase :Optional[str] = field(default=A__ , metadata={"help": "A csv or a json file containing the test data."} ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: a__ : Dict = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." a__ : List[str] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class snake_case__ : """simple docstring""" __lowerCAmelCase :str = field( default=A__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __lowerCAmelCase :str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __lowerCAmelCase :bool = field( default=A__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(""".json"""): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: a__ , a__ , a__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout)] , ) a__ : Dict = training_args.get_process_log_level() logger.setLevel(_lowercase) datasets.utils.logging.set_verbosity(_lowercase) transformers.utils.logging.set_verbosity(_lowercase) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. a__ : Any = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: a__ : str = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. a__ : Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: a__ : Tuple = data_args.train_file.split(""".""")[-1] a__ : Any = data_args.test_file.split(""".""")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." a__ : int = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""") for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''') if data_args.train_file.endswith(""".csv"""): # Loading a dataset from local csv files a__ : int = load_dataset("""csv""" , data_files=_lowercase , cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files a__ : Dict = load_dataset("""json""" , data_files=_lowercase , cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels a__ : int = raw_datasets["""train"""].features["""label"""].names a__ : Any = len(_lowercase) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer a__ : List[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowercase , ) a__ : Dict = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: a__ : List[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a__ : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. a__ : Union[str, Any] = {"""Refused""": 0, """Entailed""": 1} a__ : Dict = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''') a__ : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length) def preprocess_tabfact_function(_lowercase : Tuple): # Tokenize the texts def _convert_table_text_to_pandas(_lowercase : Dict): a__ : Dict = [_table_row.split("""#""") for _table_row in _table_text.strip("""\n""").split("""\n""")] a__ : Any = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0]) return _table_pd a__ : str = examples["""statement"""] a__ : Union[str, Any] = list(map(_convert_table_text_to_pandas , examples["""table_text"""])) a__ : Tuple = tokenizer(_lowercase , _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase) a__ : int = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing"""): a__ : List[str] = raw_datasets.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""") a__ : Optional[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: a__ : str = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""") a__ : List[str] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: a__ : List[str] = eval_dataset.select(range(data_args.max_eval_samples)) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""") a__ : Any = raw_datasets["""test"""] if data_args.max_predict_samples is not None: a__ : Dict = predict_dataset.select(range(data_args.max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowercase)) , 3): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''') # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase : EvalPrediction): a__ : Optional[int] = p.predictions[0] if isinstance(p.predictions , _lowercase) else p.predictions a__ : str = np.argmax(_lowercase , axis=1) return {"accuracy": (preds == p.label_ids).astype(np.floataa).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a__ : Dict = default_data_collator elif training_args.fpaa: a__ : Union[str, Any] = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8) else: a__ : int = None # Initialize our Trainer a__ : List[str] = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: a__ : List[Any] = None if training_args.resume_from_checkpoint is not None: a__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: a__ : Dict = last_checkpoint a__ : Dict = trainer.train(resume_from_checkpoint=_lowercase) a__ : int = train_result.metrics a__ : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase) ) a__ : int = min(_lowercase , len(_lowercase)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , _lowercase) trainer.save_metrics("""train""" , _lowercase) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""") a__ : List[str] = trainer.evaluate(eval_dataset=_lowercase) a__ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase) a__ : Dict = min(_lowercase , len(_lowercase)) trainer.log_metrics("""eval""" , _lowercase) trainer.save_metrics("""eval""" , _lowercase) if training_args.do_predict: logger.info("""*** Predict ***""") # Removing the `label` columns because it contains -1 and Trainer won't like that. a__ : Any = predict_dataset.remove_columns("""label""") a__ : Optional[Any] = trainer.predict(_lowercase , metric_key_prefix="""predict""").predictions a__ : Any = np.argmax(_lowercase , axis=1) a__ : List[str] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""") if trainer.is_world_process_zero(): with open(_lowercase , """w""") as writer: logger.info("""***** Predict Results *****""") writer.write("""index\tprediction\n""") for index, item in enumerate(_lowercase): a__ : int = label_list[item] writer.write(F'''{index}\t{item}\n''') a__ : Tuple = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**_lowercase) else: trainer.create_model_card(**_lowercase) def lowerCAmelCase_ ( _lowercase : Any) -> Union[str, Any]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
170
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _A = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class _lowercase : lowercase_ = 4_2 lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" lowerCamelCase : List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> int: """simple docstring""" return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _UpperCamelCase ( self ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]: """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Version(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return other raise TypeError(F"""{other} (type {type(UpperCAmelCase_ )}) cannot be compared to version.""" ) def __eq__( self , UpperCAmelCase_ ) -> Optional[Any]: """simple docstring""" try: lowerCamelCase : List[str] = self._validate_operand(UpperCAmelCase_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , UpperCAmelCase_ ) -> Optional[int]: """simple docstring""" lowerCamelCase : Optional[int] = self._validate_operand(UpperCAmelCase_ ) return self.tuple < other.tuple def __hash__( self ) -> Optional[Any]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ ) -> Union[str, Any]: """simple docstring""" lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _UpperCamelCase ( self ) -> str: """simple docstring""" return self.version_str def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Tuple = _VERSION_REG.match(a_ ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(a_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase ( a_ ): '''simple docstring''' return ".".join(str(a_ ) for v in version_tuple )
360
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' return str(a_ ) == str(a_ )[::-1] def UpperCAmelCase ( a_ ): '''simple docstring''' return int(a_ ) + int(str(a_ )[::-1] ) def UpperCAmelCase ( a_ = 1_0000 ): '''simple docstring''' lowerCamelCase : Optional[Any] = [] for num in range(1, a_ ): lowerCamelCase : List[str] = 0 lowerCamelCase : Union[str, Any] = num while iterations < 50: lowerCamelCase : Optional[int] = sum_reverse(a_ ) iterations += 1 if is_palindrome(a_ ): break else: lychrel_nums.append(a_ ) return len(a_ ) if __name__ == "__main__": print(F"""{solution() = }""")
205
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase_ : '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = '''gelu''' def __init__( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=20 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=1 , __UpperCAmelCase : str=0 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) ->Dict: """simple docstring""" a = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder() a = inputs_dict['''input_ids'''] a = input_ids[:1, :] a = inputs_dict['''attention_mask'''][:1, :] a = inputs_dict['''head_mask'''] a = 1 # first forward pass a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) def _a ( a :int , a :List[str] , a :Optional[int] , a :str=None , a :Optional[Any]=None , a :List[str]=None , a :Tuple=None , a :List[Any]=None , ) -> Optional[int]: if attention_mask is None: a = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = TFBlenderbotSmallModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __snake_case = '''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.tokenizer(self.src_text , return_tensors='''tf''' ) a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
0
import math def _a ( a :int ) -> list: a = [True] * n a = False a = False a = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a = i * 2 while index < n: a = False a = index + i a = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def _a ( a :int = 999_966_663_333 ) -> int: a = math.floor(math.sqrt(a ) ) + 100 a = prime_sieve(a ) a = 0 a = 0 a = primes[prime_index] while (last_prime**2) <= limit: a = primes[prime_index + 1] a = last_prime**2 a = next_prime**2 # Get numbers divisible by lps(current) a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( a): def __get__( self, __a, __a=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") _lowerCAmelCase : List[Any] = '''__cached_''' + self.fget.__name__ _lowerCAmelCase : Tuple = getattr(__a, __a, __a) if cached is None: _lowerCAmelCase : Optional[Any] = self.fget(__a) setattr(__a, __a, __a) return cached def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def A ( _lowerCamelCase ): '''simple docstring''' if is_torch_fx_proxy(UpperCamelCase__ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase__ , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return isinstance(UpperCamelCase__ , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return _is_numpy(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(UpperCamelCase__ , torch.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(UpperCamelCase__ , torch.device ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) else: return False return isinstance(UpperCamelCase__ , torch.dtype ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf return isinstance(UpperCamelCase__ , tf.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase__ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(UpperCamelCase__ ) return type(UpperCamelCase__ ) == tf.Tensor def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase__ , jnp.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_flax_available() else _is_jax(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_py_obj(UpperCamelCase__ ) for o in obj] elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ).tolist() elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return np.array(UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ) else: return obj class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = fields(self) # Safety and consistency checks if not len(__a): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") _lowerCAmelCase : Union[str, Any] = getattr(self, class_fields[0].name) _lowerCAmelCase : List[Any] = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(__a): if isinstance(__a, __a): _lowerCAmelCase : List[str] = first_field.items() _lowerCAmelCase : Any = True else: try: _lowerCAmelCase : int = iter(__a) _lowerCAmelCase : Tuple = True except TypeError: _lowerCAmelCase : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a): if ( not isinstance(__a, (list, tuple)) or not len(__a) == 2 or not isinstance(element[0], __a) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value).") break setattr(self, element[0], element[1]) if element[1] is not None: _lowerCAmelCase : Any = element[1] elif first_field is not None: _lowerCAmelCase : Any = first_field else: for field in class_fields: _lowerCAmelCase : Dict = getattr(self, field.name) if v is not None: _lowerCAmelCase : Optional[Any] = v def __delitem__( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__( self, __a): '''simple docstring''' if isinstance(__a, __a): _lowerCAmelCase : str = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self, __a, __a): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a, __a) super().__setattr__(__a, __a) def __setitem__( self, __a, __a): '''simple docstring''' super().__setitem__(__a, __a) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a, __a) def snake_case__ ( self): '''simple docstring''' return tuple(self[k] for k in self.keys()) class UpperCAmelCase_ ( a , a): @classmethod def snake_case__ ( cls, __a): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}") class UpperCAmelCase_ ( a): lowerCamelCase__ = 'longest' lowerCamelCase__ = 'max_length' lowerCamelCase__ = 'do_not_pad' class UpperCAmelCase_ ( a): lowerCamelCase__ = 'pt' lowerCamelCase__ = 'tf' lowerCamelCase__ = 'np' lowerCamelCase__ = 'jax' class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : str = context_managers _lowerCAmelCase : Optional[int] = ExitStack() def __enter__( self): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__a) def __exit__( self, *__a, **__a): '''simple docstring''' self.stack.__exit__(*__a, **__a) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = infer_framework(UpperCamelCase__ ) if framework == "tf": _lowerCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = model_class.__name__ _lowerCAmelCase : Union[str, Any] = infer_framework(UpperCamelCase__ ) if framework == "tf": _lowerCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : List[str] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( _lowerCamelCase , _lowerCamelCase = "" , _lowerCamelCase = "." ): '''simple docstring''' def _flatten_dict(_lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase="." ): for k, v in d.items(): _lowerCAmelCase : Tuple = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ): yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) @contextmanager def A ( _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.T if axes is None else array.permute(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) else: raise ValueError(F"Type not supported for transpose: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.reshape(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(F"Type not supported for reshape: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"Type not supported for squeeze: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.unsqueeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"Type not supported for expand_dims: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.size(UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.numel() elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.size(UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(UpperCamelCase__ , (tuple, list) ): _lowerCAmelCase : List[Any] = [F"{repo_id}--{v}" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase : str = F"{repo_id}--{value}" return auto_map def A ( _lowerCamelCase ): '''simple docstring''' for base_class in inspect.getmro(UpperCamelCase__ ): _lowerCAmelCase : List[Any] = base_class.__module__ _lowerCAmelCase : Union[str, Any] = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=14 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_token_type_ids _snake_case = use_input_mask _snake_case = use_labels _snake_case = use_mc_token_ids _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = self.vocab_size - 1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None if self.use_mc_token_ids: _snake_case = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() _snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase ( self ): """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = CTRLModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = CTRLLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = CTRLForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowercase = (CTRLLMHeadModel,) if is_torch_available() else () __lowercase = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowercase = True __lowercase = False __lowercase = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase ( self ): """simple docstring""" _snake_case = CTRLModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowerCamelCase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase ( self ): """simple docstring""" pass @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = CTRLModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(lowerCAmelCase_ ) _snake_case = torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=lowerCAmelCase_ ) # Legal the president is _snake_case = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _snake_case = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Tuple = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A_ : Union[str, Any] = None A_ : str = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A_ : str = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _lowerCAmelCase: """simple docstring""" a : bool =True a : Optional[str] =None # Automatically constructed a : ClassVar[str] ="PIL.Image.Image" a : ClassVar[Any] =pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) a : str =field(default='''Image''' , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self ): return self.pa_type def _a ( self , _lowerCamelCase ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase_: str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _a ( self , _lowerCamelCase , _lowerCamelCase=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: UpperCamelCase_: Tuple = {} UpperCamelCase_: str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): UpperCamelCase_: str = PIL.Image.open(_lowerCAmelCase ) else: UpperCamelCase_: List[str] = path.split('::' )[-1] try: UpperCamelCase_: Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] UpperCamelCase_: int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: UpperCamelCase_: List[Any] = None with xopen(_lowerCAmelCase , 'rb' , use_auth_token=_lowerCAmelCase ) as f: UpperCamelCase_: Union[str, Any] = BytesIO(f.read() ) UpperCamelCase_: Dict = PIL.Image.open(bytes_ ) else: UpperCamelCase_: Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _a ( self ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def _a ( self , _lowerCamelCase ): if pa.types.is_string(storage.type ): UpperCamelCase_: Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) UpperCamelCase_: Any = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase_: Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) UpperCamelCase_: List[str] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase_: List[str] = storage.field('bytes' ) else: UpperCamelCase_: List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase_: Optional[int] = storage.field('path' ) else: UpperCamelCase_: int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) UpperCamelCase_: Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase_: Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase_: Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) UpperCamelCase_: List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def _a ( self , _lowerCamelCase ): @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase ): with xopen(_lowerCAmelCase , 'rb' ) as f: UpperCamelCase_: Optional[int] = f.read() return bytes_ UpperCamelCase_: Tuple = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase_: Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) UpperCamelCase_: Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case () -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase_: Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def snake_case (UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: List[Any] = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase_: Union[str, Any] = image.format else: UpperCamelCase_: List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def snake_case (UpperCAmelCase__ ) -> Dict: if hasattr(__SCREAMING_SNAKE_CASE , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) UpperCamelCase_: List[Any] = array.dtype UpperCamelCase_: List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCamelCase_: Dict = dtype.kind UpperCamelCase_: Union[str, Any] = dtype.itemsize UpperCamelCase_: Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase_: int = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase_: List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase_: int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) UpperCamelCase_: Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCamelCase_: Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def snake_case (UpperCAmelCase__ ) -> List[Any]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: UpperCamelCase_: Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase_: int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase_: List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
370
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A_ : List[str] = '.' if __name__ == "__main__": A_ : Dict = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') A_ : Dict = [] A_ : Optional[Any] = [] with open(doctest_file_path) as fp: for line in fp: A_ : Tuple = line.strip() A_ : Any = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A_ : str = '\n'.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
292
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase (_lowerCAmelCase , _lowerCAmelCase=() , _lowerCAmelCase=None , _lowerCAmelCase="no" , _lowerCAmelCase="29500" ): __lowerCAmelCase = False __lowerCAmelCase = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): __lowerCAmelCase = True elif "IPython" in sys.modules: __lowerCAmelCase = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: __lowerCAmelCase = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: __lowerCAmelCase = 8 __lowerCAmelCase = PrepareForLaunch(_lowerCAmelCase , distributed_type="""TPU""" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="""127.0.01""" , master_port=_lowerCAmelCase , mixed_precision=_lowerCAmelCase ): __lowerCAmelCase = PrepareForLaunch(_lowerCAmelCase , distributed_type="""MULTI_GPU""" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowerCAmelCase = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase=() , _lowerCAmelCase=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): __lowerCAmelCase = PrepareForLaunch(_lowerCAmelCase , debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="""fork""" )
301
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Union[str, Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } _lowercase : Union[str, Any] = { """gpt-neox-20b""": 20_48, } class _UpperCAmelCase ( __UpperCamelCase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , _lowercase : int=None , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : str="<|endoftext|>" , _lowercase : Optional[int]="<|endoftext|>" , _lowercase : Union[str, Any]="<|endoftext|>" , _lowercase : List[Any]=False , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowercase ) != add_prefix_space: __UpperCAmelCase = getattr(_lowercase , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**_lowercase ) __UpperCAmelCase = add_prefix_space def a ( self : Optional[int] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def a ( self : Optional[int] , _lowercase : "Conversation" ): __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
351
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
86
0
from math import ceil, sqrt def lowerCamelCase_ ( UpperCamelCase__ : int = 100_0000 ) -> int: """simple docstring""" __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
90
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = limit + 1 _snake_case = [0] * limit for first_term in range(1 , __lowerCamelCase ): for n in range(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _snake_case = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
288
0
from PIL import Image def A ( lowercase , lowercase ) -> Image: '''simple docstring''' UpperCamelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(lowercase ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 _UpperCAmelCase : List[Any] = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
363
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = CTRLTokenizer __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
110
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : Optional[Any] = 1_6 lowerCamelCase : Dict = 3_2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 16 ,lowercase = "bert-base-cased" ) -> str: snake_case : Optional[int] = AutoTokenizer.from_pretrained(lowercase ) snake_case : List[str] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case : Optional[int] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case : Optional[Any] = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : str = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(lowercase ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. snake_case : List[Any] = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) snake_case : str = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: snake_case : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : str = config["lr"] snake_case : List[str] = int(config["""num_epochs"""] ) snake_case : Tuple = int(config["""seed"""] ) snake_case : Dict = int(config["""batch_size"""] ) snake_case : Optional[Any] = args.model_name_or_path set_seed(lowercase ) snake_case : Tuple = get_dataloaders(lowercase ,lowercase ,lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Optional[int] = AutoModelForSequenceClassification.from_pretrained(lowercase ,return_dict=lowercase ) # Instantiate optimizer snake_case : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case : Any = optimizer_cls(params=model.parameters() ,lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: snake_case : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case : str = 1 snake_case : str = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=0 ,num_training_steps=lowercase ,) else: snake_case : Optional[int] = DummyScheduler(lowercase ,total_num_steps=lowercase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case : List[Any] = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # We need to keep track of how many total steps we have iterated over snake_case : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case : int = 0 # Now we train the model snake_case : Tuple = evaluate.load("""glue""" ,"""mrpc""" ) snake_case : Optional[int] = 0 snake_case : Any = {} for epoch in range(lowercase ,lowercase ): model.train() for step, batch in enumerate(lowercase ): snake_case : List[Any] = model(**lowercase ) snake_case : List[Any] = outputs.loss snake_case : int = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case : Tuple = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case : str = model(**lowercase ) snake_case : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case : int = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: snake_case : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase ,references=lowercase ,) snake_case : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" ,lowercase ) snake_case : Union[str, Any] = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: snake_case : int = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: snake_case : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowercase ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowercase ,) parser.add_argument( """--output_dir""" ,type=lowercase ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=lowercase ,default=lowercase ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=lowercase ,default=3 ,help="""Number of train epochs.""" ,) snake_case : Union[str, Any] = parser.parse_args() snake_case : List[str] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
124
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a : str = getLogger(__name__) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ): '''simple docstring''' UpperCAmelCase : List[Any] = str(__magic_name__ ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ ) UpperCAmelCase : List[str] = Path(__magic_name__ ) UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(__magic_name__ ) UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda() if fpaa: UpperCAmelCase : int = model.half() # determine if we need to increase num_beams use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase : Optional[Any] = num_return_sequences UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase : Any = tokenizer.model_max_length if prefix is None: UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase : Dict = SeqaSeqDataset( __magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ ) UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn ) UpperCAmelCase : Any = [] for batch in tqdm(__magic_name__ ): UpperCAmelCase : List[Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , ) UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) UpperCAmelCase : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__magic_name__ ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__magic_name__ , __magic_name__ ) return results, sampler.num_replicas def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ ) parser.add_argument( "--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" ) parser.add_argument( "--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument( "--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args() UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking. UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase : Optional[Any] = {} if args.src_lang is not None: UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: UpperCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__magic_name__ ) UpperCAmelCase , UpperCAmelCase : str = eval_data_dir( args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , ) if args.local_rank <= 0: UpperCAmelCase : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=__magic_name__ ) UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout ) UpperCAmelCase : Dict = combine_partial_results(__magic_name__ ) if args.num_return_sequences > 1: UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__magic_name__ , __magic_name__ ) return UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__magic_name__ ) as f: UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase : Optional[int] = "translation" in args.task UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge" UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = len(__magic_name__ ) UpperCAmelCase : Union[str, Any] = time.time() - start_time UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ ) print(__magic_name__ ) write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(__magic_name__ ) UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] ) UpperCAmelCase : List[Any] = [x["pred"] for x in records] return preds def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase : Union[str, Any] = None while (time.time() - start_wait) < timeout: UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) ) if len(__magic_name__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
311
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) _A : Optional[Any] = logging.getLogger(__name__) _A : Optional[Any] = {'facebook/bart-base': BartForConditionalGeneration} _A : Any = {'facebook/bart-base': BartTokenizer} def _a ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Dict = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=UpperCAmelCase , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=UpperCAmelCase , default=UpperCAmelCase , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCAmelCase , ) parser.add_argument( '''--config_name''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=UpperCAmelCase , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Where to store the final ONNX file.''' ) lowerCamelCase__ : Any = parser.parse_args() return args def _a ( UpperCAmelCase , UpperCAmelCase="cpu" ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Optional[int] = model_dict[model_name].from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase ) if model_name in ["facebook/bart-base"]: lowerCamelCase__ : str = 0 lowerCamelCase__ : str = None lowerCamelCase__ : List[Any] = 0 return huggingface_model, tokenizer def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" model.eval() lowerCamelCase__ : Dict = None lowerCamelCase__ : Dict = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase ) ) with torch.no_grad(): lowerCamelCase__ : str = '''My friends are cool but they eat too many carbs.''' lowerCamelCase__ : Union[str, Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) lowerCamelCase__ : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=UpperCAmelCase , max_length=UpperCAmelCase , early_stopping=UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=UpperCAmelCase , ) logger.info('''Model exported to {}'''.format(UpperCAmelCase ) ) lowerCamelCase__ : int = remove_dup_initializers(os.path.abspath(UpperCAmelCase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(UpperCAmelCase ) ) lowerCamelCase__ : Optional[Any] = onnxruntime.InferenceSession(UpperCAmelCase ) lowerCamelCase__ : str = ort_sess.run( UpperCAmelCase , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(UpperCAmelCase ), '''max_length''': np.array(UpperCAmelCase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _a ( ) -> str: """simple docstring""" lowerCamelCase__ : Dict = parse_args() lowerCamelCase__ : str = 5 lowerCamelCase__ : str = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowerCamelCase__ : Tuple = torch.device(args.device ) lowerCamelCase__ : str = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(UpperCAmelCase ) if args.max_length: lowerCamelCase__ : Union[str, Any] = args.max_length if args.num_beams: lowerCamelCase__ : List[str] = args.num_beams if args.output_file_path: lowerCamelCase__ : int = args.output_file_path else: lowerCamelCase__ : Optional[Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
360
import os from pathlib import Path def _a ( ) -> Tuple: """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : List[Any] = Path(UpperCAmelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' lowerCamelCase__ : Any = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , UpperCAmelCase , with_cuda=UpperCAmelCase , extra_include_paths=[str(UpperCAmelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
265
0
def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :Union[str, Any] = 0 UpperCamelCase :Dict = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase :Optional[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None UpperCamelCase :List[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCamelCase :int = left UpperCamelCase :Dict = point elif point > right: UpperCamelCase :str = right UpperCamelCase :Dict = point else: if item < current_item: UpperCamelCase :str = point - 1 else: UpperCamelCase :str = point + 1 return None def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase :Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : Any ): if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys __snake_case = 0 if debug == 1: __snake_case = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") __snake_case = 67 __snake_case = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("""Not found""")
259
import math def _A ( SCREAMING_SNAKE_CASE__ : int = 100 ): UpperCamelCase :Dict = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase :List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
259
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = 'timesformer' def __init__( self : Optional[Any] , __lowerCAmelCase : List[Any]=224 , __lowerCAmelCase : Union[str, Any]=16 , __lowerCAmelCase : str=3 , __lowerCAmelCase : int=8 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : int=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Union[str, Any]=1e-6 , __lowerCAmelCase : int=True , __lowerCAmelCase : Optional[int]="divided_space_time" , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : Optional[int] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = qkv_bias _UpperCAmelCase = attention_type _UpperCAmelCase = drop_path_rate
30
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
1
'''simple docstring''' import torch from transformers import AutoModel class A__ ( torch.nn.Module ): def __init__( self : List[Any] , _a : Union[str, Any]="sayef/fsner-bert-base-uncased" ) -> List[str]: '''simple docstring''' super(_a , self ).__init__() _SCREAMING_SNAKE_CASE =AutoModel.from_pretrained(_a , return_dict=_a ) _SCREAMING_SNAKE_CASE =torch.nn.CosineSimilarity(3 , 1e-08 ) _SCREAMING_SNAKE_CASE =torch.nn.Softmax(dim=1 ) def A ( self : int , **_a : str ) -> Union[str, Any]: '''simple docstring''' return self.bert(**_a ).last_hidden_state def A ( self : str , _a : int ) -> Optional[Any]: '''simple docstring''' return token_embeddings.sum(2 , keepdim=_a ) def A ( self : Dict , _a : List[str] , _a : Dict , _a : Dict=1 ) -> Optional[int]: '''simple docstring''' return self.softmax(T * self.cos(_a , _a ) ) def A ( self : Optional[Any] , _a : List[str] , _a : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =W_supports['sizes'].tolist() _SCREAMING_SNAKE_CASE =W_supports['start_token_id'].item() _SCREAMING_SNAKE_CASE =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _SCREAMING_SNAKE_CASE =self.BERT(**_a ) _SCREAMING_SNAKE_CASE =self.BERT(**_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =W_supports['input_ids'] == start_token_id _SCREAMING_SNAKE_CASE =W_supports['input_ids'] == end_token_id for i, size in enumerate(_a ): if i == 0: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =support_sizes[i - 1] _SCREAMING_SNAKE_CASE =S[s : s + size][start_token_masks[s : s + size]] _SCREAMING_SNAKE_CASE =S[s : s + size][end_token_masks[s : s + size]] _SCREAMING_SNAKE_CASE =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _SCREAMING_SNAKE_CASE =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _SCREAMING_SNAKE_CASE =torch.vstack((p_starts, p_start) ) _SCREAMING_SNAKE_CASE =torch.vstack((p_ends, p_end) ) else: _SCREAMING_SNAKE_CASE =p_start _SCREAMING_SNAKE_CASE =p_end return p_starts, p_ends
47
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A_ = logging.get_logger(__name__) class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = None @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Tuple, a_: int, a_: int, a_: str, **a_: Dict ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any], a_: List[str] ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCamelCase_ ( cls: Tuple ): '''simple docstring''' return f"`pip install {cls.pip_package or cls.name}`" class lowercase( __a ): '''simple docstring''' lowercase__ = "optuna" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: int, a_: str, **a_: List[str] ): '''simple docstring''' return run_hp_search_optuna(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Any ): '''simple docstring''' return default_hp_space_optuna(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "ray" lowercase__ = "'ray[tune]'" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_ray_available() def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: int, a_: str, **a_: List[Any] ): '''simple docstring''' return run_hp_search_ray(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Tuple ): '''simple docstring''' return default_hp_space_ray(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "sigopt" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: str, **a_: int ): '''simple docstring''' return run_hp_search_sigopt(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: List[str] ): '''simple docstring''' return default_hp_space_sigopt(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "wandb" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: str, **a_: Union[str, Any] ): '''simple docstring''' return run_hp_search_wandb(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Any ): '''simple docstring''' return default_hp_space_wandb(a_ ) A_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case__ ) > 0: _snake_case : Any = available_backends[0].name if len(snake_case__ ) > 1: logger.info( F"{len(snake_case__ )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
64
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase__ ,unittest.TestCase ): __A : Union[str, Any] = CodeGenTokenizer __A : Tuple = CodeGenTokenizerFast __A : Any = True __A : Any = {"add_prefix_space": True} __A : List[str] = False def __UpperCamelCase ( self : Optional[int] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowercase__ : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowercase__ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase__ : Tuple = {'unk_token': '<unk>'} lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__snake_case ) ) def __UpperCamelCase ( self : str , **lowercase_ : str ) -> List[str]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : str ) -> Tuple: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> List[str]: lowercase__ : Any = 'lower newer' lowercase__ : Any = 'lower newer' return input_text, output_text def __UpperCamelCase ( self : Tuple ) -> int: lowercase__ : Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : str = 'lower newer' lowercase__ : Optional[int] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowercase__ : str = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowercase__ : Optional[int] = tokens + [tokenizer.unk_token] lowercase__ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: if not self.test_rust_tokenizer: return lowercase__ : int = self.get_tokenizer() lowercase__ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) lowercase__ : List[Any] = 'lower newer' # Testing tokenization lowercase__ : List[Any] = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) lowercase__ : Union[str, Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids without special tokens lowercase__ : List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowercase__ : Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids with special tokens lowercase__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) lowercase__ : str = tokenizer.encode(__snake_case , add_prefix_space=__snake_case ) lowercase__ : int = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing the unknown token lowercase__ : Optional[int] = tokens + [rust_tokenizer.unk_token] lowercase__ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __UpperCamelCase ( self : int , *lowercase_ : Dict , **lowercase_ : List[str] ) -> Tuple: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any]=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input lowercase__ : int = 'This is a simple input' lowercase__ : Dict = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : Optional[Any] = ('This is a simple input', 'This is a pair') lowercase__ : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="max_length" ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="max_length" ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="max_length" , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="max_length" ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="max_length" ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="max_length" , ) def __UpperCamelCase ( self : int ) -> Optional[int]: lowercase__ : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowercase__ : Dict = 'This is a simple input' lowercase__ : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] lowercase__ : Dict = ('This is a simple input', 'This is a pair') lowercase__ : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowercase__ : Union[str, Any] = tokenizer.pad_token_id lowercase__ : Dict = tokenizer(__snake_case , padding="max_length" , max_length=30 , return_tensors="np" ) lowercase__ : int = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors="np" ) lowercase__ : Dict = tokenizer(*__snake_case , padding="max_length" , max_length=60 , return_tensors="np" ) lowercase__ : List[Any] = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : int = '$$$' lowercase__ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__snake_case , add_bos_token=__snake_case ) lowercase__ : Optional[int] = 'This is a simple input' lowercase__ : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : Tuple = tokenizer.bos_token_id lowercase__ : int = tokenizer(__snake_case ) lowercase__ : Any = tokenizer(__snake_case ) self.assertEqual(out_s.input_ids[0] , __snake_case ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase__ : Optional[Any] = tokenizer.decode(out_s.input_ids ) lowercase__ : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __snake_case ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowercase__ : str = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' lowercase__ : Optional[int] = '\nif len_a > len_b: result = a\nelse: result = b' lowercase__ : Dict = tokenizer.encode(__snake_case ) lowercase__ : Optional[int] = ['^#', re.escape("<|endoftext|>" ), '^\'\'\'', '^"""', '\n\n\n'] lowercase__ : Any = tokenizer.decode(__snake_case , truncate_before_pattern=__snake_case ) self.assertEqual(__snake_case , __snake_case ) def __UpperCamelCase ( self : List[str] ) -> int: pass
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[Any] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _UpperCAmelCase ( __a): _lowerCAmelCase : Any = """efficientnet""" def __init__( self : Union[str, Any] , lowercase_ : int = 3 , lowercase_ : int = 600 , lowercase_ : float = 2.0 , lowercase_ : float = 3.1 , lowercase_ : int = 8 , lowercase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowercase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowercase_ : List[int] = [] , lowercase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase_ : float = 0.25 , lowercase_ : str = "swish" , lowercase_ : int = 2560 , lowercase_ : str = "mean" , lowercase_ : float = 0.02 , lowercase_ : float = 0.0_01 , lowercase_ : float = 0.99 , lowercase_ : float = 0.5 , lowercase_ : float = 0.2 , **lowercase_ : Union[str, Any] , ): super().__init__(**_A ) snake_case_ : Optional[int] = num_channels snake_case_ : Dict = image_size snake_case_ : List[str] = width_coefficient snake_case_ : str = depth_coefficient snake_case_ : str = depth_divisor snake_case_ : List[Any] = kernel_sizes snake_case_ : Optional[Any] = in_channels snake_case_ : Optional[Any] = out_channels snake_case_ : Optional[Any] = depthwise_padding snake_case_ : Tuple = strides snake_case_ : Tuple = num_block_repeats snake_case_ : Dict = expand_ratios snake_case_ : Optional[Any] = squeeze_expansion_ratio snake_case_ : List[Any] = hidden_act snake_case_ : Any = hidden_dim snake_case_ : int = pooling_type snake_case_ : Dict = initializer_range snake_case_ : Tuple = batch_norm_eps snake_case_ : Optional[Any] = batch_norm_momentum snake_case_ : List[str] = dropout_rate snake_case_ : Optional[Any] = drop_connect_rate snake_case_ : Dict = sum(_A ) * 4 class _UpperCAmelCase ( __a): _lowerCAmelCase : Dict = version.parse("""1.11""") @property def _snake_case ( self : Any ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self : Union[str, Any] ): return 1E-5
264
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def lowercase_ ( self : int ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ : Any = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def lowercase_ ( self : Optional[int] , **_A : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , _A : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ : int = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Any = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''A long paragraph for summarization.'''] UpperCAmelCase__ : List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(_A , return_tensors='''pt''' ) UpperCAmelCase__ : int = tokenizer(text_target=_A , return_tensors='''pt''' ) UpperCAmelCase__ : str = inputs['''input_ids'''] UpperCAmelCase__ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = ['''Summary of the text.''', '''Another summary.'''] UpperCAmelCase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A ) UpperCAmelCase__ : str = [[0] * len(_A ) for x in encoded_output['''input_ids''']] UpperCAmelCase__ : Any = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Any = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase__ : Dict = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
181
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap SCREAMING_SNAKE_CASE__ = """Usage of script: script_name <size_of_canvas:int>""" SCREAMING_SNAKE_CASE__ = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [[False for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] return canvas def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__lowerCamelCase ): for j, _ in enumerate(__lowerCamelCase ): lowercase_ = bool(random.getrandbits(1 ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[list[bool]] ): '''simple docstring''' lowercase_ = np.array(__lowerCamelCase ) lowercase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCamelCase ): for c, pt in enumerate(__lowerCamelCase ): lowercase_ = __judge_point( __lowerCamelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowercase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowercase_ = current_canvas.tolist() return return_canvas def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: bool , __lowerCamelCase: list[list[bool]] ): '''simple docstring''' lowercase_ = 0 lowercase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowercase_ = pt if pt: if alive < 2: lowercase_ = False elif alive == 2 or alive == 3: lowercase_ = True elif alive > 3: lowercase_ = False else: if alive == 3: lowercase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) # main working structure of this module. SCREAMING_SNAKE_CASE__ = create_canvas(canvas_size) seed(c) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = plt.subplots() fig.show() SCREAMING_SNAKE_CASE__ = ListedColormap(["""w""", """k"""]) try: while True: SCREAMING_SNAKE_CASE__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
297
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
1
import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCamelCase( __UpperCamelCase : List[Any] ): return 1 / (1 + np.exp(-z )) def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ): return (-y * np.log(__UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : int ): lowerCAmelCase_ : Dict = np.dot(__UpperCamelCase ,__UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCamelCase ) ) ) def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any=70000 ): lowerCAmelCase_ : List[str] = np.zeros(x.shape[1] ) for iterations in range(__UpperCamelCase ): lowerCAmelCase_ : Union[str, Any] = np.dot(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : Dict = sigmoid_function(__UpperCamelCase ) lowerCAmelCase_ : List[str] = np.dot(x.T ,h - y ) / y.size lowerCAmelCase_ : Any = theta - alpha * gradient # updating the weights lowerCAmelCase_ : Dict = np.dot(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = sigmoid_function(__UpperCamelCase ) lowerCAmelCase_ : Dict = cost_function(__UpperCamelCase ,__UpperCamelCase ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A__ : int = datasets.load_iris() A__ : Optional[int] = iris.data[:, :2] A__ : int = (iris.target != 0) * 1 A__ : Optional[int] = 0.1 A__ : List[str] = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def UpperCamelCase( __UpperCamelCase : Optional[int] ): return sigmoid_function( np.dot(__UpperCamelCase ,__UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((A__) , (A__)) : int = (x[:, 0].min(), x[:, 0].max()) ((A__) , (A__)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((A__) , (A__)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A__ : Union[str, Any] = np.c_[xxa.ravel(), xxa.ravel()] A__ : Dict = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
103
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def A_ ( snake_case ): return 1 / (1 + np.exp(-z )) def A_ ( snake_case , snake_case ): return (-y * np.log(snake_case ) - (1 - y) * np.log(1 - h )).mean() def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Dict = np.dot(snake_case , snake_case ) return np.sum(y * scores - np.log(1 + np.exp(snake_case ) ) ) def A_ ( snake_case , snake_case , snake_case , snake_case=70000 ): SCREAMING_SNAKE_CASE:List[str] = np.zeros(x.shape[1] ) for iterations in range(snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = np.dot(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Dict = sigmoid_function(snake_case ) SCREAMING_SNAKE_CASE:List[str] = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE:Any = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE:Dict = np.dot(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = sigmoid_function(snake_case ) SCREAMING_SNAKE_CASE:Dict = cost_function(snake_case , snake_case ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ = datasets.load_iris() A_ = iris.data[:, :2] A_ = (iris.target != 0) * 1 A_ = 0.1 A_ = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def A_ ( snake_case ): return sigmoid_function( np.dot(snake_case , snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((A_) , (A_)) = (x[:, 0].min(), x[:, 0].max()) ((A_) , (A_)) = (x[:, 1].min(), x[:, 1].max()) ((A_) , (A_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ = np.c_[xxa.ravel(), xxa.ravel()] A_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
139
0
"""simple docstring""" def lowercase ( _snake_case : Optional[int]=28_123 ) ->Dict: """simple docstring""" __snake_case : int = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __snake_case : Tuple = set() __snake_case : Optional[int] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_snake_case ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
'''simple docstring''' def a_ ( __snake_case : list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCamelCase_ =sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =FunnelTokenizer lowercase : List[str] =FunnelTokenizerFast lowercase : Union[str, Any] =True lowercase : int =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''' ) lowerCamelCase_ =len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len ) lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''', '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len + [1] * sentence_len )
75
1
"""simple docstring""" from __future__ import annotations _UpperCamelCase: Union[str, Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class a__ : def __init__( self : Tuple, lowerCAmelCase : dict[str, list[str]], lowerCAmelCase : str ) -> None: lowercase : Any = graph # mapping node to its parent in resulting breadth first tree lowercase : dict[str, str | None] = {} lowercase : List[Any] = source_vertex def lowercase ( self : List[str] ) -> None: lowercase : Dict = {self.source_vertex} lowercase : Tuple = None lowercase : int = [self.source_vertex] # first in first out queue while queue: lowercase : Any = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCAmelCase ) lowercase : Any = vertex queue.append(lowerCAmelCase ) def lowercase ( self : Dict, lowerCAmelCase : str ) -> str: if target_vertex == self.source_vertex: return self.source_vertex lowercase : Tuple = self.parent.get(lowerCAmelCase ) if target_vertex_parent is None: lowercase : Optional[int] = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCAmelCase ) return self.shortest_path(lowerCAmelCase ) + f'''->{target_vertex}''' if __name__ == "__main__": _UpperCamelCase: List[str] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
368
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase: Tuple = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : int, **lowerCAmelCase : str ) -> Any: super().__init__(**lowerCAmelCase ) requires_backends(self, 'vision' ) requires_backends(self, 'torch' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase ) def lowercase ( self : Optional[int], **lowerCAmelCase : int ) -> Tuple: lowercase : List[Any] = {} lowercase : List[str] = {} lowercase : Optional[int] = {} # preprocess args if "points_per_batch" in kwargs: lowercase : List[Any] = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowercase : Tuple = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowercase : Any = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowercase : Dict = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowercase : str = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowercase : List[str] = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowercase : List[str] = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowercase : str = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowercase : Optional[int] = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowercase : Dict = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowercase : int = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowercase : Union[str, Any] = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any], lowerCAmelCase : List[str], *lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict=None, lowerCAmelCase : Union[str, Any]=None, **lowerCAmelCase : int ) -> List[str]: return super().__call__(lowerCAmelCase, *lowerCAmelCase, num_workers=lowerCAmelCase, batch_size=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : List[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple=64, lowerCAmelCase : int = 0, lowerCAmelCase : float = 512 / 1500, lowerCAmelCase : Optional[int] = 32, lowerCAmelCase : Optional[int] = 1, ) -> Union[str, Any]: lowercase : List[Any] = load_image(lowerCAmelCase ) lowercase : str = self.image_processor.size['longest_edge'] lowercase , lowercase , lowercase , lowercase : List[Any] = self.image_processor.generate_crop_boxes( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : Any = self.image_processor(images=lowerCAmelCase, return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowercase : Optional[int] = self.get_inference_context() with inference_context(): lowercase : List[str] = self._ensure_tensor_on_device(lowerCAmelCase, device=self.device ) lowercase : int = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowercase : List[Any] = image_embeddings lowercase : Dict = grid_points.shape[1] lowercase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0, lowerCAmelCase, lowerCAmelCase ): lowercase : Optional[int] = grid_points[:, i : i + points_per_batch, :, :] lowercase : List[str] = input_labels[:, i : i + points_per_batch] lowercase : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase ( self : Any, lowerCAmelCase : List[str], lowerCAmelCase : str=0.88, lowerCAmelCase : Optional[int]=0.95, lowerCAmelCase : str=0, lowerCAmelCase : Optional[int]=1, ) -> Optional[int]: lowercase : Optional[int] = model_inputs.pop('input_boxes' ) lowercase : Any = model_inputs.pop('is_last' ) lowercase : Tuple = model_inputs.pop('original_sizes' ).tolist() lowercase : Union[str, Any] = model_inputs.pop('reshaped_input_sizes' ).tolist() lowercase : str = self.model(**lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase : str = model_outputs['pred_masks'] lowercase : str = self.image_processor.post_process_masks( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, binarize=lowerCAmelCase ) lowercase : Dict = model_outputs['iou_scores'] lowercase , lowercase , lowercase : int = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase ( self : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Tuple=False, lowerCAmelCase : Any=False, lowerCAmelCase : Tuple=0.7, ) -> List[str]: lowercase : Any = [] lowercase : Optional[Any] = [] lowercase : Optional[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowercase : Optional[Any] = torch.cat(lowerCAmelCase ) lowercase : List[Any] = torch.cat(lowerCAmelCase ) lowercase , lowercase , lowercase , lowercase : str = self.image_processor.post_process_for_mask_generation( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : str = defaultdict(lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase ) lowercase : Dict = {} if output_rle_mask: lowercase : Tuple = rle_mask if output_bboxes_mask: lowercase : Tuple = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
53
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( __lowercase ): lowerCAmelCase__ = (KDPMaDiscreteScheduler,) lowerCAmelCase__ = 1_0 def lowercase_ ( self : Optional[int] , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**snake_case_ ) return config def lowercase_ ( self : Any ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowercase_ ( self : str ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def lowercase_ ( self : str ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def lowercase_ ( self : int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase__ : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase__ : Optional[int] = self.dummy_model() UpperCAmelCase__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase__ : Optional[int] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ : Optional[Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) UpperCAmelCase__ : List[Any] = model(snake_case_ , snake_case_ ) UpperCAmelCase__ : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase__ : Optional[int] = output.prev_sample UpperCAmelCase__ : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) UpperCAmelCase__ : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def lowercase_ ( self : Dict ): '''simple docstring''' if torch_device == "mps": return UpperCAmelCase__ : Dict = self.scheduler_classes[0] UpperCAmelCase__ : Optional[int] = self.get_scheduler_config() UpperCAmelCase__ : Tuple = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase__ : str = self.dummy_model() UpperCAmelCase__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase__ : Optional[int] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ : List[Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) UpperCAmelCase__ : List[Any] = model(snake_case_ , snake_case_ ) UpperCAmelCase__ : Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase__ : List[Any] = output.prev_sample UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(snake_case_ ) ) UpperCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def lowercase_ ( self : Tuple ): '''simple docstring''' if torch_device == "mps": return UpperCAmelCase__ : Tuple = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : List[str] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) UpperCAmelCase__ : Dict = self.dummy_model() UpperCAmelCase__ : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase__ : Tuple = scheduler.scale_model_input(snake_case_ , snake_case_ ) UpperCAmelCase__ : Union[str, Any] = model(snake_case_ , snake_case_ ) UpperCAmelCase__ : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase__ : Dict = output.prev_sample UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(snake_case_ ) ) UpperCAmelCase__ : Tuple = torch.mean(torch.abs(snake_case_ ) ) if str(snake_case_ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
181
import colorsys from PIL import Image # type: ignore def __UpperCamelCase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : int ): __a : Any = x __a : List[Any] = y for step in range(lowerCAmelCase__ ): # noqa: B007 __a : List[Any] = a * a - b * b + x __a : Tuple = 2 * a * b + y __a : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def __UpperCamelCase ( lowerCAmelCase__ : int = 8_0_0 , lowerCAmelCase__ : int = 6_0_0 , lowerCAmelCase__ : float = -0.6 , lowerCAmelCase__ : float = 0 , lowerCAmelCase__ : float = 3.2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : bool = True , ): __a : int = Image.new('''RGB''' , (image_width, image_height) ) __a : Dict = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates __a : Optional[Any] = figure_width / image_width * image_height __a : str = figure_center_x + (image_x / image_width - 0.5) * figure_width __a : str = figure_center_y + (image_y / image_height - 0.5) * figure_height __a : Tuple = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __a : Optional[int] = get_color_coded_rgb(lowerCAmelCase__ ) else: __a : Optional[Any] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase__ =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
216
0
_lowerCamelCase : List[Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowerCamelCase : List[str] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowerCamelCase : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
354
import argparse import collections import json import os import re import string import sys import numpy as np _lowerCamelCase : Dict = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowerCamelCase : Optional[int] = None def __lowerCamelCase (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=UpperCAmelCase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=UpperCAmelCase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE = bool(qa["answers"]["text"] ) return qid_to_has_ans def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] ): def remove_articles(UpperCAmelCase__ : List[str] ): return ARTICLES_REGEX.sub(" " , UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ : Dict ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def __lowerCamelCase (UpperCAmelCase__ : List[str] ): if not s: return [] return normalize_answer(UpperCAmelCase__ ).split() def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ): return int(normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = get_tokens(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = get_tokens(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = collections.Counter(UpperCAmelCase__ ) & collections.Counter(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(common.values() ) if len(UpperCAmelCase__ ) == 0 or len(UpperCAmelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE = qa["id"] SCREAMING_SNAKE_CASE = [t for t in qa["answers"]["text"] if normalize_answer(UpperCAmelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string SCREAMING_SNAKE_CASE = [""] if qid not in preds: print(F"Missing prediction for {qid}" ) continue SCREAMING_SNAKE_CASE = preds[qid] # Take max over all gold answers SCREAMING_SNAKE_CASE = max(compute_exact(UpperCAmelCase__ , UpperCAmelCase__ ) for a in gold_answers ) SCREAMING_SNAKE_CASE = max(compute_fa(UpperCAmelCase__ , UpperCAmelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = {} for qid, s in scores.items(): SCREAMING_SNAKE_CASE = na_probs[qid] > na_prob_thresh if pred_na: SCREAMING_SNAKE_CASE = float(not qid_to_has_ans[qid] ) else: SCREAMING_SNAKE_CASE = s return new_scores def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=None ): if not qid_list: SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): for k in new_eval: SCREAMING_SNAKE_CASE = new_eval[k] def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): plt.step(UpperCAmelCase__ , UpperCAmelCase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(UpperCAmelCase__ , UpperCAmelCase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCAmelCase__ ) plt.savefig(UpperCAmelCase__ ) plt.clf() def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : str=None ): SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : na_probs[k] ) SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = [1.0] SCREAMING_SNAKE_CASE = [0.0] SCREAMING_SNAKE_CASE = 0.0 for i, qid in enumerate(UpperCAmelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] SCREAMING_SNAKE_CASE = true_pos / float(i + 1 ) SCREAMING_SNAKE_CASE = true_pos / float(UpperCAmelCase__ ) if i == len(UpperCAmelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCAmelCase__ ) recalls.append(UpperCAmelCase__ ) if out_image: plot_pr_curve(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ): if out_image_dir and not os.path.exists(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) SCREAMING_SNAKE_CASE = {k: float(UpperCAmelCase__ ) for k, v in qid_to_has_ans.items()} SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_exact" ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_f1" ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_oracle" ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ): if not qid_list: return SCREAMING_SNAKE_CASE = [na_probs[k] for k in qid_list] SCREAMING_SNAKE_CASE = np.ones_like(UpperCAmelCase__ ) / float(len(UpperCAmelCase__ ) ) plt.hist(UpperCAmelCase__ , weights=UpperCAmelCase__ , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(UpperCAmelCase__ , F"na_prob_hist_{name}.png" ) ) plt.clf() def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) SCREAMING_SNAKE_CASE = num_no_ans SCREAMING_SNAKE_CASE = cur_score SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : na_probs[k] ) for i, qid in enumerate(UpperCAmelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: SCREAMING_SNAKE_CASE = scores[qid] else: if preds[qid]: SCREAMING_SNAKE_CASE = -1 else: SCREAMING_SNAKE_CASE = 0 cur_score += diff if cur_score > best_score: SCREAMING_SNAKE_CASE = cur_score SCREAMING_SNAKE_CASE = na_probs[qid] return 100.0 * best_score / len(UpperCAmelCase__ ), best_thresh def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = best_exact SCREAMING_SNAKE_CASE = exact_thresh SCREAMING_SNAKE_CASE = best_fa SCREAMING_SNAKE_CASE = fa_thresh def __lowerCamelCase (): with open(OPTS.data_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = dataset_json["data"] with open(OPTS.pred_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = {k: 0.0 for k in preds} SCREAMING_SNAKE_CASE = make_qid_to_has_ans(UpperCAmelCase__ ) # maps qid to True/False SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if v] SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if not v] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_raw_scores(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = apply_no_ans_threshold(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE = apply_no_ans_threshold(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ ) if has_ans_qids: SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ , qid_list=UpperCAmelCase__ ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "HasAns" ) if no_ans_qids: SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ , qid_list=UpperCAmelCase__ ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir ) histogram_na_prob(UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) else: print(json.dumps(UpperCAmelCase__ , indent=2 ) ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
206
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCamelCase = pytest.mark.integration @pytest.mark.parametrize('path' ,['paws', 'csv'] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Any: inspect_dataset(a__ ,a__ ) __lowerCamelCase : Optional[int] = path + '.py' assert script_name in os.listdir(a__ ) assert "__pycache__" not in os.listdir(a__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' ,['accuracy'] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> str: inspect_metric(a__ ,a__ ) __lowerCamelCase : Optional[int] = path + '.py' assert script_name in os.listdir(a__ ) assert "__pycache__" not in os.listdir(a__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> str: __lowerCamelCase : Optional[int] = get_dataset_config_info(a__ ,config_name=a__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: with pytest.raises(a__ ): get_dataset_config_info(a__ ,config_name=a__ ) @pytest.mark.parametrize( 'path, expected' ,[ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> int: __lowerCamelCase : Any = get_dataset_config_names(a__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' ,[ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase : Union[str, Any] = get_dataset_infos(a__ ) assert list(infos.keys() ) == expected_configs __lowerCamelCase : List[Any] = expected_configs[0] assert expected_config in infos __lowerCamelCase : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Dict: __lowerCamelCase : Optional[Any] = get_dataset_infos(a__ ) assert expected_config in infos __lowerCamelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: with pytest.raises(a__ ): get_dataset_split_names(a__ ,config_name=a__ )
208
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Any = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_0_0_0) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 1_2, 4] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 2_4, 8] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(a__ ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(a__ ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
A : List[Any] = 0 # The first color of the flag. A : Tuple = 1 # The second color of the flag. A : List[str] = 2 # The third color of the flag. A : List[str] = (red, white, blue) def UpperCamelCase ( __magic_name__ : list ) -> list: """simple docstring""" if not sequence: return [] if len(__magic_name__ ) == 1: return list(__magic_name__ ) lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while mid <= high: if sequence[mid] == colors[0]: lowercase__ , lowercase__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowercase__ , lowercase__ = sequence[high], sequence[mid] high -= 1 else: lowercase__ = f'''The elements inside the sequence must contains only {colors} values''' raise ValueError(__magic_name__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() A : Optional[int] = input('Enter numbers separated by commas:\n').strip() A : List[str] = [int(item.strip()) for item in user_input.split(',')] print(F'{dutch_national_flag_sort(unsorted)}')
146
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return f'''gaussian_noise_s={seed}_shape={"_".join([str(_UpperCAmelCase ) for s in shape] )}.npy''' def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=(4, 4, 64, 64) , _UpperCAmelCase : Any=False ) -> List[Any]: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCAmelCase , _UpperCAmelCase ) ) , dtype=_UpperCAmelCase ) return image def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : str=False , _UpperCAmelCase : str="CompVis/stable-diffusion-v1-4" ) -> Dict: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = """bf16""" if fpaa else None lowercase__ , lowercase__ = FlaxUNetaDConditionModel.from_pretrained( _UpperCAmelCase , subfolder="""unet""" , dtype=_UpperCAmelCase , revision=_UpperCAmelCase ) return model, params def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[int]=(4, 77, 768) , _UpperCAmelCase : Any=False ) -> Optional[Any]: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCAmelCase , _UpperCAmelCase ) ) , dtype=_UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase__ (self : int , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=_UpperCAmelCase ) lowercase__ = self.get_latents(_UpperCAmelCase , fpaa=_UpperCAmelCase ) lowercase__ = self.get_encoder_hidden_states(_UpperCAmelCase , fpaa=_UpperCAmelCase ) lowercase__ = model.apply( {"""params""": params} , _UpperCAmelCase , jnp.array(_UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCAmelCase , ).sample assert sample.shape == latents.shape lowercase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ = jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=_UpperCAmelCase ) lowercase__ = self.get_latents(_UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=_UpperCAmelCase ) lowercase__ = self.get_encoder_hidden_states(_UpperCAmelCase , shape=(4, 77, 1024) , fpaa=_UpperCAmelCase ) lowercase__ = model.apply( {"""params""": params} , _UpperCAmelCase , jnp.array(_UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCAmelCase , ).sample assert sample.shape == latents.shape lowercase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ = jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-2 )
146
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self : Union[str, Any] , A_ : List[Any] , A_ : Dict=1_3 , A_ : Any=7 , A_ : Tuple=True , A_ : Dict=True , A_ : str=True , A_ : Tuple=True , A_ : int=9_9 , A_ : List[Any]=2_4 , A_ : str=2 , A_ : int=6 , A_ : Optional[Any]=3_7 , A_ : Dict="gelu" , A_ : Tuple=0.1 , A_ : int=0.1 , A_ : List[Any]=5_1_2 , A_ : List[str]=1_6 , A_ : List[Any]=2 , A_ : Dict=0.02 , A_ : List[Any]=3 , A_ : Union[str, Any]=None , A_ : List[Any]=1_0_0_0 , ): lowerCAmelCase_ : int = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : List[str] = use_input_mask lowerCAmelCase_ : Optional[int] = use_token_type_ids lowerCAmelCase_ : str = use_labels lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : int = type_sequence_label_size lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : int = scope lowerCAmelCase_ : Dict = range_bbox def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ : Tuple = bbox[i, j, 3] lowerCAmelCase_ : str = bbox[i, j, 1] lowerCAmelCase_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ : Optional[Any] = bbox[i, j, 2] lowerCAmelCase_ : Union[str, Any] = bbox[i, j, 0] lowerCAmelCase_ : str = t lowerCAmelCase_ : List[Any] = None if self.use_input_mask: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) lowerCAmelCase_ : Tuple = None if self.use_token_type_ids: lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase_ : Tuple = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : List[str]): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[str] , A_ : Optional[int] , A_ : str , A_ : Optional[Any] , A_ : List[str] , A_ : Union[str, Any] , A_ : List[str] , A_ : Any , ): lowerCAmelCase_ : Optional[Any] = LiltModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Union[str, Any] = model(A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_) lowerCAmelCase_ : Tuple = model(A_ , bbox=A_ , token_type_ids=A_) lowerCAmelCase_ : Optional[int] = model(A_ , bbox=A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[Any] , A_ : List[Any] , ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : Dict = LiltForTokenClassification(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : List[str] , A_ : int , A_ : List[Any] , A_ : List[Any] , A_ : int , A_ : str , A_ : Union[str, Any] , ): lowerCAmelCase_ : Dict = LiltForQuestionAnswering(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[Any] = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[Any] = config_and_inputs lowerCAmelCase_ : Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def UpperCAmelCase__ ( self : Tuple , A_ : Tuple , A_ : List[str] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Dict): return True def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Dict = LiltModelTester(self) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : List[Any]): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : int = type self.model_tester.create_and_check_model(*A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_) @slow def UpperCAmelCase__ ( self : Tuple): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = LiltModel.from_pretrained(A_) self.assertIsNotNone(A_) @require_torch @slow class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''').to(A_) lowerCAmelCase_ : Optional[int] = torch.tensor([[1, 2]] , device=A_) lowerCAmelCase_ : Any = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : Dict = model(input_ids=A_ , bbox=A_) lowerCAmelCase_ : int = torch.Size([1, 2, 7_6_8]) lowerCAmelCase_ : Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=A_ , ) self.assertTrue(outputs.last_hidden_state.shape , A_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A_ , atol=1e-3))
103
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-m", "--pretrained_model_name_or_path", type=a_, default=a_, required=a_, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "-c", "--caption", type=a_, default="robotic cat with wings", help="Text used to generate images.", ) parser.add_argument( "-n", "--images_num", type=a_, default=4, help="How much images to generate.", ) parser.add_argument( "-s", "--seed", type=a_, default=42, help="Seed for random process.", ) parser.add_argument( "-ci", "--cuda_id", type=a_, default=0, help="cuda_id.", ) _UpperCAmelCase : Any = parser.parse_args() return args def __UpperCAmelCase ( a_: Any, a_: List[Any], a_: Optional[Any] ): if not len(a_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = imgs[0].size _UpperCAmelCase : Union[str, Any] = Image.new("RGB", size=(cols * w, rows * h) ) _UpperCAmelCase , _UpperCAmelCase : Any = grid.size for i, img in enumerate(a_ ): grid.paste(a_, box=(i % cols * w, i // cols * h) ) return grid def __UpperCAmelCase ( a_: List[str], a_: Optional[int]="robotic cat with wings", a_: List[str]=7.5, a_: Optional[int]=50, a_: List[Any]=1, a_: Union[str, Any]=42, ): _UpperCAmelCase : Optional[Any] = torch.Generator(pipeline.device ).manual_seed(a_ ) _UpperCAmelCase : Dict = pipeline( a_, guidance_scale=a_, num_inference_steps=a_, generator=a_, num_images_per_prompt=a_, ).images _UpperCAmelCase : Any = int(math.sqrt(a_ ) ) _UpperCAmelCase : List[Any] = image_grid(a_, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images __a = parse_args() # Load models and create wrapper for stable diffusion __a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __a = unet.to(torch.device('cuda', args.cuda_id)) __a = pipeline.to(unet.device) __a , __a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __a = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
145
0
from collections.abc import Sequence def __lowerCamelCase (UpperCAmelCase__ : Sequence[float] , UpperCAmelCase__ : float ): return sum(c * (x**i) for i, c in enumerate(UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : Sequence[float] , UpperCAmelCase__ : float ): SCREAMING_SNAKE_CASE = 0.0 for coeff in reversed(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = result * x + coeff return result if __name__ == "__main__": _lowerCamelCase : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase : List[Any] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
206
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Any = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} _lowerCamelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self : str , _UpperCamelCase : str=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Optional[Any]="<sep>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : int="<cls>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : Union[str, Any]="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=None , _UpperCamelCase : Dict="##" , **_UpperCamelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , clean_text=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , wordpieces_prefix=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = True , __A = 1 / 255 , __A = None , __A = True , __A = None , __A = None , **__A , ) -> None: super().__init__(**__A ) a =size if size is not None else {'''height''': 224, '''width''': 224} a =get_size_dict(__A ) a =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a =get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) a =do_resize a =do_rescale a =do_normalize a =do_center_crop a =crop_size a =size a =resample a =rescale_factor a =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a =image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = PILImageResampling.BILINEAR , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A ) if "shortest_edge" in size: a =get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a =(size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A ) -> np.ndarray: return rescale(__A , scale=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> BatchFeature: a =do_resize if do_resize is not None else self.do_resize a =do_rescale if do_rescale is not None else self.do_rescale a =do_normalize if do_normalize is not None else self.do_normalize a =do_center_crop if do_center_crop is not None else self.do_center_crop a =crop_size if crop_size is not None else self.crop_size a =get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) a =resample if resample is not None else self.resample a =rescale_factor if rescale_factor is not None else self.rescale_factor a =image_mean if image_mean is not None else self.image_mean a =image_std if image_std is not None else self.image_std a =size if size is not None else self.size a =get_size_dict(__A ) if not is_batched(__A ): a =[images] if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. a =[to_numpy_array(__A ) for image in images] if do_resize: a =[self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: a =[self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: a =[self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: a =[self.normalize(image=__A , mean=__A , std=__A ) for image in images] a =[to_channel_dimension_format(__A , __A ) for image in images] a ={'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
81
"""simple docstring""" from __future__ import annotations import math def _A ( lowercase ): """simple docstring""" if num <= 0: a =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase ) a =[True] * (num + 1) a =[] a =2 a =int(math.sqrt(lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase ): if sieve[i] is True: a =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
81
1
import gc import threading import time import psutil import torch class A_ : """simple docstring""" def __init__(self :Union[str, Any] )-> Optional[int]: __A = psutil.Process() __A = False def _lowerCAmelCase (self :Optional[Any] )-> Optional[int]: __A = -1 while True: __A = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCAmelCase (self :str )-> Union[str, Any]: __A = True __A = threading.Thread(target=self.peak_monitor ) __A = True self.thread.start() def _lowerCAmelCase (self :Any )-> Tuple: __A = False self.thread.join() return self.cpu_memory_peak snake_case__ : Optional[int] = PeakCPUMemory() def _a ( ) -> List[Any]: '''simple docstring''' __A = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __A = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __A = torch.cuda.memory_allocated(lowerCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def _a ( lowerCamelCase: Any ) -> Tuple: '''simple docstring''' __A = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __A = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __A = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __A = (torch.cuda.memory_allocated(lowerCamelCase ) - start_measures[str(lowerCamelCase )]) / 2**20 __A = (torch.cuda.max_memory_allocated(lowerCamelCase ) - start_measures[str(lowerCamelCase )]) / 2**20 return measures def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: Dict ) -> Any: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(lowerCamelCase )]:.2f}MiB""" ) __A = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
353
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case__ : Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case__ : Any = 'main' # Default branch name snake_case__ : Union[str, Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case__ : Optional[int] = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case__ : int = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _a ( ) -> Tuple: '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def _a ( ) -> Optional[int]: '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> Optional[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class A_ ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :str , _UpperCamelCase :str )-> Optional[int]: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Union[str, Any]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :int , _UpperCamelCase :Union[str, Any] )-> int: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def _lowerCAmelCase (self :int )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_tf def _lowerCAmelCase (self :Any )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_flax def _lowerCAmelCase (self :Optional[int] )-> Dict: # Flax models don't have labels self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , [] )
250
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A_ : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
165
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase__ : Tuple = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } lowercase__ : List[str] = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Dict=False ) -> int: __A : List[Any] = create_model( 'HTSAT-tiny' , 'roberta' , __snake_case , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=__snake_case , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def _lowerCAmelCase ( __snake_case : int ) -> Tuple: __A : List[Any] = {} __A : Union[str, Any] = r'.*sequential.(\d+).*' __A : Optional[int] = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __A : int = key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): # replace sequential layers with list __A : Any = re.match(__snake_case , __snake_case ).group(1 ) __A : int = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(__snake_case )//3}.linear.' ) elif re.match(__snake_case , __snake_case ): __A : int = int(re.match(__snake_case , __snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __A : Dict = 1 if projecton_layer == 0 else 2 __A : Optional[Any] = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __A : Optional[int] = value __A : Any = mixed_qkv.size(0 ) // 3 __A : str = mixed_qkv[:qkv_dim] __A : Any = mixed_qkv[qkv_dim : qkv_dim * 2] __A : List[str] = mixed_qkv[qkv_dim * 2 :] __A : List[str] = query_layer __A : Optional[int] = key_layer __A : List[str] = value_layer else: __A : Any = value return model_state_dict def _lowerCAmelCase ( __snake_case : Any , __snake_case : Any , __snake_case : Tuple , __snake_case : Dict=False ) -> List[str]: __A : List[str] = init_clap(__snake_case , enable_fusion=__snake_case ) clap_model.eval() __A : Optional[Any] = clap_model.state_dict() __A : Any = rename_state_dict(__snake_case ) __A : Optional[int] = ClapConfig() __A : List[str] = enable_fusion __A : Tuple = ClapModel(__snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(__snake_case , strict=__snake_case ) model.save_pretrained(__snake_case ) transformers_config.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') lowercase__ : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
357
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = SMALL_MODEL_IDENTIFIER __A : Any = 'pt' __A : str = 'tf' def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase) model_tf.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = 'mock_framework' # Framework provided - return whatever the user provides __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : Optional[int] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase): __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # PyTorch not in environment -> use TensorFlow __A : List[str] = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : List[Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Both in environment -> use PyTorch __A : Any = MagicMock(return_value=_UpperCAmelCase) __A : Dict = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : int = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # Both not in environment -> raise error __A : List[str] = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): with self.assertRaises(_UpperCAmelCase): __A : int = FeaturesManager.determine_framework(self.test_model)
190
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase : Optional[int] = HfApi() lowercase : Tuple = {} # fmt: off lowercase : Dict = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowercase : Any = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowercase : List[str] = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowercase : int = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowercase : Dict = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowercase : Optional[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowercase : List[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowercase : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowercase : List[Any] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowercase : Optional[int] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowercase : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowercase : Union[str, Any] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowercase : Optional[Any] = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowercase : List[str] = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowercase : Tuple = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowercase : List[Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase : str = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('CompVis'): lowercase : Dict = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowercase : Dict = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase : Optional[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase : Dict = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(f'''{mod.modelId} has passed successfully!!!''')
3
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } SCREAMING_SNAKE_CASE__ = {"mgp-str": 27} class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase , lowerCAmelCase="[GO]" , lowerCAmelCase="[GO]" , lowerCAmelCase="[s]" , lowerCAmelCase="[GO]" , **lowerCAmelCase ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.vocab.items()} @property def snake_case ( self ): """simple docstring""" return len(self.vocab ) def snake_case ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for s in text: char_tokens.extend(lowerCAmelCase ) return char_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase ) ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) return (vocab_file,)
150
0
'''simple docstring''' from math import sqrt def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" snake_case_ = True # 0 and 1 are none primes. if number <= 1: snake_case_ = False for divisor in range(2, int(round(sqrt(__UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case_ = False break # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'status' must been from type bool" return status def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case_ = list(range(2, n + 1 ) ) snake_case_ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__UpperCAmelCase ) ): for j in range(i + 1, len(__UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case_ = 0 # filters actual prime numbers. snake_case_ = [x for x in begin_list if x != 0] # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'ans' must been from type list" return ans def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" snake_case_ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(__UpperCAmelCase ): ans.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'ans' must been from type list" return ans def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" snake_case_ = [] # this list will be returns of the function. # potential prime number factors. snake_case_ = 2 snake_case_ = number if number == 0 or number == 1: ans.append(__UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__UpperCAmelCase ): while quotient != 1: if is_prime(__UpperCAmelCase ) and (quotient % factor == 0): ans.append(__UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'ans' must been from type list" return ans def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ = 0 # prime factorization of 'number' snake_case_ = prime_factorization(__UpperCAmelCase ) snake_case_ = max(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'ans' must been from type int" return ans def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ = 0 # prime factorization of 'number' snake_case_ = prime_factorization(__UpperCAmelCase ) snake_case_ = min(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'ans' must been from type int" return ans def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0, __UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0, __UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (number > 2) and is_even(__UpperCAmelCase ) ), "'number' must been an int, even and > 2" snake_case_ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case_ = get_prime_numbers(__UpperCAmelCase ) snake_case_ = len(__UpperCAmelCase ) # run variable for while-loops. snake_case_ = 0 snake_case_ = None # exit variable. for break up the loops snake_case_ = True while i < len_pn and loop: snake_case_ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case_ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (len(__UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case_ = 0 while numbera != 0: snake_case_ = numbera % numbera snake_case_ = numbera snake_case_ = rest # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case_ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case_ = prime_factorization(__UpperCAmelCase ) snake_case_ = prime_factorization(__UpperCAmelCase ) elif numbera == 1 or numbera == 1: snake_case_ = [] snake_case_ = [] snake_case_ = max(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = 0 snake_case_ = 0 snake_case_ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case_ = prime_fac_a.count(__UpperCAmelCase ) snake_case_ = prime_fac_a.count(__UpperCAmelCase ) for _ in range(max(__UpperCAmelCase, __UpperCAmelCase ) ): ans *= n else: snake_case_ = prime_fac_a.count(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): ans *= n done.append(__UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case_ = prime_fac_a.count(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): ans *= n done.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" snake_case_ = 0 snake_case_ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__UpperCAmelCase ): ans += 1 # precondition assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and is_prime( __UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert ( is_prime(__UpperCAmelCase ) and is_prime(__UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case_ = p_number_a + 1 # jump to the next number snake_case_ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(__UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(__UpperCAmelCase ): number += 1 # precondition assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ans[0] != p_number_a and ans[len(__UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" snake_case_ = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(__UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(__UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case_ = get_divisors(__UpperCAmelCase ) # precondition assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(__UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case_ = gcd(abs(__UpperCAmelCase ), abs(__UpperCAmelCase ) ) # precondition assert ( isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" snake_case_ = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" snake_case_ = 0 snake_case_ = 1 snake_case_ = 1 # this will be return for _ in range(n - 1 ): snake_case_ = ans ans += fiba snake_case_ = tmp return ans
72
'''simple docstring''' import math from collections.abc import Callable def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' snake_case_ = xa snake_case_ = xa while True: if x_n == x_na or function(__UpperCAmelCase ) == function(__UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) snake_case_ = x_na - ( function(__UpperCAmelCase ) / ((function(__UpperCAmelCase ) - function(__UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ = x_na snake_case_ = x_na def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
72
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] snake_case : str = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" a :Union[str, Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks a :Tuple = int(re.match(R'''.*layer_(\d*).*''' , UpperCAmelCase_ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" if dtype == torch.bool: return 1 / 8 a :int = re.search(R'''[^\d](\d+)$''' , str(UpperCAmelCase_ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) a :Any = int(bit_search.groups()[0] ) return bit_size // 8 def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): """simple docstring""" if bloom_config_file == "": a :Any = BloomConfig() else: a :List[str] = BloomConfig.from_json_file(UpperCAmelCase_ ) if shard_model: a :Optional[Any] = os.listdir(UpperCAmelCase_ ) a :Union[str, Any] = sorted(filter(lambda UpperCAmelCase_ : s.startswith('''layer''' ) and "model_00" in s , UpperCAmelCase_ ) ) a :Dict = {'''weight_map''': {}, '''metadata''': {}} a :Dict = 0 a :Tuple = None a :int = BloomConfig() for j, file in enumerate(UpperCAmelCase_ ): print('''Processing file: {}'''.format(UpperCAmelCase_ ) ) a :Optional[Any] = None for i in range(UpperCAmelCase_ ): # load all TP files a :Dict = file.replace('''model_00''' , F'''model_0{i}''' ) a :Union[str, Any] = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='''cpu''' ) # Rename keys in the transformers names a :Tuple = list(temp.keys() ) for key in keys: a :Any = temp.pop(UpperCAmelCase_ ) if tensors is None: a :List[str] = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a :Any = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a :str = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a :Optional[int] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase_ , os.path.join( UpperCAmelCase_ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): a :str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: a :Tuple = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) a :Optional[Any] = BloomConfig() a :Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME a :Optional[int] = total_size with open(UpperCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase_ , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: a :Optional[int] = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + '''\n''' f.write(UpperCAmelCase_ ) else: a :Optional[Any] = BloomModel(UpperCAmelCase_ ) a :Tuple = os.listdir(UpperCAmelCase_ ) a :Dict = sorted(filter(lambda UpperCAmelCase_ : s.startswith('''layer''' ) and "model_00" in s , UpperCAmelCase_ ) ) a :Tuple = None for i, file in enumerate(UpperCAmelCase_ ): a :str = None for i in range(UpperCAmelCase_ ): # load all TP files a :Tuple = file.replace('''model_00''' , F'''model_0{i}''' ) a :Optional[int] = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='''cpu''' ) # Rename keys in the transformers names a :str = list(temp.keys() ) for key in keys: a :int = temp.pop(UpperCAmelCase_ ) if tensors is None: a :str = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a :Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a :Optional[int] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a :Union[str, Any] = tensors[key] / pretraining_tp a :Optional[Any] = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: a :List[str] = set(other_keys.missing_keys ) else: a :int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) a :int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a :List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: a :Dict = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) snake_case : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
94
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): # noqa: E741 while r - l > 1: UpperCamelCase_ : Union[str, Any] = (l + r) // 2 if v[m] >= key: UpperCamelCase_ : str = m else: UpperCamelCase_ : List[Any] = m # noqa: E741 return r def __lowercase ( lowerCamelCase : list[int] ): if len(lowerCamelCase ) == 0: return 0 UpperCamelCase_ : Tuple = [0] * len(lowerCamelCase ) UpperCamelCase_ : int = 1 UpperCamelCase_ : Dict = v[0] for i in range(1 , len(lowerCamelCase ) ): if v[i] < tail[0]: UpperCamelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_ : Dict = v[i] length += 1 else: UpperCamelCase_ : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
175
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __UpperCAmelCase = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } __UpperCAmelCase = "▁" class SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" lowerCamelCase : List[Any] =VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Tuple =["input_ids", "attention_mask"] def __init__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : str="<s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : List[Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : Any="<pad>" , lowerCAmelCase : str="<mask>" , lowerCAmelCase : str = None , **lowerCAmelCase : Optional[Any] , ) -> None: """simple docstring""" __lowerCAmelCase : Any = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token __lowerCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) __lowerCAmelCase : Optional[int] = vocab_file __lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) __lowerCAmelCase : List[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCAmelCase : Tuple = len(self.sp_model ) - 1 __lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : Dict = [self.cls_token_id] __lowerCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : List[Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] = None ) -> List[int]: """simple docstring""" __lowerCAmelCase : List[str] = [self.sep_token_id] __lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: """simple docstring""" __lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: """simple docstring""" return self.sp_model.encode(a__ , out_type=a__ ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase : List[str] = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : Tuple = """""" __lowerCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token __lowerCAmelCase : int = True __lowerCAmelCase : str = [] else: current_sub_tokens.append(a__ ) __lowerCAmelCase : Optional[int] = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.__dict__.copy() __lowerCAmelCase : Optional[int] = None return state def __setstate__( self : List[str] , lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Union[str, Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
354
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def snake_case_ (__A : Optional[Any] ) -> Tuple: __lowerCAmelCase : Optional[int] = SwinConfig() __lowerCAmelCase : List[Any] = swin_name.split("""_""" ) __lowerCAmelCase : Dict = name_split[1] __lowerCAmelCase : Optional[Any] = int(name_split[4] ) __lowerCAmelCase : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": __lowerCAmelCase : List[Any] = 9_6 __lowerCAmelCase : List[Any] = (2, 2, 6, 2) __lowerCAmelCase : Optional[Any] = (3, 6, 1_2, 2_4) elif model_size == "small": __lowerCAmelCase : List[Any] = 9_6 __lowerCAmelCase : Optional[int] = (2, 2, 1_8, 2) __lowerCAmelCase : Optional[int] = (3, 6, 1_2, 2_4) elif model_size == "base": __lowerCAmelCase : List[Any] = 1_2_8 __lowerCAmelCase : Tuple = (2, 2, 1_8, 2) __lowerCAmelCase : int = (4, 8, 1_6, 3_2) else: __lowerCAmelCase : List[Any] = 1_9_2 __lowerCAmelCase : List[str] = (2, 2, 1_8, 2) __lowerCAmelCase : int = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __lowerCAmelCase : Dict = 2_1_8_4_1 else: __lowerCAmelCase : Optional[Any] = 1_0_0_0 __lowerCAmelCase : Union[str, Any] = """huggingface/label-files""" __lowerCAmelCase : Any = """imagenet-1k-id2label.json""" __lowerCAmelCase : Any = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : int = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : str = idalabel __lowerCAmelCase : int = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Optional[Any] = img_size __lowerCAmelCase : Optional[Any] = num_classes __lowerCAmelCase : Tuple = embed_dim __lowerCAmelCase : Union[str, Any] = depths __lowerCAmelCase : Optional[Any] = num_heads __lowerCAmelCase : Tuple = window_size return config def snake_case_ (__A : int ) -> Optional[Any]: if "patch_embed.proj" in name: __lowerCAmelCase : Optional[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase : List[Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowerCAmelCase : int = """encoder.""" + name if "attn.proj" in name: __lowerCAmelCase : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowerCAmelCase : Optional[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowerCAmelCase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase : str = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": __lowerCAmelCase : Dict = """layernorm.weight""" if name == "norm.bias": __lowerCAmelCase : Optional[int] = """layernorm.bias""" if "head" in name: __lowerCAmelCase : int = name.replace("""head""" , """classifier""" ) else: __lowerCAmelCase : List[str] = """swin.""" + name return name def snake_case_ (__A : List[Any] , __A : str ) -> int: for key in orig_state_dict.copy().keys(): __lowerCAmelCase : Tuple = orig_state_dict.pop(__A ) if "mask" in key: continue elif "qkv" in key: __lowerCAmelCase : Any = key.split(""".""" ) __lowerCAmelCase : Union[str, Any] = int(key_split[1] ) __lowerCAmelCase : Optional[Any] = int(key_split[3] ) __lowerCAmelCase : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowerCAmelCase : List[str] = val[:dim, :] __lowerCAmelCase : List[Any] = val[ dim : dim * 2, : ] __lowerCAmelCase : str = val[-dim:, :] else: __lowerCAmelCase : str = val[ :dim ] __lowerCAmelCase : int = val[ dim : dim * 2 ] __lowerCAmelCase : int = val[ -dim: ] else: __lowerCAmelCase : Tuple = val return orig_state_dict def snake_case_ (__A : Union[str, Any] , __A : int ) -> Any: __lowerCAmelCase : List[Any] = timm.create_model(__A , pretrained=__A ) timm_model.eval() __lowerCAmelCase : str = get_swin_config(__A ) __lowerCAmelCase : Any = SwinForImageClassification(__A ) model.eval() __lowerCAmelCase : str = convert_state_dict(timm_model.state_dict() , __A ) model.load_state_dict(__A ) __lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) __lowerCAmelCase : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) __lowerCAmelCase : List[str] = image_processor(images=__A , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = timm_model(inputs["""pixel_values"""] ) __lowerCAmelCase : Dict = model(**__A ).logits assert torch.allclose(__A , __A , atol=1e-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __UpperCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
139
0
from __future__ import annotations from collections.abc import Generator def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : dict[int, int] = {} lowerCAmelCase__ : str = 2 while True: lowerCAmelCase__ : Tuple = factor_map.pop(_a , _a ) if factor: lowerCAmelCase__ : int = factor + prime while x in factor_map: x += factor lowerCAmelCase__ : int = factor else: lowerCAmelCase__ : str = prime yield prime prime += 1 def lowerCamelCase_ ( _a = 1e1_0 ): """simple docstring""" lowerCAmelCase__ : str = sieve() lowerCAmelCase__ : Optional[Any] = 1 while True: lowerCAmelCase__ : Optional[int] = next(_a ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_a ) n += 2 if __name__ == "__main__": print(solution())
131
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): def __init__( self : Optional[int] , *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
131
1
def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = 0 snake_case_ : List[Any] = len(__a ) for i in range(n - 1 ): for j in range(i + 1 , __a ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE__ ( __a ): if len(__a ) <= 1: return arr, 0 snake_case_ : List[str] = len(__a ) // 2 snake_case_ : str = arr[0:mid] snake_case_ : Union[str, Any] = arr[mid:] snake_case_ : List[Any] = count_inversions_recursive(__a ) snake_case_ : List[str] = count_inversions_recursive(__a ) snake_case_ : int = _count_cross_inversions(__a , __a ) snake_case_ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = [] snake_case_ : Optional[int] = 0 while i < len(__a ) and j < len(__a ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__a ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__a ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) snake_case_ : Any = count_inversions_bf(__a ) snake_case_ : Union[str, Any] = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , __a ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() snake_case_ : Any = count_inversions_bf(__a ) snake_case_ : Tuple = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __a ) # an empty list should also have zero inversions snake_case_ : Union[str, Any] = [] snake_case_ : Union[str, Any] = count_inversions_bf(__a ) snake_case_ : int = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __a ) if __name__ == "__main__": main()
360
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : List[Any] = k_size // 2 snake_case_ ,snake_case_ : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] snake_case_ : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(__a ) + square(__a )) / (2 * square(__a )) ) return g def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ ,snake_case_ : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width snake_case_ : int = height - k_size + 1 snake_case_ : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows snake_case_ : Optional[Any] = zeros((dst_height * dst_width, k_size * k_size) ) snake_case_ : Tuple = 0 for i, j in product(range(__a ) , range(__a ) ): snake_case_ : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) snake_case_ : str = window row += 1 # turn the kernel into shape(k*k, 1) snake_case_ : List[Any] = gen_gaussian_kernel(__a , __a ) snake_case_ : str = ravel(__a ) # reshape and get the dst image snake_case_ : Optional[int] = dot(__a , __a ).reshape(__a , __a ).astype(__a ) return dst if __name__ == "__main__": # read original image _SCREAMING_SNAKE_CASE = imread(R"""../image_data/lena.jpg""") # turn image in gray scale value _SCREAMING_SNAKE_CASE = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _SCREAMING_SNAKE_CASE = gaussian_filter(gray, 3, sigma=1) _SCREAMING_SNAKE_CASE = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
88
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
73
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = checkpoints.load_tax_checkpoint(_A ) lowerCAmelCase_ = flatten_dict(_A ) return flax_params def __UpperCamelCase ( _A ): lowerCAmelCase_ = {} lowerCAmelCase_ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowerCAmelCase_ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCAmelCase_ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCAmelCase_ = new_key.replace(_A , _A ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCAmelCase_ = new_key.replace(_A , _A ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCAmelCase_ = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _A ) lowerCAmelCase_ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCAmelCase_ = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _A ) lowerCAmelCase_ = flax_dict[key] lowerCAmelCase_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCAmelCase_ = torch.from_numpy(converted_dict[key].T ) else: lowerCAmelCase_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __UpperCamelCase ( _A , _A , _A=False , _A=False ): lowerCAmelCase_ = get_flax_param(_A ) if not use_large: lowerCAmelCase_ = PixaStructVisionConfig() lowerCAmelCase_ = PixaStructTextConfig() else: lowerCAmelCase_ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCAmelCase_ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCAmelCase_ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_A ) lowerCAmelCase_ = PixaStructForConditionalGeneration(_A ) lowerCAmelCase_ = rename_and_convert_flax_params(_A ) model.load_state_dict(_A ) lowerCAmelCase_ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowerCAmelCase_ = PixaStructImageProcessor() lowerCAmelCase_ = PixaStructProcessor(image_processor=_A , tokenizer=_A ) if use_large: lowerCAmelCase_ = 4096 lowerCAmelCase_ = True # mkdir if needed os.makedirs(_A , exist_ok=_A ) model.save_pretrained(_A ) processor.save_pretrained(_A ) print('''Model saved in {}'''.format(_A ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
278
0
import random def _A ( __magic_name__ , __magic_name__ ): lowercase__ , lowercase__ , lowercase__ = [], [], [] for element in data: if element < pivot: less.append(__magic_name__ ) elif element > pivot: greater.append(__magic_name__ ) else: equal.append(__magic_name__ ) return less, equal, greater def _A ( __magic_name__ , __magic_name__ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__magic_name__ ) or index < 0: return None lowercase__ = items[random.randint(0 , len(__magic_name__ ) - 1 )] lowercase__ = 0 lowercase__ , lowercase__ , lowercase__ = _partition(__magic_name__ , __magic_name__ ) lowercase__ = len(__magic_name__ ) lowercase__ = len(__magic_name__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__magic_name__ , __magic_name__ ) # must be in larger else: return quick_select(__magic_name__ , index - (m + count) )
201
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _A ( __magic_name__ , __magic_name__=False ): lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''module.blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''module.blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''module.blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''module.blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''module.blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _A ( __magic_name__ , __magic_name__ , __magic_name__=False ): for i in range(config.num_hidden_layers ): if base_model: lowercase__ = "" else: lowercase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''module.blocks.{i}.attn.qkv.weight''' ) lowercase__ = state_dict.pop(f'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def _A ( __magic_name__ ): lowercase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def _A ( __magic_name__ ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. lowercase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = dct.pop(__magic_name__ ) lowercase__ = val def _A ( __magic_name__ , __magic_name__ ): lowercase__ = ViTMSNConfig() lowercase__ = 1000 lowercase__ = "datasets/huggingface/label-files" lowercase__ = "imagenet-1k-id2label.json" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , "r" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase__ = 384 lowercase__ = 1536 lowercase__ = 6 elif "l16" in checkpoint_url: lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 24 lowercase__ = 16 lowercase__ = 0.1 elif "b4" in checkpoint_url: lowercase__ = 4 elif "l7" in checkpoint_url: lowercase__ = 7 lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 24 lowercase__ = 16 lowercase__ = 0.1 lowercase__ = ViTMSNModel(__magic_name__ ) lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="cpu" )["target_encoder"] lowercase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase__ = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase__ = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase__ = image_processor(images=__magic_name__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _snake_case = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
201
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Optional[Any] , _lowerCAmelCase : UNetaDModel , _lowerCAmelCase : ScoreSdeVeScheduler): '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase) @torch.no_grad() def __call__( self : str , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 2_0_0_0 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase =self.unet.config.sample_size __lowercase =(batch_size, 3, img_size, img_size) __lowercase =self.unet __lowercase =randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase) * self.scheduler.init_noise_sigma __lowercase =sample.to(self.device) self.scheduler.set_timesteps(_lowerCAmelCase) self.scheduler.set_sigmas(_lowerCAmelCase) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __lowercase =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): __lowercase =self.unet(_lowerCAmelCase , _lowerCAmelCase).sample __lowercase =self.scheduler.step_correct(_lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase).prev_sample # prediction step __lowercase =model(_lowerCAmelCase , _lowerCAmelCase).sample __lowercase =self.scheduler.step_pred(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase) __lowercase , __lowercase =output.prev_sample, output.prev_sample_mean __lowercase =sample_mean.clamp(0 , 1) __lowercase =sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __lowercase =self.numpy_to_pil(_lowerCAmelCase) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCAmelCase)
166
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """umt5""" lowerCAmelCase__ = ["""past_key_values"""] def __init__( self : Optional[int] , _lowerCAmelCase : int=2_5_0_1_1_2 , _lowerCAmelCase : Union[str, Any]=5_1_2 , _lowerCAmelCase : List[Any]=6_4 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : str=3_2 , _lowerCAmelCase : List[str]=1_2_8 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=1e-6 , _lowerCAmelCase : List[Any]=1.0 , _lowerCAmelCase : Union[str, Any]="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple="T5Tokenizer" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Any=0 , **_lowerCAmelCase : int , ): '''simple docstring''' super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =vocab_size __lowercase =d_model __lowercase =d_kv __lowercase =d_ff __lowercase =num_layers __lowercase =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase =num_heads __lowercase =relative_attention_num_buckets __lowercase =relative_attention_max_distance __lowercase =dropout_rate __lowercase =layer_norm_epsilon __lowercase =initializer_factor __lowercase =feed_forward_proj __lowercase =use_cache __lowercase =self.feed_forward_proj.split('-') __lowercase =act_info[-1] __lowercase =act_info[0] == 'gated' if len(_lowerCAmelCase) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": __lowercase ='gelu_new' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.d_model @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.num_heads @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.num_layers class _UpperCamelCase ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={ 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase ='past_encoder_sequence + sequence' __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3 @property def __lowerCamelCase ( self : int): '''simple docstring''' return 5e-4
166
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
178
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ = '''path-to-your-trained-model''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ = pipe.to(device) # to channels last lowerCAmelCase_ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ = torch.randn(2, 4, 64, 64) lowerCAmelCase_ = torch.rand(1) * 9_99 lowerCAmelCase_ = torch.randn(2, 77, 7_68) lowerCAmelCase_ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ = 6_66 lowerCAmelCase_ = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
8
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
1
from PIL import Image def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Image: """simple docstring""" a = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(snake_case_ ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(snake_case_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 UpperCamelCase__ : Union[str, Any] = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
353
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Dict = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """longformer""" def __init__( self : List[Any] , UpperCamelCase__ : Union[List[int], int] = 5_1_2 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 0 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 3_0_5_2_2 , UpperCamelCase__ : int = 7_6_8 , UpperCamelCase__ : int = 1_2 , UpperCamelCase__ : int = 1_2 , UpperCamelCase__ : int = 3_0_7_2 , UpperCamelCase__ : str = "gelu" , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : int = 5_1_2 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : float = 0.0_2 , UpperCamelCase__ : float = 1E-1_2 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = attention_window UpperCamelCase = sep_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = onnx_export class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : "PretrainedConfig" , UpperCamelCase__ : str = "default" , UpperCamelCase__ : "List[PatchingSpec]" = None ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = True @property def A ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A ( self : Tuple ): """simple docstring""" UpperCamelCase = super().outputs if self.task == "default": UpperCamelCase = {0: '''batch'''} return outputs @property def A ( self : Tuple ): """simple docstring""" return 1E-4 @property def A ( self : Tuple ): """simple docstring""" return max(super().default_onnx_opset , 1_4 ) def A ( self : Dict , UpperCamelCase__ : "PreTrainedTokenizerBase" , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCamelCase = torch.zeros_like(inputs['input_ids'] ) # make every second token global UpperCamelCase = 1 return inputs
28
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Optional[int] = ShapEImgaImgPipeline _UpperCAmelCase : List[str] = ['''image'''] _UpperCAmelCase : int = ['''image'''] _UpperCAmelCase : Tuple = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Union[str, Any] = False @property def lowerCAmelCase ( self : List[Any]): return 3_2 @property def lowerCAmelCase ( self : Any): return 3_2 @property def lowerCAmelCase ( self : Any): return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Any): return 8 @property def lowerCAmelCase ( self : Optional[int]): torch.manual_seed(0) __lowerCamelCase : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=6_4 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) __lowerCamelCase : Optional[int] = CLIPVisionModel(SCREAMING_SNAKE_CASE__) return model @property def lowerCAmelCase ( self : Any): __lowerCamelCase : Dict = CLIPImageProcessor( crop_size=2_2_4 ,do_center_crop=SCREAMING_SNAKE_CASE__ ,do_normalize=SCREAMING_SNAKE_CASE__ ,do_resize=SCREAMING_SNAKE_CASE__ ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=2_2_4 ,) return image_processor @property def lowerCAmelCase ( self : Optional[int]): torch.manual_seed(0) __lowerCamelCase : Any = { 'num_attention_heads': 2, 'attention_head_dim': 1_6, 'embedding_dim': self.time_input_dim, 'num_embeddings': 3_2, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCamelCase : List[str] = PriorTransformer(**SCREAMING_SNAKE_CASE__) return model @property def lowerCAmelCase ( self : Optional[int]): torch.manual_seed(0) __lowerCamelCase : Optional[int] = { 'param_shapes': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 1_2, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase : int = ShapERenderer(**SCREAMING_SNAKE_CASE__) return model def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[int] = self.dummy_prior __lowerCamelCase : Optional[int] = self.dummy_image_encoder __lowerCamelCase : Optional[int] = self.dummy_image_processor __lowerCamelCase : Optional[Any] = self.dummy_renderer __lowerCamelCase : int = HeunDiscreteScheduler( beta_schedule='exp' ,num_train_timesteps=1_0_2_4 ,prediction_type='sample' ,use_karras_sigmas=SCREAMING_SNAKE_CASE__ ,clip_sample=SCREAMING_SNAKE_CASE__ ,clip_sample_range=1.0 ,) __lowerCamelCase : Tuple = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str=0): __lowerCamelCase : List[str] = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) if str(SCREAMING_SNAKE_CASE__).startswith('mps'): __lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 3_2, 'output_type': 'np', } return inputs def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Dict = 'cpu' __lowerCamelCase : str = self.get_dummy_components() __lowerCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[Any] = output.images[0] __lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) __lowerCamelCase : Optional[Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def lowerCAmelCase ( self : Optional[Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCAmelCase ( self : int): __lowerCamelCase : int = torch_device == 'cpu' __lowerCamelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=SCREAMING_SNAKE_CASE__ ,relax_max_difference=SCREAMING_SNAKE_CASE__ ,) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : str = 2 __lowerCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase : List[Any] = batch_size * [inputs[key]] __lowerCamelCase : int = pipe(**SCREAMING_SNAKE_CASE__ ,num_images_per_prompt=SCREAMING_SNAKE_CASE__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') __lowerCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') __lowerCamelCase : Optional[int] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') __lowerCamelCase : Any = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(0) __lowerCamelCase : Tuple = pipe( SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=3.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='np' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
113
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a ="""true""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=1_6 ) -> List[Any]: set_seed(4_2 ) __lowerCamelCase : Tuple = RegressionModel() __lowerCamelCase : str = deepcopy(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = RegressionDataset(length=lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ ) model.to(accelerator.device ) __lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> List[Any]: __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) __lowerCamelCase : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs with accelerator.main_process_first(): __lowerCamelCase : Union[str, Any] = dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) __lowerCamelCase : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase__ ): if use_longest: return tokenizer.pad(lowerCamelCase__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(lowerCamelCase__ , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1_6 ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Optional[int] = Accelerator(dispatch_batches=lowerCamelCase__ , split_batches=lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = get_dataloader(lowerCamelCase__ , not dispatch_batches ) __lowerCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : str = [] for batch in dataloader: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = batch.values() with torch.no_grad(): __lowerCamelCase : Tuple = model(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCamelCase , __lowerCamelCase : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase__ ) targs.append(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.cat(lowerCamelCase__ ), torch.cat(lowerCamelCase__ ) return logits, targs def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=1_6 ) -> Dict: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = get_basic_setup(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Dict = generate_predictions(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert ( len(lowerCamelCase__ ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase__ )}" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = False , lowerCamelCase__ = False ) -> Dict: __lowerCamelCase : Dict = evaluate.load('glue' , 'mrpc' ) __lowerCamelCase , __lowerCamelCase : Optional[int] = get_mrpc_setup(lowerCamelCase__ , lowerCamelCase__ ) # First do baseline __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = setup['no'] model.to(lowerCamelCase__ ) model.eval() for batch in dataloader: batch.to(lowerCamelCase__ ) with torch.inference_mode(): __lowerCamelCase : Dict = model(**lowerCamelCase__ ) __lowerCamelCase : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCamelCase__ , references=batch['labels'] ) __lowerCamelCase : str = metric.compute() # Then do distributed __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCamelCase : List[str] = model(**lowerCamelCase__ ) __lowerCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) __lowerCamelCase : List[str] = batch['labels'] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCamelCase__ , references=lowerCamelCase__ ) __lowerCamelCase : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : int = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(lowerCamelCase__ , lowerCamelCase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCamelCase : Optional[Any] = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(lowerCamelCase__ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) __lowerCamelCase : Dict = Accelerator() test_torch_metrics(lowerCamelCase__ , 5_1_2 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
113
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = False ) -> int: _snake_case = scheduler _snake_case = optimizers if isinstance(UpperCAmelCase , (list, tuple) ) else [optimizers] _snake_case = split_batches _snake_case = step_with_optimizer _snake_case = GradientState() def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _snake_case = AcceleratorState().num_processes for _ in range(UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase ) else: self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase ) def lowercase (self ) -> Tuple: return self.scheduler.get_last_lr() def lowercase (self ) -> Optional[int]: return self.scheduler.state_dict() def lowercase (self , UpperCAmelCase ) -> List[str]: self.scheduler.load_state_dict(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: return self.scheduler.get_lr() def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.scheduler.print_lr(*UpperCAmelCase , **UpperCAmelCase )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase (__UpperCamelCase : dict , __UpperCamelCase : str , __UpperCamelCase : set , __UpperCamelCase : set , __UpperCamelCase : dict , __UpperCamelCase : dict , __UpperCamelCase : PriorityQueue , __UpperCamelCase : dict , __UpperCamelCase : float | int , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue __UpperCamelCase =cst_fwd.get(__UpperCamelCase , np.inf ) __UpperCamelCase =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __UpperCamelCase =new_cost_f __UpperCamelCase =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __UpperCamelCase =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : dict , __UpperCamelCase : dict ): """simple docstring""" __UpperCamelCase =-1 __UpperCamelCase =set() __UpperCamelCase =set() __UpperCamelCase ={source: 0} __UpperCamelCase ={destination: 0} __UpperCamelCase ={source: None} __UpperCamelCase ={destination: None} __UpperCamelCase =PriorityQueue() __UpperCamelCase =PriorityQueue() __UpperCamelCase =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __UpperCamelCase , __UpperCamelCase =queue_forward.get() visited_forward.add(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase =queue_backward.get() visited_backward.add(__UpperCamelCase ) __UpperCamelCase =pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) __UpperCamelCase =pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __UpperCamelCase =shortest_distance return shortest_path_distance __lowercase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowercase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =0 # if input_string is "aba" than new_input_string become "a|b|a" __UpperCamelCase ='''''' __UpperCamelCase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__UpperCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __UpperCamelCase , __UpperCamelCase =0, 0 # length[i] shows the length of palindromic substring with center i __UpperCamelCase =[1 for i in range(len(__UpperCamelCase ) )] # for each character in new_string find corresponding palindromic string __UpperCamelCase =0 for j in range(len(__UpperCamelCase ) ): __UpperCamelCase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__UpperCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __UpperCamelCase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __UpperCamelCase =j - k + 1 # noqa: E741 __UpperCamelCase =j + k - 1 # update max_length and start position if max_length < length[j]: __UpperCamelCase =length[j] __UpperCamelCase =j # create that string __UpperCamelCase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
85
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Tuple = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """camembert""" def __init__( self : Any , lowerCAmelCase_ : List[str]=3_0_5_2_2 , lowerCAmelCase_ : str=7_6_8 , lowerCAmelCase_ : Union[str, Any]=1_2 , lowerCAmelCase_ : List[Any]=1_2 , lowerCAmelCase_ : str=3_0_7_2 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Any=1e-12 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str="absolute" , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @property def lowercase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
284
def a_ ( lowerCAmelCase_ : int ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
284
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
16
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase__ = False class A_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : str ) -> Optional[int]: UpperCAmelCase : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Any = pipe.dual_guided( prompt='first prompt' , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCAmelCase : List[Any] = VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : List[str] = generator.manual_seed(0 ) UpperCAmelCase : List[Any] = pipe.dual_guided( prompt='first prompt' , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : List[Any] = 'cyberpunk 2077' UpperCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images UpperCAmelCase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : str = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase : str = 'A painting of a squirrel eating a burger ' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Tuple = pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images UpperCAmelCase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase : Any = pipe.image_variation(lowercase_ , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Any = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
151
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
151
1
"""simple docstring""" import itertools import math def A ( snake_case :int ) -> Dict: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> Any: __UpperCamelCase = 2 while True: if is_prime(snake_case ): yield num num += 1 def A ( snake_case :int = 1_0_0_0_1 ) -> Tuple: return next(itertools.islice(prime_generator() , nth - 1 , snake_case ) ) if __name__ == "__main__": print(f'''{solution() = }''')
361
"""simple docstring""" UpperCamelCase : Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( snake_case :Dict , snake_case :Tuple , snake_case :str , snake_case :Optional[int] ) -> Union[str, Any]: # Return True if there is node that has not iterated. __UpperCamelCase = [False] * len(snake_case ) __UpperCamelCase = [s] __UpperCamelCase = True while queue: __UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __UpperCamelCase = True __UpperCamelCase = u return visited[t] def A ( snake_case :int , snake_case :Any , snake_case :Union[str, Any] ) -> Optional[int]: __UpperCamelCase = [-1] * (len(snake_case )) __UpperCamelCase = 0 __UpperCamelCase = [] __UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case , snake_case , snake_case , snake_case ): __UpperCamelCase = float('Inf' ) __UpperCamelCase = sink while s != source: # Find the minimum value in select path __UpperCamelCase = min(snake_case , graph[parent[s]][s] ) __UpperCamelCase = parent[s] max_flow += path_flow __UpperCamelCase = sink while v != source: __UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase = parent[v] for i in range(len(snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
263
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=False ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCAmelCase : Optional[Any] = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase : List[str] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase : Any = convert_pytorch_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase : List[Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) return flax_state_dict def snake_case_ ( _lowerCAmelCase : Tuple[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, jnp.ndarray] , _lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_lowerCAmelCase : Tuple[str] ) -> bool: return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase : str = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): UpperCAmelCase : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): UpperCAmelCase : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase : str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase : Optional[int] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase : Union[str, Any] = pt_tuple_key[-2] + '''_v''' if name is not None: UpperCAmelCase : List[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: # convert pytorch tensor to numpy UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase : Any = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase : Optional[Any] = flax_model.params['''params'''] else: UpperCAmelCase : Any = flax_model.params UpperCAmelCase : str = flatten_dict(_lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(_lowerCAmelCase ) UpperCAmelCase : str = {} UpperCAmelCase : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : Dict = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : Any = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase : Dict = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase : List[str] = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase : str = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> str: import torch # Load the index UpperCAmelCase : int = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase : str = torch.load(_lowerCAmelCase ) UpperCAmelCase : int = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase : str = flax_model.params['''params'''] UpperCAmelCase : int = flatten_dict(_lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCAmelCase : Any = flax_model.params UpperCAmelCase : List[Any] = flatten_dict(_lowerCAmelCase ) UpperCAmelCase : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Any = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : str = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : str = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase : Tuple = jnp.asarray(_lowerCAmelCase ) continue if "var" in flax_key[-1]: UpperCAmelCase : Tuple = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase : int = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase : Any = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Tuple: UpperCAmelCase : Any = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase : Dict = getattr(_lowerCAmelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCAmelCase , '''rb''' ) as state_f: try: UpperCAmelCase : Tuple = from_bytes(_lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , _lowerCAmelCase ) ).values() if any(_lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase : Any = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = flatten_dict(_lowerCAmelCase ) UpperCAmelCase : str = pt_model.state_dict() UpperCAmelCase : List[str] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase : Dict = [] UpperCAmelCase : Union[str, Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase : Any = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase : Optional[Any] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : str = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict: # conv layer UpperCAmelCase : str = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase : List[str] = jnp.transpose(_lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict: # linear layer UpperCAmelCase : Any = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase : Dict = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: UpperCAmelCase : str = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: UpperCAmelCase : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase : Any = '''.'''.join(_lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase : Union[str, Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase : str = key.split('''.''' ) UpperCAmelCase : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase : Dict = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase : str = key_components[-2] + '''_v''' if name is not None: UpperCAmelCase : Any = key_components[:-3] + [name] UpperCAmelCase : Union[str, Any] = '''.'''.join(_lowerCAmelCase ) UpperCAmelCase : Dict = key if flax_key in special_pt_names: UpperCAmelCase : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase : Optional[int] = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , np.ndarray ) else flax_tensor UpperCAmelCase : Optional[int] = torch.from_numpy(_lowerCAmelCase ) # remove from missing keys missing_keys.remove(_lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCAmelCase ) pt_model.load_state_dict(_lowerCAmelCase ) # re-transform missing_keys to list UpperCAmelCase : Any = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCAmelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
23
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCAmelCase_ ( a): def __init__( self, __a = 101): '''simple docstring''' _lowerCAmelCase : str = length def __len__( self): '''simple docstring''' return self.length def __getitem__( self, __a): '''simple docstring''' return i class UpperCAmelCase_ : def __call__( self, __a): '''simple docstring''' return {"input_ids": torch.tensor(__a), "labels": torch.tensor(__a)} class UpperCAmelCase_ ( nn.Module): def __init__( self): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCAmelCase : str = nn.Linear(120, 80) def snake_case__ ( self, __a, __a=None): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class UpperCAmelCase_ ( a): @require_torch_neuroncore def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : List[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class UpperCAmelCase_ ( a): @require_torch_multi_gpu def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"--output_dir {output_dir}".split() _lowerCAmelCase : Any = ["torchrun"] + distributed_args + args execute_subprocess_async(__a, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case = HfArgumentParser((TrainingArguments,)) _snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case = DummyDataset(dataset_length) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = list(range(len(_lowerCamelCase ) ) ) _lowerCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} _snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = 2 _snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case = None
36
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __SCREAMING_SNAKE_CASE = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def lowercase ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowercase ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowercase ( self : List[Any] ): _UpperCAmelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ , repo_id="test-config" , push_to_hub=snake_case_ , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def lowercase ( self : str ): _UpperCAmelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case_ , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def lowercase ( self : Optional[int] ): CustomConfig.register_for_auto_class() _UpperCAmelCase = CustomConfig(attribute=4_2 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase = AutoConfig.from_pretrained(f'{USER}/test-dynamic-config' , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ): _UpperCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase = c.n_embd + 1 # int _UpperCAmelCase = c.resid_pdrop + 1.0 # float _UpperCAmelCase = not c.scale_attn_weights # bool _UpperCAmelCase = c.summary_type + "foo" # str c.update_from_string( f'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(snake_case_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case_ , c.summary_type , "mismatch for key: summary_type" ) def lowercase ( self : Any ): _UpperCAmelCase = PretrainedConfig() _UpperCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case_ , snake_case_ )] if len(snake_case_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f' {", ".join(snake_case_ )}.' ) def lowercase ( self : Dict ): with self.assertRaises(snake_case_ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_0_0 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case_ ) as mock_head: _UpperCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowercase ( self : List[str] ): _UpperCAmelCase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowercase ( self : str ): _UpperCAmelCase = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case_ ) _UpperCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase = ["config.42.0.0.json"] _UpperCAmelCase = 7_6_8 configuration.save_pretrained(snake_case_ ) shutil.move(os.path.join(snake_case_ , "config.4.0.0.json" ) , os.path.join(snake_case_ , "config.42.0.0.json" ) ) _UpperCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase = "v4.0.0" _UpperCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case_ , return_unused_kwargs=snake_case_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase = "v3.0.0" _UpperCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
354
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Dict ) -> Dict: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] , __lowercase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : Tuple ) -> Tuple: '''simple docstring''' if issubclass(__lowercase , __lowercase ): _UpperCAmelCase = parquet_path elif issubclass(__lowercase , __lowercase ): _UpperCAmelCase = [parquet_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Any , __lowercase : Union[str, Any]=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : str , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader({"train": parquet_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ) -> List[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: parquet_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": parquet_path, "test": parquet_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = pq.ParquetFile(tmp_path / "foo.parquet" ) _UpperCAmelCase = pf.read() assert dataset.data.table == output_table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(shared_datadir / "test_image_rgb.jpg" ) _UpperCAmelCase = {"image": [image_path]} _UpperCAmelCase = Features({"image": Image()} ) _UpperCAmelCase = Dataset.from_dict(__lowercase , features=__lowercase ) _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> Optional[int]: '''simple docstring''' assert get_writer_batch_size(__lowercase ) == expected
156
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : str = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["PerceiverFeatureExtractor"] __UpperCamelCase : Any = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = np.max(_outputs , axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = """sigmoid""" __magic_name__ :Optional[Any] = """softmax""" __magic_name__ :Optional[Any] = """none""" @add_end_docstrings( a , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = False __magic_name__ :Dict = ClassificationFunction.NONE def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = tokenizer_kwargs lowerCAmelCase__ :List[Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowerCAmelCase__ :List[Any] = self.model.config.return_all_scores if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k is None: lowerCAmelCase__ :int = top_k lowerCAmelCase__ :Dict = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __UpperCAmelCase , ) if return_all_scores: lowerCAmelCase__ :List[Any] = None else: lowerCAmelCase__ :Union[str, Any] = 1 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase__ :List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase__ :Optional[Any] = 'top_k' not in kwargs if isinstance(args[0] , __UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.framework if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.tokenizer(**__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1 and isinstance(inputs[0] , __UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase__ :str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase__ :int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowerCAmelCase__ :Optional[Any] = self.model.config.function_to_apply else: lowerCAmelCase__ :Dict = ClassificationFunction.NONE lowerCAmelCase__ :int = model_outputs['logits'][0] lowerCAmelCase__ :Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase__ :Dict = sigmoid(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase__ :int = softmax(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase__ :Tuple = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase__ :Any = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k is not None: lowerCAmelCase__ :List[str] = dict_scores[:top_k] return dict_scores
293
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowercase: Tuple = 1.0_54_57_18_17E-34 # unit of ℏ : J * s _lowercase: int = 3E8 # unit of c : m * s^-1 def a( A : float , A : float , A : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
71
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _lowercase: Any = logging.get_logger(__name__) def a( A : bool , A : bool ) -> List[str]: """simple docstring""" def run_func(A : Union[str, Any] ): @wraps(A ) def run_in_eager_mode(*A : int , **A : List[str] ): return func(*A , **A ) @wraps(A ) @tf.function(experimental_compile=A ) def run_in_graph_mode(*A : List[str] , **A : Optional[int] ): return func(*A , **A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a( A : int , A : int , A : int ) -> ["tf.Tensor"]: """simple docstring""" a = random.Random() a = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(A , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = 42 __A = "TensorFlow" @property def UpperCamelCase_ (self ): """simple docstring""" return tf.__version__ def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_inference_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_speed(_inference ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_train_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_speed(_train ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase_ ) a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_inference_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_memory(_inference ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase_ ) a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_train_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_memory(_train ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) a = ( hasattr(lowerCamelCase_ , "architectures" ) and isinstance(config.architectures , lowerCamelCase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model a = __import__("transformers" , fromlist=[model_class] ) a = getattr(lowerCamelCase_ , lowerCamelCase_ ) a = model_cls(lowerCamelCase_ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: a = TF_MODEL_MAPPING[config.__class__](lowerCamelCase_ ) # encoder-decoder has vocab size saved differently a = config.vocab_size if hasattr(lowerCamelCase_ , "vocab_size" ) else config.encoder.vocab_size a = random_input_ids(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , training=lowerCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase_ , training=lowerCamelCase_ ) a = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) a = ( hasattr(lowerCamelCase_ , "architectures" ) and isinstance(config.architectures , lowerCamelCase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model a = __import__("transformers" , fromlist=[model_class] ) a = getattr(lowerCamelCase_ , lowerCamelCase_ ) a = model_cls(lowerCamelCase_ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: a = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase_ ) # encoder-decoder has vocab size saved differently a = config.vocab_size if hasattr(lowerCamelCase_ , "vocab_size" ) else config.encoder.vocab_size a = random_input_ids(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): a = model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , labels=lowerCamelCase_ , training=lowerCamelCase_ )[0] a = tf.gradients(lowerCamelCase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): a = model(lowerCamelCase_ , labels=lowerCamelCase_ , training=lowerCamelCase_ )[0] a = tf.gradients(lowerCamelCase_ , model.trainable_variables ) return gradients a = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(lowerCamelCase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average a = timeit.repeat( lowerCamelCase_ , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) a = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) a = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() a = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) a = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase_ ) a = meminfo.used a = Memory(lowerCamelCase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) a = None else: a = measure_peak_memory_cpu(lowerCamelCase_ ) a = Memory(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else memory_bytes if self.args.trace_memory_line_by_line: a = stop_memory_tracing(lowerCamelCase_ ) if memory is None: a = summary.total else: a = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
71
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } __snake_case = { """RUCAIBox/mvp""": 10_24, } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : List[str] =VOCAB_FILES_NAMES UpperCamelCase_ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] =['input_ids', 'attention_mask'] UpperCamelCase_ : int =MvpTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase :str = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) ) UpperCamelCase :str = add_prefix_space UpperCamelCase :Optional[int] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase :int = '''post_processor''' UpperCamelCase :Tuple = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase :Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase :Union[str, Any] = tuple(state['''sep'''] ) if "cls" in state: UpperCamelCase :int = tuple(state['''cls'''] ) UpperCamelCase :Optional[int] = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase :Tuple = add_prefix_space UpperCamelCase :Any = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase :Optional[int] = trim_offsets UpperCamelCase :str = True if changes_to_apply: UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , state.pop('''type''' ) ) UpperCamelCase :List[Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property def UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase :List[Any] = value def UpperCAmelCase ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase :Tuple = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase :int = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase :Any = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Dict: UpperCamelCase :Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase :Union[str, Any] = [self.sep_token_id] UpperCamelCase :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
259
def _A ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Optional[int] = 1 UpperCamelCase :List[Any] = 2 while i * i <= n: UpperCamelCase :str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500 ) if __name__ == "__main__": print(solution())
259
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
357
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XLMTokenizer _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = '''lower newer''' __A : int = '''lower newer''' return input_text, output_text def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) __A : Optional[Any] = '''lower''' __A : Any = ['''low''', '''er</w>'''] __A : Tuple = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokens + ['''<unk>'''] __A : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __A : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
291
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = SamImageProcessor() lowerCAmelCase = SamProcessor(__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase).image_processor def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = SamProcessor(image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") input_feat_extract.pop("""original_sizes""") # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""") # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = SamProcessor(image_processor=__lowerCAmelCase) lowerCAmelCase = [torch.ones((1, 3, 5, 5))] lowerCAmelCase = [[1764, 2646]] lowerCAmelCase = [[683, 1024]] lowerCAmelCase = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646)) lowerCAmelCase = processor.post_process_masks( __lowerCAmelCase , torch.tensor(__lowerCAmelCase) , torch.tensor(__lowerCAmelCase)) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646)) # should also work with np lowerCAmelCase = [np.ones((1, 3, 5, 5))] lowerCAmelCase = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase) , np.array(__lowerCAmelCase)) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646)) lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase): lowerCAmelCase = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase) , np.array(__lowerCAmelCase)) @require_vision @require_tf class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = SamImageProcessor() lowerCAmelCase = SamProcessor(__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase).image_processor def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = SamProcessor(image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") input_feat_extract.pop("""original_sizes""") # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""") # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) @require_tf def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = SamProcessor(image_processor=__lowerCAmelCase) lowerCAmelCase = [tf.ones((1, 3, 5, 5))] lowerCAmelCase = [[1764, 2646]] lowerCAmelCase = [[683, 1024]] lowerCAmelCase = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""tf""") self.assertEqual(masks[0].shape , (1, 3, 1764, 2646)) lowerCAmelCase = processor.post_process_masks( __lowerCAmelCase , tf.convert_to_tensor(__lowerCAmelCase) , tf.convert_to_tensor(__lowerCAmelCase) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646)) # should also work with np lowerCAmelCase = [np.ones((1, 3, 5, 5))] lowerCAmelCase = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase) , np.array(__lowerCAmelCase) , return_tensors="""tf""") self.assertEqual(masks[0].shape , (1, 3, 1764, 2646)) lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError): lowerCAmelCase = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase) , np.array(__lowerCAmelCase) , return_tensors="""tf""") @require_vision @require_torchvision class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = SamImageProcessor() lowerCAmelCase = SamProcessor(__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase).image_processor def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = SamProcessor(image_processor=__lowerCAmelCase) lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5)).astype(np.floataa) lowerCAmelCase = [tf.convert_to_tensor(__lowerCAmelCase)] lowerCAmelCase = [torch.tensor(__lowerCAmelCase)] lowerCAmelCase = [[1764, 2646]] lowerCAmelCase = [[683, 1024]] lowerCAmelCase = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""tf""") lowerCAmelCase = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""pt""") self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy())) @is_pt_tf_cross_test def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = SamProcessor(image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""pt""")["""pixel_values"""].numpy() lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""pt""")["""pixel_values"""].numpy() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""tf""")["""pixel_values"""].numpy() lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""tf""")["""pixel_values"""].numpy() self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase)) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase)) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase))
272
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ['''input_features'''] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=16000 , __lowerCAmelCase=160 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = spectrogram( __lowerCAmelCase , window_function(self.n_fft , """hann""") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(__lowerCAmelCase , log_spec.max() - 8.0) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0): """simple docstring""" if attention_mask is not None: lowerCAmelCase = np.array(__lowerCAmelCase , np.intaa) lowerCAmelCase = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1)): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(__lowerCAmelCase) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def __call__( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "max_length" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") lowerCAmelCase = isinstance(__lowerCAmelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") lowerCAmelCase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray): lowerCAmelCase = np.asarray(__lowerCAmelCase , dtype=np.floataa) elif isinstance(__lowerCAmelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCAmelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech]).T] lowerCAmelCase = BatchFeature({"""input_features""": raw_speech}) # convert into correct format for padding lowerCAmelCase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs["""input_features"""] , axis=0) # make sure list is in array format lowerCAmelCase = padded_inputs.get("""input_features""").transpose(2 , 0 , 1) lowerCAmelCase = [self._np_extract_fbank_features(__lowerCAmelCase) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCAmelCase): lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.floataa) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(__lowerCAmelCase) return padded_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
272
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a ( a__ ): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''CLIPImageProcessor''' snake_case__ = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) lowerCAmelCase = kwargs.pop('feature_extractor' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCAmelCase = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: lowerCAmelCase = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
309
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
1
def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float: _snake_case : List[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _snake_case : str = 1 - (matter_density + radiation_density + dark_energy) _snake_case : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _snake_case : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from __future__ import annotations def A_ ( _lowerCAmelCase ) -> list[int]: return [ord(_lowerCAmelCase ) - 96 for elem in plain] def A_ ( _lowerCAmelCase ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def A_ ( ) -> None: UpperCamelCase : int = encode(input("-> " ).strip().lower() ) print("Encoded: " , _lowerCAmelCase ) print("Decoded:" , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
367
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : str = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
140
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCamelCase( UpperCamelCase_ ): lowercase_ : List[str] = '''beit''' def __init__( self, lowerCamelCase=81_92, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=2_24, lowerCamelCase=16, lowerCamelCase=3, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=True, lowerCamelCase=[3, 5, 7, 11], lowerCamelCase=[1, 2, 3, 6], lowerCamelCase=True, lowerCamelCase=0.4, lowerCamelCase=2_56, lowerCamelCase=1, lowerCamelCase=False, lowerCamelCase=2_55, **lowerCamelCase, ) -> List[str]: """simple docstring""" super().__init__(**_A) _lowercase : Any = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Union[str, Any] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = image_size _lowercase : List[str] = patch_size _lowercase : Dict = num_channels _lowercase : Optional[Any] = use_mask_token _lowercase : Union[str, Any] = use_absolute_position_embeddings _lowercase : str = use_relative_position_bias _lowercase : Union[str, Any] = use_shared_relative_position_bias _lowercase : Union[str, Any] = layer_scale_init_value _lowercase : Dict = drop_path_rate _lowercase : Any = use_mean_pooling # decode head attributes (semantic segmentation) _lowercase : int = out_indices _lowercase : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) _lowercase : List[Any] = use_auxiliary_head _lowercase : int = auxiliary_loss_weight _lowercase : Optional[Any] = auxiliary_channels _lowercase : Optional[Any] = auxiliary_num_convs _lowercase : int = auxiliary_concat_input _lowercase : Tuple = semantic_loss_ignore_index class _lowerCamelCase( UpperCamelCase_ ): lowercase_ : List[str] = version.parse("""1.11""" ) @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return 1E-4
21
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(_A ) __SCREAMING_SNAKE_CASE = replicate(_A ) __SCREAMING_SNAKE_CASE = shard(_A ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(_A , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(_A , _A , _A , num_inference_steps=25 , jit=_A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 253:256, 253:256, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-2' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxDPMSolverMultistepScheduler.from_pretrained(_A , subfolder='scheduler' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( _A , scheduler=_A , revision='bf16' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = scheduler_params __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(_A ) __SCREAMING_SNAKE_CASE = replicate(_A ) __SCREAMING_SNAKE_CASE = shard(_A ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(_A , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(_A , _A , _A , num_inference_steps=25 , jit=_A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 253:256, 253:256, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
257
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[int] = KandinskyVaaInpaintPipeline lowercase__ : Any = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase__ : Union[str, Any] = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase__ : Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase__ : int = False @property def snake_case__ ( self ): return 3_2 @property def snake_case__ ( self ): return 3_2 @property def snake_case__ ( self ): return self.time_input_dim @property def snake_case__ ( self ): return self.time_input_dim * 4 @property def snake_case__ ( self ): return 1_0_0 @property def snake_case__ ( self ): torch.manual_seed(0 ) _lowerCamelCase = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _lowerCamelCase = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def snake_case__ ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case__ ( self ): torch.manual_seed(0 ) _lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case__ ( self ): _lowerCamelCase = self.dummy_unet _lowerCamelCase = self.dummy_movq _lowerCamelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCamelCase__ , ) _lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ): _lowerCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _lowerCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create init_image _lowerCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _lowerCamelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) _lowerCamelCase = 0 if str(lowerCamelCase__ ).startswith('''mps''' ): _lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: _lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _lowerCamelCase = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def snake_case__ ( self ): _lowerCamelCase = '''cpu''' _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) _lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) _lowerCamelCase = output.images _lowerCamelCase = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def snake_case__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): _lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) _lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _lowerCamelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _lowerCamelCase = 0 _lowerCamelCase = '''a hat''' _lowerCamelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) _lowerCamelCase = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) _lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowerCamelCase , _lowerCamelCase = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _lowerCamelCase = pipeline( image=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _lowerCamelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
73
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Optional[int] ) -> int: _lowerCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[str] ) -> List[str]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCamelCase = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase_( lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict ) -> str: _lowerCamelCase = dct.pop(lowercase_ ) _lowerCamelCase = val def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _lowerCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _lowerCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Dict ) -> List[str]: _lowerCamelCase = ViTConfig(image_size=3_84 , qkv_bias=lowercase_ ) _lowerCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCamelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCamelCase = 10_24 _lowerCamelCase = 40_96 _lowerCamelCase = 24 _lowerCamelCase = 16 _lowerCamelCase = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = False _lowerCamelCase = '''relu''' _lowerCamelCase = 10_24 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False # load HuggingFace model _lowerCamelCase = ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) _lowerCamelCase = TrOCRForCausalLM(lowercase_ ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' , check_hash=lowercase_ )['''model'''] _lowerCamelCase = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCamelCase = state_dict.pop(lowercase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _lowerCamelCase = val else: _lowerCamelCase = val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image _lowerCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _lowerCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _lowerCamelCase = TrOCRProcessor(lowercase_ , lowercase_ ) _lowerCamelCase = processor(images=prepare_img(lowercase_ ) , return_tensors='''pt''' ).pixel_values # verify logits _lowerCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCamelCase = model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) _lowerCamelCase = outputs.logits _lowerCamelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1e-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
73
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : Optional[int] = 16 __lowerCamelCase : Union[str, Any] = 32 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 16 ) -> Any: UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase : Dict = DatasetDict( { "train": dataset["train"].select(_lowerCAmelCase ), "validation": dataset["train"].select(_lowerCAmelCase ), "test": dataset["validation"], } ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : Any = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": UpperCamelCase : List[Any] = 8 else: UpperCamelCase : Tuple = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCamelCase : str = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCamelCase : Dict = DataLoader( tokenized_datasets["test"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: # New Code # UpperCamelCase : Dict = [] # Download the dataset UpperCamelCase : Optional[Any] = load_dataset("glue" , "mrpc" ) # Create our splits UpperCamelCase : Any = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCamelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : int = config["lr"] UpperCamelCase : Union[str, Any] = int(config["num_epochs"] ) UpperCamelCase : List[Any] = int(config["seed"] ) UpperCamelCase : Optional[int] = int(config["batch_size"] ) UpperCamelCase : int = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCamelCase : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase : Optional[int] = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) # New Code # # Create our folds: UpperCamelCase : Tuple = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) UpperCamelCase : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCAmelCase ): UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = get_fold_dataloaders( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : str = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : Tuple = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase : str = model(**_lowerCAmelCase ) UpperCamelCase : Optional[Any] = outputs.loss UpperCamelCase : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : List[str] = model(**_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _lowerCAmelCase ) # New Code # # We also run predictions on the test set at the very end UpperCamelCase : Union[str, Any] = [] for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Optional[int] = model(**_lowerCAmelCase ) UpperCamelCase : Optional[int] = outputs.logits UpperCamelCase , UpperCamelCase : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCAmelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCamelCase : Optional[int] = torch.cat(_lowerCAmelCase , dim=0 ) UpperCamelCase : Optional[int] = torch.stack(_lowerCAmelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCamelCase : Optional[Any] = metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) accelerator.print("Average test metrics from all folds:" , _lowerCAmelCase ) def A_ ( ) -> int: UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=_lowerCAmelCase , default=3 , help="The number of splits to perform across the dataset" ) UpperCamelCase : int = parser.parse_args() UpperCamelCase : Union[str, Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
52
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def constraint_to_multiple_of(lowercase__ , lowercase__ , lowercase__=0 , lowercase__=None ): __lowerCAmelCase : int = round(val / multiple ) * multiple if max_val is not None and x > max_val: __lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: __lowerCAmelCase : Any = math.ceil(val / multiple ) * multiple return x __lowerCAmelCase : Dict = (output_size, output_size) if isinstance(lowercase__ , lowercase__ ) else output_size __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = get_image_size(lowercase__ ) __lowerCAmelCase, __lowerCAmelCase : int = output_size # determine new height and width __lowerCAmelCase : Optional[Any] = output_height / input_height __lowerCAmelCase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __lowerCAmelCase : str = scale_width else: # fit height __lowerCAmelCase : str = scale_height __lowerCAmelCase : Any = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase__ ) __lowerCAmelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase__ ) return (new_height, new_width) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = ["""pixel_values"""] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = False , A_ = 1 , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ) ->None: '''simple docstring''' super().__init__(**A_ ) __lowerCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 384, '''width''': 384} __lowerCAmelCase : Dict = get_size_dict(A_ ) __lowerCAmelCase : Optional[Any] = do_resize __lowerCAmelCase : int = size __lowerCAmelCase : Dict = keep_aspect_ratio __lowerCAmelCase : List[Any] = ensure_multiple_of __lowerCAmelCase : Tuple = resample __lowerCAmelCase : Dict = do_rescale __lowerCAmelCase : Any = rescale_factor __lowerCAmelCase : List[Any] = do_normalize __lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , A_ , A_ , A_ = False , A_ = 1 , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) ->np.ndarray: '''simple docstring''' __lowerCAmelCase : int = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase : Union[str, Any] = get_resize_output_image_size( A_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=A_ , multiple=A_ , ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None , **A_ , ) ->Dict: '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ = None , **A_ , ) ->np.ndarray: '''simple docstring''' return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) ->PIL.Image.Image: '''simple docstring''' __lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Optional[int] = size if size is not None else self.size __lowerCAmelCase : Union[str, Any] = get_size_dict(A_ ) __lowerCAmelCase : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __lowerCAmelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __lowerCAmelCase : Tuple = resample if resample is not None else self.resample __lowerCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std __lowerCAmelCase : Optional[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase : Any = [to_numpy_array(A_ ) for image in images] if do_resize: __lowerCAmelCase : Optional[Any] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_rescale: __lowerCAmelCase : Tuple = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __lowerCAmelCase : str = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __lowerCAmelCase : Union[str, Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] __lowerCAmelCase : Dict = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def UpperCamelCase__ ( self , A_ , A_ = None ) ->Any: '''simple docstring''' __lowerCAmelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): __lowerCAmelCase : Optional[int] = target_sizes.numpy() __lowerCAmelCase : List[str] = [] for idx in range(len(A_ ) ): __lowerCAmelCase : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) __lowerCAmelCase : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: __lowerCAmelCase : Any = logits.argmax(dim=1 ) __lowerCAmelCase : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
275
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_="None" ,UpperCAmelCase_=3 ,UpperCAmelCase_=4 ,UpperCAmelCase_=None ,): _lowercase : str = parent _lowercase : Any = batch_size _lowercase : Optional[Any] = seq_length _lowercase : List[str] = is_training _lowercase : int = use_input_mask _lowercase : str = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : Dict = vocab_size _lowercase : Dict = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : int = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Dict = type_vocab_size _lowercase : Optional[int] = type_sequence_label_size _lowercase : Tuple = initializer_range _lowercase : Union[str, Any] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : Optional[int] = relative_attention _lowercase : Union[str, Any] = position_biased_input _lowercase : Any = pos_att_type _lowercase : Union[str, Any] = scope def lowerCamelCase__ ( self ): _lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : Any = None if self.use_input_mask: _lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Dict = None if self.use_token_type_ids: _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase : Tuple = None _lowercase : List[str] = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase : str = DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,initializer_range=self.initializer_range ,return_dict=UpperCAmelCase_ ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = TFDebertaVaModel(config=UpperCAmelCase_ ) _lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowercase : int = [input_ids, input_mask] _lowercase : Optional[Any] = model(UpperCAmelCase_ ) _lowercase : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : int = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.num_labels _lowercase : List[Any] = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.num_labels _lowercase : Tuple = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _lowercase : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : str = False def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = TFDebertaVaModelTester(self ) _lowercase : str = ConfigTester(self ,config_class=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase__ ( self ): _lowercase : List[str] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase__ ( self ): pass @slow def lowerCamelCase__ ( self ): _lowercase : Tuple = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _lowercase : Tuple = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _lowercase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowercase : Dict = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ )[0] _lowercase : Any = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] ,UpperCAmelCase_ ,atol=1E-4 )
336
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = '''fnet''' def __init__( self ,__UpperCAmelCase=3_2000 ,__UpperCAmelCase=768 ,__UpperCAmelCase=12 ,__UpperCAmelCase=3072 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=4 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase=False ,__UpperCAmelCase=512 ,__UpperCAmelCase=3 ,__UpperCAmelCase=1 ,__UpperCAmelCase=2 ,**__UpperCAmelCase ,) -> str: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : str = type_vocab_size lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : int = use_tpu_fourier_optimizations lowerCAmelCase__ : int = tpu_short_seq_length
37
"""simple docstring""" A : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
57
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = KandinskyVaaImgaImgPipeline UpperCamelCase_ : List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase_ : Tuple = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase_ : str = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : Any = False @property def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return self.time_input_dim @property def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return 1_0_0 @property def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Dict = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _UpperCAmelCase : Dict = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.dummy_unet _UpperCAmelCase : str = self.dummy_movq _UpperCAmelCase : Optional[int] = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _UpperCAmelCase : Union[str, Any] = DDIMScheduler(**lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=0 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image _UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = "cpu" _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Optional[int] = self.pipeline_class(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = output.images _UpperCAmelCase : str = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : List[str] = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _UpperCAmelCase : List[str] = "A red cartoon frog, 4k" _UpperCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) _UpperCAmelCase : List[Any] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _UpperCAmelCase : Dict = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) _UpperCAmelCase : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
17
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=1e-12 ): UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase_ , axis=1 ) , a_min=lowercase_ ) ).T UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase_ , axis=1 ) , a_min=lowercase_ ) ).T return jnp.matmul(lowercase_ , norm_emb_a.T ) class A_ ( nn.Module ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def UpperCAmelCase__ ( self :List[Any] ) -> str: UpperCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype ) UpperCAmelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,) ) UpperCAmelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self :List[Any] , lowercase_ :str ) -> int: UpperCAmelCase = self.vision_model(lowercase_ )[1] UpperCAmelCase = self.visual_projection(lowercase_ ) UpperCAmelCase = jax_cosine_distance(lowercase_ , self.special_care_embeds ) UpperCAmelCase = jax_cosine_distance(lowercase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase = 0.0 UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase = jnp.round(lowercase_ , 3 ) UpperCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_ ) # Use a lower threshold if an image has any special care concept UpperCAmelCase = is_special_care * 0.01 UpperCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase = jnp.round(lowercase_ , 3 ) UpperCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = """clip_input""" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self :Optional[Any] , lowercase_ :CLIPConfig , lowercase_ :Optional[Tuple] = None , lowercase_ :int = 0 , lowercase_ :jnp.dtype = jnp.floataa , lowercase_ :bool = True , **lowercase_ :List[Any] , ) -> Optional[Any]: if input_shape is None: UpperCAmelCase = (1, 2_24, 2_24, 3) UpperCAmelCase = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_ ) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :jax.random.KeyArray , lowercase_ :Tuple , lowercase_ :FrozenDict = None ) -> FrozenDict: # init input tensor UpperCAmelCase = jax.random.normal(lowercase_ , lowercase_ ) UpperCAmelCase , UpperCAmelCase = jax.random.split(lowercase_ ) UpperCAmelCase = {'params': params_rng, 'dropout': dropout_rng} UpperCAmelCase = self.module.init(lowercase_ , lowercase_ )['params'] return random_params def __call__( self :List[Any] , lowercase_ :Tuple , lowercase_ :dict = None , ) -> Optional[int]: UpperCAmelCase = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa ) , rngs={} , )
78
"""simple docstring""" def _lowerCAmelCase ( lowercase_ , lowercase_ = " " ): UpperCAmelCase = [] UpperCAmelCase = 0 for index, char in enumerate(lowercase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase = index + 1 elif index + 1 == len(lowercase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
78
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = "MobileNetV1Config" # Base docstring __lowerCamelCase = "google/mobilenet_v1_1.0_224" __lowerCamelCase = [1, 10_24, 7, 7] # Image classification docstring __lowerCamelCase = "google/mobilenet_v1_1.0_224" __lowerCamelCase = "tabby, tabby cat" __lowerCamelCase = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): """simple docstring""" A__ = {} if isinstance(__lowerCamelCase , __lowerCamelCase ): A__ = model.mobilenet_va else: A__ = model A__ = "MobilenetV1/Conv2d_0/" A__ = backbone.conv_stem.convolution.weight A__ = backbone.conv_stem.normalization.bias A__ = backbone.conv_stem.normalization.weight A__ = backbone.conv_stem.normalization.running_mean A__ = backbone.conv_stem.normalization.running_var for i in range(13 ): A__ = i + 1 A__ = i * 2 A__ = backbone.layer[pt_index] A__ = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var A__ = backbone.layer[pt_index + 1] A__ = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var if isinstance(__lowerCamelCase , __lowerCamelCase ): A__ = "MobilenetV1/Logits/Conv2d_1c_1x1/" A__ = model.classifier.weight A__ = model.classifier.bias return tf_to_pt_map def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model A__ = tf.train.list_variables(__lowerCamelCase ) A__ = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) A__ = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) A__ = array # Build TF to PyTorch weights loading map A__ = _build_tf_to_pytorch_map(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue A__ = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) A__ = np.transpose(__lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer A__ = array.squeeze().transpose() else: A__ = np.transpose(__lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) A__ = torch.from_numpy(__lowerCamelCase ) tf_weights.pop(__lowerCamelCase , __lowerCamelCase ) tf_weights.pop(name + '/RMSProp' , __lowerCamelCase ) tf_weights.pop(name + '/RMSProp_1' , __lowerCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , __lowerCamelCase ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = features.shape[-2:] A__ = conv_layer.stride A__ = conv_layer.kernel_size if in_height % stride_height == 0: A__ = max(kernel_height - stride_height , 0 ) else: A__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: A__ = max(kernel_width - stride_width , 0 ) else: A__ = max(kernel_width - (in_width % stride_width) , 0 ) A__ = pad_along_width // 2 A__ = pad_along_width - pad_left A__ = pad_along_height // 2 A__ = pad_along_height - pad_top A__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__lowerCamelCase , __lowerCamelCase , 'constant' , 0.0 ) class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = False ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,) -> None: super().__init__() A__ = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) A__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) A__ = nn.Convad( in_channels=snake_case__ ,out_channels=snake_case__ ,kernel_size=snake_case__ ,stride=snake_case__ ,padding=snake_case__ ,groups=snake_case__ ,bias=snake_case__ ,padding_mode='zeros' ,) if use_normalization: A__ = nn.BatchNormad( num_features=snake_case__ ,eps=config.layer_norm_eps ,momentum=0.9_9_9_7 ,affine=snake_case__ ,track_running_stats=snake_case__ ,) else: A__ = None if use_activation: if isinstance(snake_case__ ,snake_case__ ): A__ = ACTaFN[use_activation] elif isinstance(config.hidden_act ,snake_case__ ): A__ = ACTaFN[config.hidden_act] else: A__ = config.hidden_act else: A__ = None def snake_case__ ( self ,__UpperCAmelCase ) -> torch.Tensor: if self.config.tf_padding: A__ = apply_tf_padding(snake_case__ ,self.convolution ) A__ = self.convolution(snake_case__ ) if self.normalization is not None: A__ = self.normalization(snake_case__ ) if self.activation is not None: A__ = self.activation(snake_case__ ) return features class UpperCamelCase__( A_ ): lowerCAmelCase__ : List[Any] = MobileNetVaConfig lowerCAmelCase__ : Tuple = load_tf_weights_in_mobilenet_va lowerCAmelCase__ : Any = "mobilenet_v1" lowerCAmelCase__ : Any = "pixel_values" lowerCAmelCase__ : List[str] = False def snake_case__ ( self ,__UpperCAmelCase ) -> None: if isinstance(snake_case__ ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowerCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , A_ , ) class UpperCamelCase__( A_ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase = True ) -> Dict: super().__init__(snake_case__ ) A__ = config A__ = 32 A__ = max(int(depth * config.depth_multiplier ) ,config.min_depth ) A__ = MobileNetVaConvLayer( snake_case__ ,in_channels=config.num_channels ,out_channels=snake_case__ ,kernel_size=3 ,stride=2 ,) A__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] A__ = nn.ModuleList() for i in range(13 ): A__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 A__ = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( snake_case__ ,in_channels=snake_case__ ,out_channels=snake_case__ ,kernel_size=3 ,stride=strides[i] ,groups=snake_case__ ,) ) self.layer.append( MobileNetVaConvLayer( snake_case__ ,in_channels=snake_case__ ,out_channels=snake_case__ ,kernel_size=1 ,) ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) A__ = self.conv_stem(snake_case__ ) A__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): A__ = layer_module(snake_case__ ) if output_hidden_states: A__ = all_hidden_states + (hidden_states,) A__ = hidden_states if self.pooler is not None: A__ = torch.flatten(self.pooler(snake_case__ ) ,start_dim=1 ) else: A__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ ,pooler_output=snake_case__ ,hidden_states=snake_case__ ,) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , A_ , ) class UpperCamelCase__( A_ ): def __init__( self ,__UpperCAmelCase ) -> None: super().__init__(snake_case__ ) A__ = config.num_labels A__ = MobileNetVaModel(snake_case__ ) A__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head A__ = nn.Dropout(config.classifier_dropout_prob ,inplace=snake_case__ ) A__ = nn.Linear(snake_case__ ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> Union[tuple, ImageClassifierOutputWithNoAttention]: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.mobilenet_va(snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(self.dropout(snake_case__ ) ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = "single_label_classification" else: A__ = "multi_label_classification" if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A__ = loss_fct(snake_case__ ,snake_case__ ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(snake_case__ ,snake_case__ ) if not return_dict: A__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=snake_case__ ,logits=snake_case__ ,hidden_states=outputs.hidden_states ,)
360
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class UpperCamelCase__( __A , unittest.TestCase ): lowerCAmelCase__ : Any = SpeechTaTokenizer lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : List[str] = True def snake_case__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(__UpperCAmelCase ) A__ = AddedToken('<mask>' ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) A__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=20 ,__UpperCAmelCase=5 ) -> Union[str, Any]: A__ , A__ = self.get_input_output_texts(__UpperCAmelCase ) A__ = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) A__ = tokenizer.decode(__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def snake_case__ ( self ) -> Optional[Any]: A__ = '<pad>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) ,__UpperCAmelCase ) def snake_case__ ( self ) -> Tuple: A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-4] ,'œ' ) self.assertEqual(vocab_keys[-2] ,'<mask>' ) self.assertEqual(vocab_keys[-1] ,'<ctc_blank>' ) self.assertEqual(len(__UpperCAmelCase ) ,81 ) def snake_case__ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def snake_case__ ( self ) -> Tuple: A__ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): A__ = tokenizer.vocab_size A__ = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] A__ = tokenizer.add_tokens(__UpperCAmelCase ) A__ = tokenizer.vocab_size A__ = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase ,0 ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,len(__UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase ,all_size + len(__UpperCAmelCase ) ) A__ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' ,add_special_tokens=__UpperCAmelCase ) self.assertGreaterEqual(len(__UpperCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) A__ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} A__ = tokenizer.add_special_tokens(__UpperCAmelCase ) A__ = tokenizer.vocab_size A__ = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase ,0 ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,len(__UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase ,all_size_a + len(__UpperCAmelCase ) ) A__ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' ,add_special_tokens=__UpperCAmelCase ) self.assertGreaterEqual(len(__UpperCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def snake_case__ ( self ) -> List[str]: pass def snake_case__ ( self ) -> List[str]: pass def snake_case__ ( self ) -> Dict: A__ = self.get_tokenizer() A__ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(__UpperCAmelCase ,[SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) # fmt: off self.assertListEqual(__UpperCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def snake_case__ ( self ) -> Union[str, Any]: # Use custom sequence because this tokenizer does not handle numbers. A__ = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off A__ = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase ,model_name='microsoft/speecht5_asr' ,revision='c5ef64c71905caeccde0e4462ef3f9077224c524' ,sequences=__UpperCAmelCase ,)
154
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='poolformer' def __init__(self , a_=3 , a_=16 , a_=16 , a_=3 , a_=4.0 , a_=[2, 2, 6, 2] , a_=[64, 1_28, 3_20, 5_12] , a_=[7, 3, 3, 3] , a_=[4, 2, 2, 2] , a_=[2, 1, 1, 1] , a_=4 , a_=0.0 , a_="gelu" , a_=True , a_=1E-5 , a_=0.02 , **a_ , ): '''simple docstring''' __snake_case : int = num_channels __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = stride __snake_case : List[Any] = padding __snake_case : Optional[Any] = pool_size __snake_case : List[Any] = hidden_sizes __snake_case : Union[str, Any] = mlp_ratio __snake_case : List[Any] = depths __snake_case : Dict = patch_sizes __snake_case : str = strides __snake_case : Dict = num_encoder_blocks __snake_case : List[str] = drop_path_rate __snake_case : int = hidden_act __snake_case : List[str] = use_layer_scale __snake_case : List[str] = layer_scale_init_value __snake_case : List[Any] = initializer_range super().__init__(**a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 2E-3
102
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( _snake_case : Any ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case : Dict = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Tuple = [3, 3, 3, 3] __snake_case : Dict = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Any = [4, 4, 4, 4] __snake_case : List[str] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : Optional[int] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Any = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : str = 96 elif "small" in model_name: __snake_case : Optional[int] = 96 elif "base" in model_name: __snake_case : Any = 128 elif "large" in model_name: __snake_case : Optional[Any] = 192 elif "xlarge" in model_name: __snake_case : List[Any] = 256 elif "huge" in model_name: __snake_case : Union[str, Any] = 352 # set label information __snake_case : Union[str, Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case : int = '''imagenet-22k-id2label.json''' else: __snake_case : Optional[Any] = '''imagenet-1k-id2label.json''' __snake_case : int = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : Dict = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} __snake_case : Optional[Any] = FocalNetConfig( embed_dim=_snake_case , depths=_snake_case , focal_levels=_snake_case , focal_windows=_snake_case , use_conv_embed=_snake_case , idalabel=_snake_case , labelaid=_snake_case , use_post_layernorm=_snake_case , use_layerscale=_snake_case , ) return config def lowercase ( _snake_case : Dict ) ->List[Any]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case : List[Any] = '''encoder.''' + name if "encoder.layers" in name: __snake_case : Optional[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case : Any = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case : List[str] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Any = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : List[Any] = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case : Optional[Any] = '''layernorm.weight''' if name == "norm.bias": __snake_case : List[str] = '''layernorm.bias''' if "head" in name: __snake_case : Union[str, Any] = name.replace('''head''' , '''classifier''' ) else: __snake_case : int = '''focalnet.''' + name return name def lowercase ( _snake_case : Tuple , _snake_case : Dict , _snake_case : List[str]=False ) ->Any: """simple docstring""" __snake_case : List[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case : int = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _snake_case ) __snake_case : int = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case : str = state_dict.pop(_snake_case ) __snake_case : Tuple = val __snake_case : Any = get_focalnet_config(_snake_case ) __snake_case : List[Any] = FocalNetForImageClassification(_snake_case ) model.eval() # load state dict model.load_state_dict(_snake_case ) # verify conversion __snake_case : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case : Any = BitImageProcessor( do_resize=_snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_snake_case , crop_size=224 , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , ) __snake_case : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __snake_case : int = processor(images=_snake_case , return_tensors='''pt''' ) __snake_case : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : Optional[Any] = image_transforms(_snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _snake_case , atol=1e-4 ) __snake_case : Tuple = model(**_snake_case ) __snake_case : str = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Any = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : int = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : Optional[int] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : List[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Union[str, Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : List[str] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
102
1
import fire from utils import calculate_rouge, save_json def snake_case_ ( snake_case , snake_case , snake_case=None , **snake_case ) -> Optional[int]: lowercase__: str = [x.strip() for x in open(snake_case ).readlines()] lowercase__: Optional[Any] = [x.strip() for x in open(snake_case ).readlines()][: len(snake_case )] lowercase__: Optional[int] = calculate_rouge(snake_case , snake_case , **snake_case ) if save_path is not None: save_json(snake_case , snake_case , indent=snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
364
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Tuple = ['input_values', 'attention_mask'] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 16_000 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 7_600 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Dict = do_normalize lowercase__: Optional[Any] = return_attention_mask lowercase__: str = num_mel_bins lowercase__: Dict = hop_length lowercase__: Dict = win_length lowercase__: Optional[int] = win_function lowercase__: Any = frame_signal_scale lowercase__: Tuple = fmin lowercase__: Tuple = fmax lowercase__: Dict = mel_floor lowercase__: int = reduction_factor lowercase__: List[Any] = win_length * sampling_rate // 1_000 lowercase__: Optional[Any] = hop_length * sampling_rate // 1_000 lowercase__: Optional[int] = optimal_fft_length(self.sample_size ) lowercase__: Optional[Any] = (self.n_fft // 2) + 1 lowercase__: str = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) lowercase__: Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowercase__: List[str] = np.array(lowerCAmelCase__ , np.intaa ) lowercase__: Tuple = [] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): lowercase__: int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase__: Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowercase__: Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__: List[str] = spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowercase__: Dict = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: lowercase__: str = None if audio_target is not None: lowercase__: List[str] = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: lowercase__: int = inputs_target['input_values'] lowercase__: List[str] = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__: Optional[int] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' lowercase__: int = isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase__: Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__: Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase__: Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase__: Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__: Optional[int] = [speech] # needed to make pad() work on spectrogram inputs lowercase__: str = self.feature_size # convert into correct format for padding if is_target: lowercase__: int = [self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] lowercase__: Dict = BatchFeature({'input_values': features} ) lowercase__: Union[str, Any] = self.num_mel_bins else: lowercase__: Union[str, Any] = BatchFeature({'input_values': speech} ) lowercase__: Dict = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: List[str] = feature_size_hack # convert input values to correct format lowercase__: Union[str, Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): lowercase__: List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase__: Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase__: Tuple = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase__: Tuple = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase__: str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase__: Tuple = ( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__: str = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowercase__: Union[str, Any] = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase__: int = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase__: str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
288
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : int = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( snake_case_ ): def __init__( self : List[Any] , _lowercase : str , _lowercase : Any ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : int , _lowercase : Tuple = 1 , _lowercase : Union[str, Any] = None , _lowercase : Tuple = 0.0 , _lowercase : Tuple = 50 , _lowercase : Tuple = None , _lowercase : str = "pil" , _lowercase : List[str] = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , _lowercase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) SCREAMING_SNAKE_CASE__ = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
353
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def __a ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image @property def __a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_lowercase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def __a ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(_lowercase ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE__ = unet.half() SCREAMING_SNAKE_CASE__ = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ).images SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained(_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __a ( self : Any ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=5 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
204
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__: Tuple = logging.get_logger(__name__) a__: Tuple = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( a__ ): __SCREAMING_SNAKE_CASE = """git_vision_model""" def __init__( self,__lowerCamelCase=768,__lowerCamelCase=3072,__lowerCamelCase=12,__lowerCamelCase=12,__lowerCamelCase=3,__lowerCamelCase=224,__lowerCamelCase=16,__lowerCamelCase="quick_gelu",__lowerCamelCase=1E-5,__lowerCamelCase=0.0,__lowerCamelCase=0.02,**__lowerCamelCase,): super().__init__(**lowerCAmelCase__ ) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def UpperCamelCase ( cls,__lowerCamelCase,**__lowerCamelCase ): cls._set_token_in_kwargs(lowerCAmelCase__ ) A__ = cls.get_config_dict(lowerCAmelCase__,**lowerCAmelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__,**lowerCAmelCase__ ) class SCREAMING_SNAKE_CASE__ ( a__ ): __SCREAMING_SNAKE_CASE = """git""" def __init__( self,__lowerCamelCase=None,__lowerCamelCase=3_0522,__lowerCamelCase=768,__lowerCamelCase=6,__lowerCamelCase=12,__lowerCamelCase=3072,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=1024,__lowerCamelCase=0.02,__lowerCamelCase=1E-12,__lowerCamelCase=0,__lowerCamelCase="absolute",__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=101,__lowerCamelCase=102,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__(bos_token_id=lowerCAmelCase__,eos_token_id=lowerCAmelCase__,pad_token_id=lowerCAmelCase__,**lowerCAmelCase__ ) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) A__ = GitVisionConfig(**lowerCAmelCase__ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def UpperCamelCase ( self ): A__ = copy.deepcopy(self.__dict__ ) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
193
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->Dict: '''simple docstring''' a : Any = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : List[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : List[Any] = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
105
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
260
from __future__ import annotations lowerCAmelCase_ = [] def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool: for i in range(len(lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool: if row >= len(lowerCAmelCase ): solution.append(lowerCAmelCase ) printboard(lowerCAmelCase ) print() return True for i in range(len(lowerCAmelCase ) ): if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = 1 solve(lowerCAmelCase , row + 1 ) _snake_case : str = 0 return False def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None: for i in range(len(lowerCAmelCase ) ): for j in range(len(lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowerCAmelCase_ = 8 lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
260
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Any = '''openai/whisper-base''' UpperCamelCase : int = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) UpperCamelCase : Optional[int] = '''transcriber''' UpperCamelCase : Optional[int] = WhisperProcessor UpperCamelCase : str = WhisperForConditionalGeneration UpperCamelCase : Optional[Any] = ['''audio'''] UpperCamelCase : Optional[Any] = ['''text'''] def UpperCAmelCase_ ( self , _A ): return self.pre_processor(_A , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self , _A ): return self.model.generate(inputs=_A ) def UpperCAmelCase_ ( self , _A ): return self.pre_processor.batch_decode(_A , skip_special_tokens=_A )[0]
280
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def _SCREAMING_SNAKE_CASE ( a , a , a , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _SCREAMING_SNAKE_CASE ( a , a , a , ) -> float: if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( a , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" if not sentence: return "" _snake_case : List[str] = dict(zip(_lowerCamelCase , _lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
370
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase__ (snake_case__ : int = 50_00 ): """simple docstring""" _snake_case : List[str] = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__ )] for i, pentagonal_i in enumerate(snake_case__ ): for j in range(snake_case__ , len(snake_case__ ) ): _snake_case : Dict = pentagonal_nums[j] _snake_case : Optional[Any] = pentagonal_i + pentagonal_j _snake_case : List[str] = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
132
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Tuple = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = "xlnet" snake_case__ : Tuple = ["mems"] snake_case__ : Optional[Any] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : str , UpperCAmelCase__ : int=3_2_0_0_0 , UpperCAmelCase__ : List[str]=1_0_2_4 , UpperCAmelCase__ : Union[str, Any]=2_4 , UpperCAmelCase__ : str=1_6 , UpperCAmelCase__ : int=4_0_9_6 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Dict="bi" , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Optional[Any]=1E-12 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Optional[Any]=5_1_2 , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[Any]=-1 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str="last" , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict="tanh" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Optional[int]=1 , UpperCAmelCase__ : Dict=2 , **UpperCAmelCase__ : str , ) -> Dict: __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) __SCREAMING_SNAKE_CASE = d_model // n_head __SCREAMING_SNAKE_CASE = ff_activation __SCREAMING_SNAKE_CASE = d_inner __SCREAMING_SNAKE_CASE = untie_r __SCREAMING_SNAKE_CASE = attn_type __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = mem_len __SCREAMING_SNAKE_CASE = reuse_len __SCREAMING_SNAKE_CASE = bi_data __SCREAMING_SNAKE_CASE = clamp_len __SCREAMING_SNAKE_CASE = same_length __SCREAMING_SNAKE_CASE = summary_type __SCREAMING_SNAKE_CASE = summary_use_proj __SCREAMING_SNAKE_CASE = summary_activation __SCREAMING_SNAKE_CASE = summary_last_dropout __SCREAMING_SNAKE_CASE = start_n_top __SCREAMING_SNAKE_CASE = end_n_top __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = kwargs["use_cache"] __SCREAMING_SNAKE_CASE = use_mems_eval __SCREAMING_SNAKE_CASE = use_mems_train super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self : List[str] ) -> str: logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : str ) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
54
"""simple docstring""" __A = [0, 2, 4, 6, 8] __A = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: list[int] , _lowerCamelCase: int ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __lowerCamelCase : Union[str, Any] = 0 for digit in range(10 ): __lowerCamelCase : Tuple = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase ) return result __lowerCamelCase : List[str] = 0 for digita in range(10 ): __lowerCamelCase : Optional[Any] = digita if (remainder + digita) % 2 == 0: __lowerCamelCase : Any = ODD_DIGITS else: __lowerCamelCase : Dict = EVEN_DIGITS for digita in other_parity_digits: __lowerCamelCase : int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase: int = 9 ) -> int: '''simple docstring''' __lowerCamelCase : List[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
135
0
import math def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = input('Enter message: ' ) SCREAMING_SNAKE_CASE : Optional[int] = int(input(f"Enter key [2-{len(__UpperCamelCase ) - 1}]: " ) ) SCREAMING_SNAKE_CASE : Optional[Any] = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): SCREAMING_SNAKE_CASE : Optional[Any] = encrypt_message(__UpperCamelCase ,__UpperCamelCase ) elif mode.lower().startswith('d' ): SCREAMING_SNAKE_CASE : Optional[int] = decrypt_message(__UpperCamelCase ,__UpperCamelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"Output:\n{text + '|'}" ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [''] * key for col in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = col while pointer < len(__UpperCamelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(__UpperCamelCase ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = math.ceil(len(__UpperCamelCase ) / key ) SCREAMING_SNAKE_CASE : List[Any] = key SCREAMING_SNAKE_CASE : List[Any] = (num_cols * num_rows) - len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = [''] * num_cols SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): SCREAMING_SNAKE_CASE : Optional[int] = 0 row += 1 return "".join(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
358
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = value SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = tree def UpperCamelCase_ ( self, A ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
246
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,) lowercase : Optional[Any] = """A painting of a squirrel eating a burger""" lowercase : Any = jax.device_count() lowercase : Tuple = num_samples * [prompt] lowercase : Any = sd_pipe.prepare_inputs(snake_case ) lowercase : Tuple = replicate(snake_case ) lowercase : Optional[int] = shard(snake_case ) lowercase : Optional[int] = jax.random.PRNGKey(0 ) lowercase : Tuple = jax.random.split(snake_case ,jax.device_count() ) lowercase : List[Any] = sd_pipe(snake_case ,snake_case ,snake_case ,num_inference_steps=25 ,jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : List[Any] = images[0, 253:256, 253:256, -1] lowercase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : Union[str, Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = """stabilityai/stable-diffusion-2""" lowercase , lowercase : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case ,subfolder="""scheduler""" ) lowercase , lowercase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( snake_case ,scheduler=snake_case ,revision="""bf16""" ,dtype=jnp.bfloataa ,) lowercase : Optional[int] = scheduler_params lowercase : List[str] = """A painting of a squirrel eating a burger""" lowercase : Any = jax.device_count() lowercase : Dict = num_samples * [prompt] lowercase : Any = sd_pipe.prepare_inputs(snake_case ) lowercase : Tuple = replicate(snake_case ) lowercase : Optional[Any] = shard(snake_case ) lowercase : Tuple = jax.random.PRNGKey(0 ) lowercase : int = jax.random.split(snake_case ,jax.device_count() ) lowercase : Any = sd_pipe(snake_case ,snake_case ,snake_case ,num_inference_steps=25 ,jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : Union[str, Any] = images[0, 253:256, 253:256, -1] lowercase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : List[Any] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
20
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = WavaVecaForSequenceClassification.from_pretrained(lowercase__ , config=lowercase__ ) lowercase__ = downstream_dict["""projector.weight"""] lowercase__ = downstream_dict["""projector.bias"""] lowercase__ = downstream_dict["""model.post_net.linear.weight"""] lowercase__ = downstream_dict["""model.post_net.linear.bias"""] return model def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = WavaVecaForAudioFrameClassification.from_pretrained(lowercase__ , config=lowercase__ ) lowercase__ = downstream_dict["""model.linear.weight"""] lowercase__ = downstream_dict["""model.linear.bias"""] return model def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = WavaVecaForXVector.from_pretrained(lowercase__ , config=lowercase__ ) lowercase__ = downstream_dict["""connector.weight"""] lowercase__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowercase__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowercase__ = torch.load(lowercase__ , map_location="""cpu""" ) lowercase__ = checkpoint["""Downstream"""] lowercase__ = WavaVecaConfig.from_pretrained(lowercase__ ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ , return_attention_mask=lowercase__ , do_normalize=lowercase__ ) lowercase__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): lowercase__ = convert_classification(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): lowercase__ = convert_diarization(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith("""ForXVector""" ): lowercase__ = convert_xvector(lowercase__ , lowercase__ , lowercase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
164
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _lowerCamelCase( a ): __a = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __a = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __a = 4 __a = 4_8 __a = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __a = [6, 6, 6, 6] __a = 6_0 __a = [6, 6, 6, 6] __a = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __a = 4 __a = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __a = 1 __a = 1 __a = 1_2_6 __a = 7 __a = 2_55.0 __a = '''''' return config def _lowerCamelCase( a , a ): if "patch_embed.proj" in name and "layers" not in name: __a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __a = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: __a = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: __a = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: __a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __a = name.replace("attn" , "attention.self" ) if "norm1" in name: __a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __a = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __a = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __a = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __a = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __a = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: __a = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": __a = '''layernorm.weight''' if name == "norm.bias": __a = '''layernorm.bias''' if "conv_first" in name: __a = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __a = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __a = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: __a = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: __a = name.replace("upsample.2" , "upsample.convolution_1" ) __a = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": __a = name.replace("upsample.0.weight" , "upsample.conv.weight" ) __a = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: __a = '''swin2sr.''' + name return name def _lowerCamelCase( a , a ): for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(a__ ) if "qkv" in key: __a = key.split("." ) __a = int(key_split[1] ) __a = int(key_split[4] ) __a = config.embed_dim if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] pass else: __a = val return orig_state_dict def _lowerCamelCase( a , a , a ): __a = get_config(a__ ) __a = SwinaSRForImageSuperResolution(a__ ) model.eval() __a = torch.hub.load_state_dict_from_url(a__ , map_location="cpu" ) __a = convert_state_dict(a__ , a__ ) __a = model.load_state_dict(a__ , strict=a__ ) if len(a__ ) > 0: raise ValueError("Missing keys when converting: {}".format(a__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"Unexpected key {key} in state_dict" ) # verify values __a = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' __a = Image.open(requests.get(a__ , stream=a__ ).raw ).convert("RGB" ) __a = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __a = 1_2_6 if '''Jpeg''' in checkpoint_url else 2_5_6 __a = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __a = transforms(a__ ).unsqueeze(0 ) if config.num_channels == 1: __a = pixel_values[:, 0, :, :].unsqueeze(1 ) __a = model(a__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __a = torch.Size([1, 3, 5_1_2, 5_1_2] ) __a = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __a = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) __a = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __a = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) __a = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __a = torch.Size([1, 3, 5_1_2, 5_1_2] ) __a = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __a = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) __a = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , a__ , atol=1E-3 ) print("Looks ok!" ) __a = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } __a = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub(F"caidas/{model_name}" ) processor.push_to_hub(F"caidas/{model_name}" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") SCREAMING_SNAKE_CASE__:int = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
369
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__:List[Any] = None SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__:List[str] = { """camembert-base""": 512, } SCREAMING_SNAKE_CASE__:str = """▁""" class snake_case__ ( snake_case_ ): _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : str = CamembertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __a = vocab_file __a = False if not self.vocab_file else True def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
268
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : List[str] = LEDTokenizer a_ : Dict = LEDTokenizerFast a_ : Optional[int] = True def lowerCamelCase ( self : str ): super().setUp() lowerCAmelCase_ : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase_ : int = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase_ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : Tuple = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase ( self : Any , **a_ : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Any , **a_ : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Tuple , a_ : Optional[Any] ): return "lower newer", "lower newer" @cached_property def lowerCamelCase ( self : List[str] ): return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def lowerCamelCase ( self : List[str] ): return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCAmelCase_ : Union[str, Any] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase_ : Any = tokenizer(a_ , max_length=len(a_ ) , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase_ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(a_ , a_ ) @require_torch def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase_ : str = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertNotIn("labels" , a_ ) self.assertNotIn("decoder_attention_mask" , a_ ) @require_torch def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[str] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase_ : List[Any] = tokenizer(text_target=a_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def lowerCamelCase ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase_ : Optional[Any] = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=a_ , truncation=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : List[str] = ["A long paragraph for summarization."] lowerCAmelCase_ : Optional[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase_ : Optional[int] = tokenizer(a_ , return_tensors="pt" ) lowerCAmelCase_ : Union[str, Any] = tokenizer(text_target=a_ , return_tensors="pt" ) lowerCAmelCase_ : List[Any] = inputs["input_ids"] lowerCAmelCase_ : List[str] = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase ( self : Tuple ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase_ : Optional[Any] = ["Summary of the text.", "Another summary."] lowerCAmelCase_ : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCAmelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ ) lowerCAmelCase_ : List[Any] = [[0] * len(a_ ) for x in encoded_output["input_ids"]] lowerCAmelCase_ : List[Any] = tokenizer.pad(a_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , a_ ) def lowerCamelCase ( self : Dict ): pass def lowerCamelCase ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained(a_ , **a_ ) lowerCAmelCase_ : int = "A, <mask> AllenNLP sentence." lowerCAmelCase_ : List[Any] = tokenizer_r.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) lowerCAmelCase_ : Dict = tokenizer_p.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowerCAmelCase_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowerCAmelCase_ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( a_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( a_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
241
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'summarization' _SCREAMING_SNAKE_CASE = ['loss'] _SCREAMING_SNAKE_CASE = ROUGE_KEYS _SCREAMING_SNAKE_CASE = 'rouge2' def __init__( self , lowercase , **lowercase ) -> str: if hparams.sortish_sampler and hparams.gpus > 1: lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowercase , num_labels=lowercase , mode=self.mode , **lowercase ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) lowerCAmelCase = 0 lowerCAmelCase = defaultdict(lowercase ) lowerCAmelCase = self.config.model_type lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCAmelCase = get_git_info()["""repo_sha"""] lowerCAmelCase = hparams.num_workers lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase ): lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCAmelCase = self.decoder_start_token_id lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) lowerCAmelCase = False lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCAmelCase = self.hparams.eval_max_gen_length else: lowerCAmelCase = self.model.config.max_length lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _snake_case ( self , lowercase ) -> Dict[str, List[str]]: lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowercase , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) lowerCAmelCase = True return readable_batch def _snake_case ( self , lowercase , **lowercase ) -> Union[str, Any]: return self.model(lowercase , **lowercase ) def _snake_case ( self , lowercase ) -> Union[str, Any]: lowerCAmelCase = self.tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) return lmap(str.strip , lowercase ) def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = self.tokenizer.pad_token_id lowerCAmelCase , lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] lowerCAmelCase = batch["""labels"""] if isinstance(self.model , lowercase ): lowerCAmelCase = self.model._shift_right(lowercase ) else: lowerCAmelCase = shift_tokens_right(lowercase , lowercase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCAmelCase = decoder_input_ids self.save_readable_batch(lowercase ) lowerCAmelCase = self(lowercase , attention_mask=lowercase , decoder_input_ids=lowercase , use_cache=lowercase ) lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=lowercase ) assert lm_logits.shape[-1] == self.vocab_size lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCAmelCase = nn.functional.log_softmax(lowercase , dim=-1 ) lowerCAmelCase , lowerCAmelCase = label_smoothed_nll_loss( lowercase , lowercase , self.hparams.label_smoothing , ignore_index=lowercase ) return (loss,) @property def _snake_case ( self ) -> int: return self.tokenizer.pad_token_id def _snake_case ( self , lowercase , lowercase ) -> Dict: lowerCAmelCase = self._step(lowercase ) lowerCAmelCase = dict(zip(self.loss_names , lowercase ) ) # tokens per batch lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() lowerCAmelCase = batch["""input_ids"""].shape[0] lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _snake_case ( self , lowercase , lowercase ) -> Dict: return self._generative_step(lowercase ) def _snake_case ( self , lowercase , lowercase="val" ) -> Dict: self.step_count += 1 lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCAmelCase = losses["""loss"""] lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCAmelCase = torch.tensor(lowercase ).type_as(lowercase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowercase ) lowerCAmelCase = {f'{prefix}_avg_{k}': x for k, x in losses.items()} lowerCAmelCase = self.step_count self.metrics[prefix].append(lowercase ) # callback writes this to self.metrics_save_path lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def _snake_case ( self , lowercase , lowercase ) -> Dict: return calculate_rouge(lowercase , lowercase ) def _snake_case ( self , lowercase ) -> dict: lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCAmelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] lowerCAmelCase = self.ids_to_clean_text(lowercase ) lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) lowerCAmelCase = self._step(lowercase ) lowerCAmelCase = dict(zip(self.loss_names , lowercase ) ) lowerCAmelCase = self.calc_generative_metrics(lowercase , lowercase ) lowerCAmelCase = np.mean(lmap(lowercase , lowercase ) ) base_metrics.update(gen_time=lowercase , gen_len=lowercase , preds=lowercase , target=lowercase , **lowercase ) return base_metrics def _snake_case ( self , lowercase , lowercase ) -> Dict: return self._generative_step(lowercase ) def _snake_case ( self , lowercase ) -> int: return self.validation_epoch_end(lowercase , prefix="""test""" ) def _snake_case ( self , lowercase ) -> SeqaSeqDataset: lowerCAmelCase = self.n_obs[type_path] lowerCAmelCase = self.target_lens[type_path] lowerCAmelCase = self.dataset_class( self.tokenizer , type_path=lowercase , n_obs=lowercase , max_target_length=lowercase , **self.dataset_kwargs , ) return dataset def _snake_case ( self , lowercase , lowercase , lowercase = False ) -> DataLoader: lowerCAmelCase = self.get_dataset(lowercase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCAmelCase = dataset.make_sortish_sampler(lowercase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_sampler=lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) def _snake_case ( self ) -> DataLoader: lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowercase ) return dataloader def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _snake_case ( lowercase , lowercase ) -> Optional[int]: BaseTransformer.add_model_specific_args(lowercase , lowercase ) add_generic_args(lowercase , lowercase ) parser.add_argument( """--max_source_length""" , default=1_024 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowercase ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowercase ) parser.add_argument("""--max_tokens_per_batch""" , type=lowercase , default=lowercase ) parser.add_argument("""--logger_name""" , type=lowercase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowercase , default=500 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowercase , default="""summarization""" , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowercase , default=0.0 , required=lowercase ) parser.add_argument("""--src_lang""" , type=lowercase , default="""""" , required=lowercase ) parser.add_argument("""--tgt_lang""" , type=lowercase , default="""""" , required=lowercase ) parser.add_argument("""--eval_beams""" , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument( """--val_metric""" , type=lowercase , default=lowercase , required=lowercase , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowercase , default=lowercase , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowercase , default=1 , required=lowercase , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowercase , default=-1 , required=lowercase , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'translation' _SCREAMING_SNAKE_CASE = ['loss'] _SCREAMING_SNAKE_CASE = ['bleu'] _SCREAMING_SNAKE_CASE = 'bleu' def __init__( self , lowercase , **lowercase ) -> Union[str, Any]: super().__init__(lowercase , **lowercase ) lowerCAmelCase = hparams.src_lang lowerCAmelCase = hparams.tgt_lang def _snake_case ( self , lowercase , lowercase ) -> dict: return calculate_bleu(lowercase , lowercase ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) check_output_dir(SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCAmelCase = SummarizationModule(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = TranslationModule(SCREAMING_SNAKE_CASE ) lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCAmelCase = False lowerCAmelCase = args.val_metric == """loss""" lowerCAmelCase = generic_train( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE ) , early_stopping_callback=SCREAMING_SNAKE_CASE , logger=SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model lowerCAmelCase = """""" lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=SCREAMING_SNAKE_CASE ) ) if checkpoints: lowerCAmelCase = checkpoints[-1] lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() SCREAMING_SNAKE_CASE__ = pl.Trainer.add_argparse_args(parser) SCREAMING_SNAKE_CASE__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
46
0
from __future__ import annotations def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float , ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Optional[Any] = logging.getLogger(__name__) @dataclass class __snake_case : _a : str= field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a : Optional[str]= field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __snake_case : _a : str= field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) _a : int= field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) lowercase : List[str] = import_module("""tasks""" ) try: lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , model_args.task_type ) lowercase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase : List[Any] = token_classification_task.get_labels(data_args.labels ) lowercase : Dict[int, str] = dict(enumerate(SCREAMING_SNAKE_CASE__ ) ) lowercase : Tuple = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} , cache_dir=model_args.cache_dir , ) lowercase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase : Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase : List[Any] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase : Tuple = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple[List[int], List[int]]: lowercase : str = np.argmax(SCREAMING_SNAKE_CASE__ , axis=2 ) lowercase , lowercase : int = preds.shape lowercase : str = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] lowercase : Optional[Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase , lowercase : List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "precision": precision_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "recall": recall_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "f1": fa_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), } # Data collator lowercase : str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase : Dict = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase : List[Any] = trainer.evaluate() lowercase : Optional[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) # Predict if training_args.do_predict: lowercase : Any = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase , lowercase , lowercase : List[str] = trainer.predict(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : List[Any] = align_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions lowercase : List[Any] = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
20
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , a , a = None , a = None , a = False , a = False , a = None , a = None , **a , ): super().__init__( features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase__ : int = Generator( cache_dir=a , features=a , generator=a , gen_kwargs=a , **a , ) def snake_case_ ( self): # Build iterable dataset if self.streaming: lowercase__ : List[Any] = self.builder.as_streaming_dataset(split='train') # Build regular (map-style) dataset else: lowercase__ : Union[str, Any] = None lowercase__ : Optional[Any] = None lowercase__ : List[str] = None lowercase__ : Optional[int] = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase__ : Union[str, Any] = self.builder.as_dataset( split='train' , verification_mode=a , in_memory=self.keep_in_memory) return dataset
362
import numpy as np def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' lowercase__ : List[Any] = int(np.ceil((x_end - xa) / h ) ) lowercase__ : Dict = np.zeros((n + 1,) ) lowercase__ : Dict = ya lowercase__ : Union[str, Any] = xa for k in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = f(SCREAMING_SNAKE_CASE_ , y[k] ) lowercase__ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase__ : Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase__ : List[Any] = f(x + h , y[k] + h * ka ) lowercase__ : Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCAmelCase : UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self :Union[str, Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :str=13 , __UpperCamelCase :List[Any]=7 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :List[Any]=False , __UpperCamelCase :Any=99 , __UpperCamelCase :Tuple=32 , __UpperCamelCase :Optional[int]=2 , __UpperCamelCase :Optional[Any]=4 , __UpperCamelCase :Tuple=37 , __UpperCamelCase :Optional[Any]=0.1 , __UpperCamelCase :Tuple=0.1 , __UpperCamelCase :Optional[int]=40 , __UpperCamelCase :Tuple=2 , __UpperCamelCase :Dict=1 , __UpperCamelCase :Any=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def lowerCamelCase ( self :Tuple ): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCamelCase ( self :str , __UpperCamelCase :str , __UpperCamelCase :Union[str, Any] ): A = TFPegasusModel(config=__UpperCamelCase ).get_decoder() A = inputs_dict["input_ids"] A = input_ids[:1, :] A = inputs_dict["attention_mask"][:1, :] A = inputs_dict["head_mask"] A = 1 # first forward pass A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) A, A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 ) def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): if attention_mask is None: A = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :int ): A = TFPegasusModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCamelCase ( self :Dict ): self.config_tester.run_common_tests() def lowerCamelCase ( self :Any ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def lowerCamelCase ( self :Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase ( self :Dict ): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase ( self :str , **__UpperCamelCase :str ): A = self.translate_src_text(**__UpperCamelCase ) assert self.expected_text == generated_words def lowerCamelCase ( self :Any , **__UpperCamelCase :List[str] ): A = self.tokenizer(self.src_text , **__UpperCamelCase , padding=__UpperCamelCase , return_tensors="tf" ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCamelCase , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCamelCase ) return generated_words @slow def lowerCamelCase ( self :Union[str, Any] ): self._assert_generated_batch_equal_expected()
292
"""simple docstring""" from __future__ import annotations _snake_case : str = [] def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): for i in range(len(UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def A__ ( UpperCamelCase , UpperCamelCase ): if row >= len(UpperCamelCase ): solution.append(UpperCamelCase ) printboard(UpperCamelCase ) print() return True for i in range(len(UpperCamelCase ) ): if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = 1 solve(UpperCamelCase , row + 1 ) A = 0 return False def A__ ( UpperCamelCase ): for i in range(len(UpperCamelCase ) ): for j in range(len(UpperCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _snake_case : List[str] = 8 _snake_case : List[str] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
292
1
'''simple docstring''' import os import string import sys UpperCAmelCase = 1 << 8 UpperCAmelCase = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCAmelCase = KEYMAP['up'] UpperCAmelCase = KEYMAP['left'] if sys.platform == "win32": UpperCAmelCase = [] UpperCAmelCase = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCAmelCase = ord(str(i)) def _snake_case ( ) -> Dict: """simple docstring""" if os.name == "nt": import msvcrt lowerCAmelCase = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke lowerCAmelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase = cha[1] else: lowerCAmelCase = ch.decode(__lowerCamelCase ) else: lowerCAmelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase = sys.stdin.fileno() lowerCAmelCase = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) lowerCAmelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def _snake_case ( ) -> str: """simple docstring""" lowerCAmelCase = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: lowerCAmelCase = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: lowerCAmelCase = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
368
'''simple docstring''' from __future__ import annotations class __snake_case: '''simple docstring''' def __init__( self , A_ = 0 ) -> Dict: lowerCAmelCase = key def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A_ , A_ ) ) except OSError: return False return True def __snake_case ( self , A_ , A_ ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A_ , A_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
187
0