code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCamelCase : int = logging.getLogger(__name__) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCAmelCase , default="data/dump" , help="The dump file prefix." ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE_ : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `<s>` SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE_ : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: SCREAMING_SNAKE_CASE_ : int = fp.readlines() logger.info("Start encoding" ) logger.info(f'{len(lowerCAmelCase )} examples to process.' ) SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1_0_0_0_0 SCREAMING_SNAKE_CASE_ : Optional[Any] = time.time() for text in data: SCREAMING_SNAKE_CASE_ : Tuple = f'{bos} {text.strip()} {sep}' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) rslt.append(lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE_ : List[Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) SCREAMING_SNAKE_CASE_ : Dict = time.time() logger.info("Finished binarization" ) logger.info(f'{len(lowerCAmelCase )} examples processed.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = f'{args.dump_file}.{args.tokenizer_name}.pickle' SCREAMING_SNAKE_CASE_ : Dict = tokenizer.vocab_size if vocab_size < (1 << 1_6): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.uintaa(lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE_ : Dict = [np.intaa(lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(lowerCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
18
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
"""simple docstring""" from math import ceil, sqrt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000000 ): _lowercase : Any = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowercase : Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowercase : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' snake_case_ = set() snake_case_ = 0 snake_case_ = n + 1 # maximum limit for a in range(2, __UpperCAmelCase ): for b in range(2, __UpperCAmelCase ): snake_case_ = a**b # calculates the current power collect_powers.add(__UpperCAmelCase ) # adds the result to the set return len(__UpperCAmelCase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
56
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase )] ) UpperCAmelCase__ : Any = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase ) ) , x.transpose() ) , lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (1, 2, 1) UpperCAmelCase__ : Tuple = (1, 1, 0, 7) UpperCAmelCase__ : int = SARIMAX( lowerCAmelCase , exog=lowerCAmelCase , order=lowerCAmelCase , seasonal_order=lowerCAmelCase ) UpperCAmelCase__ : Any = model.fit(disp=lowerCAmelCase , maxiter=6_00 , method="""nm""" ) UpperCAmelCase__ : Optional[Any] = model_fit.predict(1 , len(lowerCAmelCase ) , exog=[test_match] ) return result[0] def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = regressor.predict(lowerCAmelCase ) return y_pred[0] def a__ ( lowerCAmelCase ) -> float: train_user.sort() UpperCAmelCase__ : Optional[Any] = np.percentile(lowerCAmelCase , 25 ) UpperCAmelCase__ : str = np.percentile(lowerCAmelCase , 75 ) UpperCAmelCase__ : int = qa - qa UpperCAmelCase__ : Union[str, Any] = qa - (iqr * 0.1) return low_lim def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(lowerCAmelCase ) - abs(lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A = Normalizer().fit_transform(data_input_df.values) # split data _A = normalize_df[:, 2].tolist() _A = normalize_df[:, 0].tolist() _A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A = normalize_df[:, [1, 2]].tolist() _A = x[: len(x) - 1] _A = x[len(x) - 1 :] # for linear regression & sarimax _A = total_date[: len(total_date) - 1] _A = total_user[: len(total_user) - 1] _A = total_match[: len(total_match) - 1] _A = total_date[len(total_date) - 1 :] _A = total_user[len(total_user) - 1 :] _A = total_match[len(total_match) - 1 :] # voting system with forecasting _A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
171
0
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = len(lowerCamelCase) for i in range(1, lowerCamelCase): __lowerCAmelCase = collection[i] __lowerCAmelCase = 0 __lowerCAmelCase = i - 1 while low <= high: __lowerCAmelCase = (low + high) // 2 if val < collection[mid]: __lowerCAmelCase = mid - 1 else: __lowerCAmelCase = mid + 1 for j in range(lowerCamelCase, lowerCamelCase, -1): __lowerCAmelCase = collection[j - 1] __lowerCAmelCase = val return collection if __name__ == "__main__": _UpperCAmelCase : Any = input("""Enter numbers separated by a comma:\n""").strip() _UpperCAmelCase : int = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class a ( a__ ): """simple docstring""" lowerCamelCase :Optional[int] = '''deta''' lowerCamelCase :List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=9_00 , lowerCAmelCase_=20_48 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=True , lowerCAmelCase_=3_00 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.25 , **lowerCAmelCase_ , ) -> str: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _A = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = backbone_config.pop("""model_type""" ) _A = CONFIG_MAPPING[backbone_model_type] _A = config_class.from_dict(lowerCAmelCase_ ) _A = backbone_config _A = num_queries _A = max_position_embeddings _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = init_xavier_std _A = encoder_layerdrop _A = auxiliary_loss _A = position_embedding_type # deformable attributes _A = num_feature_levels _A = encoder_n_points _A = decoder_n_points _A = two_stage _A = two_stage_num_proposals _A = with_box_refine _A = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _A = class_cost _A = bbox_cost _A = giou_cost # Loss coefficients _A = mask_loss_coefficient _A = dice_loss_coefficient _A = bbox_loss_coefficient _A = giou_loss_coefficient _A = eos_coefficient _A = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def UpperCAmelCase ( self ) -> List[str]: return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> List[Any]: return self.d_model def UpperCAmelCase ( self ) -> str: _A = copy.deepcopy(self.__dict__ ) _A = self.backbone_config.to_dict() _A = self.__class__.model_type return output
180
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a__ : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def _UpperCamelCase ( __A , __A=None , __A=None , __A=None ) -> int: '''simple docstring''' UpperCamelCase__ = True while ask_again: UpperCamelCase__ = input(__A ) try: if default is not None and len(__A ) == 0: return default return convert_value(__A ) if convert_value is not None else result except Exception: if error_message is not None: print(__A ) def _UpperCamelCase ( __A , __A=[] , __A=None , __A=0 ) -> Any: '''simple docstring''' UpperCamelCase__ = BulletMenu(__A , __A ) UpperCamelCase__ = menu.run(default_choice=__A ) return convert_value(__A ) if convert_value is not None else result def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = int(__A ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = int(__A ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = int(__A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = int(__A ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' UpperCamelCase__ = int(__A ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class lowercase_ ( argparse.RawDescriptionHelpFormatter ): def __a ( self , a , a , a , a ): UpperCamelCase__ = super()._format_usage(a , a , a , a ) UpperCamelCase__ = usage.replace("<command> [<args>] " , "" ) return usage
80
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _snake_case = logging.getLogger(__name__) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_0522, type=int) _snake_case = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _snake_case = pickle.load(fp) logger.info('Counting occurrences for MLM.') _snake_case = Counter() for tk_ids in data: counter.update(tk_ids) _snake_case = [0] * args.vocab_size for k, v in counter.items(): _snake_case = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 16 lowerCamelCase_ = 32 def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ = 16 ): UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ : List[str] = DatasetDict( { "train": dataset["train"].select(A__ ), "validation": dataset["train"].select(A__ ), "test": dataset["validation"], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Any = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=A__ ,max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = datasets.map( A__ ,batched=A__ ,remove_columns=["idx", "sentence1", "sentence2"] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : Tuple = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : List[str] = 8 else: UpperCAmelCase_ : List[Any] = None return tokenizer.pad( A__ ,padding="longest" ,max_length=A__ ,pad_to_multiple_of=A__ ,return_tensors="pt" ,) # Instantiate dataloaders. UpperCAmelCase_ : List[str] = DataLoader( tokenized_datasets["train"] ,shuffle=A__ ,collate_fn=A__ ,batch_size=A__ ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets["validation"] ,shuffle=A__ ,collate_fn=A__ ,batch_size=A__ ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets["test"] ,shuffle=A__ ,collate_fn=A__ ,batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case ( A__ ,A__ ): # New Code # UpperCAmelCase_ : int = [] # Download the dataset UpperCAmelCase_ : Any = load_dataset("glue" ,"mrpc" ) # Create our splits UpperCAmelCase_ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase_ : Union[str, Any] = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Optional[Any] = config["lr"] UpperCAmelCase_ : Dict = int(config["num_epochs"] ) UpperCAmelCase_ : Union[str, Any] = int(config["seed"] ) UpperCAmelCase_ : List[Any] = int(config["batch_size"] ) UpperCAmelCase_ : Tuple = evaluate.load("glue" ,"mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: UpperCAmelCase_ : List[str] = kfold.split(np.zeros(datasets["train"].num_rows ) ,datasets["train"]["label"] ) UpperCAmelCase_ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = get_fold_dataloaders( A__ ,A__ ,A__ ,A__ ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" ,return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : Optional[int] = AdamW(params=model.parameters() ,lr=A__ ) # Instantiate scheduler UpperCAmelCase_ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A__ ,num_warmup_steps=1_00 ,num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.prepare( A__ ,A__ ,A__ ,A__ ,A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ : List[str] = model(**A__ ) UpperCAmelCase_ : Optional[Any] = outputs.loss UpperCAmelCase_ : Dict = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**A__ ) UpperCAmelCase_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=A__ ,references=A__ ,) UpperCAmelCase_ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,A__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase_ : List[Any] = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**A__ ) UpperCAmelCase_ : Dict = outputs.logits UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase_ : int = torch.cat(A__ ,dim=0 ) UpperCAmelCase_ : List[str] = torch.stack(A__ ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = metric.compute(predictions=A__ ,references=A__ ) accelerator.print("Average test metrics from all folds:" ,A__ ) def snake_case ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" ,type=A__ ,default=A__ ,choices=["no", "fp16", "bf16", "fp8"] ,help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ,) parser.add_argument("--cpu" ,action="store_true" ,help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" ,type=A__ ,default=3 ,help="The number of splits to perform across the dataset" ) UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : Dict = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(A__ ,A__ ) if __name__ == "__main__": main()
268
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def snake_case ( A__ ,A__ ,A__ ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] UpperCAmelCase_ : Dict = (low + high) // 2 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = max_subarray(A__ ,A__ ,A__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = max_subarray(A__ ,mid + 1 ,A__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = max_cross_sum(A__ ,A__ ,A__ ,A__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ , UpperCAmelCase_ : str = float("-inf" ), -1 UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = float("-inf" ), -1 UpperCAmelCase_ : int | float = 0 for i in range(A__ ,low - 1 ,-1 ): summ += arr[i] if summ > left_sum: UpperCAmelCase_ : str = summ UpperCAmelCase_ : Any = i UpperCAmelCase_ : Dict = 0 for i in range(mid + 1 ,high + 1 ): summ += arr[i] if summ > right_sum: UpperCAmelCase_ : List[Any] = summ UpperCAmelCase_ : Optional[Any] = i return max_left, max_right, (left_sum + right_sum) def snake_case ( A__ ): UpperCAmelCase_ : str = [randint(1 ,A__ ) for _ in range(A__ )] UpperCAmelCase_ : str = time.time() max_subarray(A__ ,0 ,input_size - 1 ) UpperCAmelCase_ : int = time.time() return end - start def snake_case ( ): UpperCAmelCase_ : int = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] UpperCAmelCase_ : List[str] = [time_max_subarray(A__ ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(A__ ,A__ ): print(A__ ,"\t\t" ,A__ ) plt.plot(A__ ,A__ ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
268
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase__ ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ) ->str: '''simple docstring''' if attention_mask is None: _UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ ) if decoder_head_mask is None: _UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) if cross_attn_head_mask is None: _UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowercase_ : str , lowercase_ : str=13 , lowercase_ : List[Any]=7 , lowercase_ : int=True , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=99 , lowercase_ : Optional[int]=16 , lowercase_ : List[str]=2 , lowercase_ : str=4 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[Any]="relu" , lowercase_ : int=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[int]=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Any=20 , lowercase_ : Any=2 , lowercase_ : Any=1 , lowercase_ : int=0 , ) -> Optional[int]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.eos_token_id # Eos Token _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCamelCase = input_ids.clamp(self.pad_token_id + 1) _UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1) _UpperCamelCase = self.get_config() _UpperCamelCase = prepare_mam_aaa_inputs_dict(lowercase_ , lowercase_ , lowercase_) return config, inputs_dict def __UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self : Dict) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCAmelCase ( self : Tuple , lowercase_ : Any , lowercase_ : str) -> List[Any]: """simple docstring""" _UpperCamelCase = MaMaaaModel(config=lowercase_).get_decoder().to(lowercase_).eval() _UpperCamelCase = inputs_dict["input_ids"] _UpperCamelCase = inputs_dict["attention_mask"] _UpperCamelCase = inputs_dict["head_mask"] # first forward pass _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1) _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_)["last_hidden_state"] _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_)[ "last_hidden_state" ] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-2)) def __UpperCAmelCase ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = MaMaaaModel(config=lowercase_).to(lowercase_).eval() _UpperCamelCase = model(**lowercase_) _UpperCamelCase = outputs.encoder_last_hidden_state _UpperCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = model.get_encoder() encoder.save_pretrained(lowercase_) _UpperCamelCase = MaMaaaEncoder.from_pretrained(lowercase_).to(lowercase_) _UpperCamelCase = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = model.get_decoder() decoder.save_pretrained(lowercase_) _UpperCamelCase = MaMaaaDecoder.from_pretrained(lowercase_).to(lowercase_) _UpperCamelCase = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=lowercase_ , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3) @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __A = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __A = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __A = True __A = True __A = False __A = False def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : List[str]) -> int: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" _UpperCamelCase = MaMaaaModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_) _UpperCamelCase , _UpperCamelCase = model_class.from_pretrained(lowercase_ , output_loading_info=lowercase_) self.assertEqual(info["missing_keys"] , []) def __UpperCAmelCase ( self : str) -> Dict: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase_) def __UpperCAmelCase ( self : str) -> Dict: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase_) def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _UpperCamelCase = model_class(lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowercase_ , lowercase_)) if not self.is_encoder_decoder: _UpperCamelCase = inputs["input_ids"] del inputs["input_ids"] else: _UpperCamelCase = inputs["input_ids"] _UpperCamelCase = inputs.get("decoder_input_ids" , lowercase_) del inputs["input_ids"] inputs.pop("decoder_input_ids" , lowercase_) _UpperCamelCase = model.get_input_embeddings() if not self.is_encoder_decoder: _UpperCamelCase = wte(lowercase_) else: _UpperCamelCase = wte(lowercase_) _UpperCamelCase = wte(lowercase_) with torch.no_grad(): model(**lowercase_)[0] def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = input_dict["input_ids"] _UpperCamelCase = input_ids.ne(1).to(lowercase_) _UpperCamelCase = MaMaaaForConditionalGeneration(lowercase_).eval().to(lowercase_) if torch_device == "cuda": model.half() model.generate(lowercase_ , attention_mask=lowercase_) model.generate(num_beams=4 , do_sample=lowercase_ , early_stopping=lowercase_ , num_return_sequences=3) def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' return torch.tensor(a__ , dtype=torch.long , device=a__ ) lowerCamelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M") def __UpperCAmelCase ( self : int) -> str: """simple docstring""" _UpperCamelCase = MaMaaaModel.from_pretrained("facebook/m2m100_418M").to(lowercase_) _UpperCamelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) _UpperCamelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) _UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_) with torch.no_grad(): _UpperCamelCase = model(**lowercase_)[0] _UpperCamelCase = torch.Size((1, 11, 1024)) self.assertEqual(output.shape , lowercase_) # change to expected output here _UpperCamelCase = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=lowercase_) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(lowercase_) # change to intended input _UpperCamelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) _UpperCamelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) _UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_) with torch.no_grad(): _UpperCamelCase = model(**lowercase_)[0] _UpperCamelCase = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape , lowercase_) # change to expected output here _UpperCamelCase = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=lowercase_) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(lowercase_) _UpperCamelCase = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en") _UpperCamelCase = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams _UpperCamelCase = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt") _UpperCamelCase = model.generate( input_ids=dct["input_ids"].to(lowercase_) , attention_mask=dct["attention_mask"].to(lowercase_) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en") , ) _UpperCamelCase = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] _UpperCamelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowercase_ , skip_special_tokens=lowercase_) assert generated == expected_en
63
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } UpperCAmelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = ["input_ids"] _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self , snake_case , snake_case=None , snake_case=False , snake_case="utf8" , snake_case="[UNK]" , snake_case="[SEP]" , snake_case="[PAD]" , snake_case="[CLS]" , snake_case="[MASK]" , snake_case = None , **snake_case , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , vocab_file=snake_case , encoding=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) lowercase = do_lower_case lowercase = sentencepiece_model_ckpt lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase = self.load_vocab(filepath=snake_case ) else: lowercase = {self.sp_model.id_to_piece(snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowercase = {v: k for k, v in self.vocab.items()} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if text is None: return None lowercase = self.tokenize(snake_case ) lowercase , lowercase = '', [] for i, ch in enumerate(snake_case ): if ch in self.SP_CHAR_MAPPING: lowercase = self.SP_CHAR_MAPPING.get(snake_case ) else: lowercase = unicodedata.normalize('NFKC' , snake_case ) if self.is_whitespace(snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case ) ) lowercase , lowercase , lowercase = normalized_text, [], 0 if self.do_lower_case: lowercase = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase = token[1:] lowercase = text[offset:].index(snake_case ) + offset lowercase = start + len(snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase = end return token_mapping @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.vocab ) def SCREAMING_SNAKE_CASE__ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , snake_case ): lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return "".join((self.SP_CHAR_MAPPING.get(snake_case , snake_case ) for c in text) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=False , snake_case=64 , snake_case=0.1 ): if self.sp_model_kwargs.get('enable_sampling' ) is True: lowercase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowercase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowercase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowercase = self.sp_model.EncodeAsPieces(snake_case ) else: lowercase = self.sp_model.SampleEncodeAsPieces(snake_case , snake_case , snake_case ) lowercase = [] for pi, piece in enumerate(snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case ) and pi != 0: new_pieces.append(snake_case ) continue else: continue lowercase = 0 for i, chunk in enumerate(snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case ) or self.is_punct(snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case ) lowercase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase = i if len(snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ''.join(snake_case ).replace(snake_case , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.convert_ids_to_tokens(snake_case ) lowercase = ''.join(snake_case ).replace(snake_case , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.reverse_vocab.get(snake_case , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None , snake_case=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case ) + 1) + [1] * (len(snake_case ) + 3) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if "\u4e00" <= char <= "\u9fff": return True return False def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if char in ",;:.?!~,;:。?!《》【】": return True return False def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case ) == 1: lowercase = unicodedata.category(snake_case ) if cat == "Zs": return True return False def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = {} with io.open(snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(snake_case ): lowercase = line.rstrip('\n' ) lowercase = int(snake_case ) return token_to_idx def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = 0 if os.path.isdir(snake_case ): lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowercase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) lowercase = token_index writer.write(token + '\n' ) index += 1 lowercase = os.path.join(snake_case , 'sentencepiece.bpe.model' ) with open(snake_case , 'wb' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (vocab_file,)
195
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = r'\w+[.]\d+' lowercase = re.findall(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for pat in pats: lowercase = key.replace(__SCREAMING_SNAKE_CASE , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=42 ): # Step 1: Convert pytorch tensor to numpy lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase = flax_model.init_weights(PRNGKey(__SCREAMING_SNAKE_CASE ) ) lowercase = flatten_dict(__SCREAMING_SNAKE_CASE ) lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters lowercase , lowercase = rename_key_and_reshape_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase = jnp.asarray(__SCREAMING_SNAKE_CASE ) return unflatten_dict(__SCREAMING_SNAKE_CASE )
195
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Optional[Any] ={ """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __lowerCAmelCase : Union[str, Any] ={ """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class _A ( lowerCAmelCase ): snake_case__ : List[Any] = VOCAB_FILES_NAMES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : int = ['input_ids', 'attention_mask'] snake_case__ : int = BartTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) ) lowercase = add_prefix_space lowercase = pre_tok_class(**__lowerCAmelCase ) lowercase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase = """post_processor""" lowercase = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase = tuple(state["""sep"""] ) if "cls" in state: lowercase = tuple(state["""cls"""] ) lowercase = False if state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = add_prefix_space lowercase = True if state.get("""trim_offsets""" , __lowerCAmelCase ) != trim_offsets: lowercase = trim_offsets lowercase = True if changes_to_apply: lowercase = getattr(__lowerCAmelCase , state.pop("""type""" ) ) lowercase = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value lowercase = value def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): lowerCamelCase : int =1_0000 lowerCamelCase : Optional[List[str]] =None lowerCamelCase : Optional[datasets.Features] =None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): lowerCamelCase : Union[str, Any] =ParquetConfig def __a ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __a ( self , lowerCAmelCase__ ) -> Tuple: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): a : List[Any] = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] a : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : str = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "rb" ) as f: a : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(lowerCAmelCase__ ) ) break splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def __a ( self , lowerCAmelCase__ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a : Union[str, Any] = table_cast(lowerCAmelCase__ , self.info.features.arrow_schema ) return pa_table def __a ( self , lowerCAmelCase__ ) -> int: a : int = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , "rb" ) as f: a : List[Any] = pq.ParquetFile(lowerCAmelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): a : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
105
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_ ( A_ ): __A : List[str] = 42 __A : Any = None def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=0.999 , _lowerCamelCase : Optional[Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase : Dict): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase : int): return math.exp(t * -12.0) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''') lowercase__ : List[Any] = [] for i in range(__lowerCamelCase): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase) / alpha_bar_fn(__lowerCamelCase) , __lowerCamelCase)) return torch.tensor(__lowerCamelCase , dtype=torch.floataa) class snake_case_ ( A_ ,A_ ): @register_to_config def __init__( self : List[Any] , lowercase_ : int = 10_00 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ) -> int: if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'" ) lowercase__ : int = betas_for_alpha_bar(_lowerCamelCase ) lowercase__ : Union[str, Any] = 1.0 - self.betas lowercase__ : str = torch.cumprod(self.alphas , dim=0 ) lowercase__ : List[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase__ : Union[str, Any] = 1.0 # setable values lowercase__ : int = None lowercase__ : Optional[int] = torch.from_numpy(np.arange(0 , _lowerCamelCase )[::-1].copy() ) lowercase__ : Union[str, Any] = variance_type def __UpperCamelCase ( self : List[Any] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ) -> Tuple: return sample def __UpperCamelCase ( self : Tuple , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ) -> Any: lowercase__ : int = num_inference_steps lowercase__ : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ : Any = (np.arange(0 , _lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase__ : str = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[int]=None ) -> Any: if prev_timestep is None: lowercase__ : Optional[Any] = t - 1 lowercase__ : Union[str, Any] = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : List[Any] = self.betas[t] else: lowercase__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : Optional[int] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ : List[Any] = torch.log(torch.clamp(_lowerCamelCase , min=1E-20 ) ) lowercase__ : Optional[int] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ : str = variance.log() lowercase__ : Tuple = beta.log() lowercase__ : str = (predicted_variance + 1) / 2 lowercase__ : Any = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : Any=None , lowercase_ : bool = True , ) -> List[str]: lowercase__ : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ , lowercase__ : Dict = torch.split(_lowerCamelCase , sample.shape[1] , dim=1 ) else: lowercase__ : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ : Union[str, Any] = t - 1 lowercase__ : Union[str, Any] = self.alphas_cumprod[t] lowercase__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Any = 1 - alpha_prod_t lowercase__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : int = self.betas[t] lowercase__ : int = self.alphas[t] else: lowercase__ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Optional[Any] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = torch.clamp( _lowerCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : Optional[Any] = 0 if t > 0: lowercase__ : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowerCamelCase , device=model_output.device ) lowercase__ : List[str] = self._get_variance( _lowerCamelCase , predicted_variance=_lowerCamelCase , prev_timestep=_lowerCamelCase , ) if self.variance_type == "fixed_small_log": lowercase__ : Union[str, Any] = variance elif self.variance_type == "learned_range": lowercase__ : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) lowercase__ : Any = variance * variance_noise lowercase__ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase ) def __UpperCamelCase ( self : List[str] , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ) -> Dict: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase__ : Optional[int] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase__ : Dict = timesteps.to(original_samples.device ) lowercase__ : str = alphas_cumprod[timesteps] ** 0.5 lowercase__ : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) lowercase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase__ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case_ = flax_key_tuple[:-1] + ('''weight''',) snake_case_ = torch.permute(SCREAMING_SNAKE_CASE_, (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ): # linear layer snake_case_ = flax_key_tuple[:-1] + ('''weight''',) snake_case_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case_ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' if "metadata" in layer: snake_case_ = layer.split('''metadata''' ) snake_case_ = ''''''.join(split_layer[0] )[:-1] snake_case_ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: snake_case_ = layer.split('''kvstore''' ) snake_case_ = ''''''.join(split_layer[0] )[:-1] snake_case_ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: snake_case_ = layer.split('''/''' ) snake_case_ = '''/'''.join(split_layer[:-1] ) snake_case_ = (split_layer[-1],) if "kvstore/path" in layer: snake_case_ = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: snake_case_ = '''file''' else: snake_case_ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = rename_keys(SCREAMING_SNAKE_CASE_ ) snake_case_ = {} for k, v in current_block.items(): snake_case_ = v snake_case_ = new_current_block torch.save(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = WEIGHTS_NAME ) -> str: '''simple docstring''' snake_case_ = convert_file_size_to_int(SCREAMING_SNAKE_CASE_ ) snake_case_ = [] snake_case_ = {} snake_case_ = 0 snake_case_ = 0 os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''', '''rb''' ) as fp: snake_case_ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] snake_case_ = flatten_dict(SCREAMING_SNAKE_CASE_, sep='''/''' ) snake_case_ = {} for layer in checkpoint_info.keys(): snake_case_ ,snake_case_ ,snake_case_ = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if curr_real_layer_name in all_layers: snake_case_ = content else: snake_case_ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE_ ) snake_case_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case_ ,snake_case_ = rename_base_flax_keys(tuple(key.split('''/''' ) ), SCREAMING_SNAKE_CASE_ ) snake_case_ = '''/'''.join(SCREAMING_SNAKE_CASE_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case_ = os.path.join( SCREAMING_SNAKE_CASE_, weights_name.replace('''.bin''', F"-{len(SCREAMING_SNAKE_CASE_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case_ = {} snake_case_ = 0 snake_case_ = raw_weights.to(getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case_ = os.path.join(SCREAMING_SNAKE_CASE_, weights_name.replace('''.bin''', F"-{len(SCREAMING_SNAKE_CASE_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case_ = {} snake_case_ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE_ ): snake_case_ = weights_name.replace( '''.bin''', F"-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE_ ):05d}.bin" ) # len(sharded_state_dicts):05d} snake_case_ = os.path.join(SCREAMING_SNAKE_CASE_, weights_name.replace('''.bin''', F"-{idx+1:05d}-of-???.bin" ) ) os.rename(SCREAMING_SNAKE_CASE_, os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) snake_case_ = shard for key in shard: snake_case_ = shard_file # Add the metadata snake_case_ = {'''total_size''': total_size} snake_case_ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), '''w''', encoding='''utf-8''' ) as f: snake_case_ = json.dumps(SCREAMING_SNAKE_CASE_, indent=2, sort_keys=SCREAMING_SNAKE_CASE_ ) + '''\n''' f.write(SCREAMING_SNAKE_CASE_ ) return metadata, index if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) a : str = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __magic_name__ ( ) -> str: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case_ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) snake_case_ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''', device_map='''auto''' ) snake_case_ = TaTokenizer.from_pretrained('''t5-small''' ) snake_case_ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' snake_case_ = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ).input_ids snake_case_ = model.generate(SCREAMING_SNAKE_CASE_, decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
56
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class a__ : def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __lowerCAmelCase = after_output[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_pretrained_model_and_inputs() __lowerCAmelCase = model_a(**_A ) __lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_A ) __lowerCAmelCase = model_a(**_A ) __lowerCAmelCase = after_outputs[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) @require_tf class a__ ( snake_case__ , unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFViTModel(_A , name="vision_model" ) __lowerCAmelCase = TFBertModel(_A , name="text_model" ) return vision_model, text_model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFViTModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class a__ ( snake_case__ , unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(_A , name="vision_model" ) __lowerCAmelCase = TFRobertaModel(_A , name="text_model" ) return vision_model, text_model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = TFRobertaModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class a__ ( snake_case__ , unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFCLIPVisionModel(_A , name="vision_model" ) __lowerCAmelCase = TFBertModel(_A , name="text_model" ) return vision_model, text_model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFCLIPVisionModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_A ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __lowerCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_A , padding=_A , return_tensors="np" ) __lowerCAmelCase = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _A , atol=1E-3 ) )
92
0
from __future__ import annotations def UpperCAmelCase_ (_lowerCAmelCase : list[float] ): __UpperCamelCase : Any = 0.00 __UpperCamelCase : Any = 0 for resistor in resistors: if resistor <= 0: __UpperCamelCase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_lowerCAmelCase ) first_sum += 1 / float(_lowerCAmelCase ) index += 1 return 1 / first_sum def UpperCAmelCase_ (_lowerCAmelCase : list[float] ): __UpperCamelCase : Union[str, Any] = 0.00 __UpperCamelCase : Optional[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __UpperCamelCase : List[Any] = F'''Resistor at index {index} has a negative value!''' raise ValueError(_lowerCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
171
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=[10, 20, 30, 40] , __UpperCamelCase=[2, 2, 3, 2] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=["stage2", "stage3", "stage4"] , __UpperCamelCase=3 , __UpperCamelCase=None , ) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : Union[str, Any] = image_size __UpperCamelCase : Any = num_channels __UpperCamelCase : Union[str, Any] = num_stages __UpperCamelCase : List[Any] = hidden_sizes __UpperCamelCase : Optional[Any] = depths __UpperCamelCase : Dict = is_training __UpperCamelCase : List[Any] = use_labels __UpperCamelCase : str = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : Tuple = type_sequence_label_size __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : List[Any] = out_features __UpperCamelCase : Optional[Any] = num_labels __UpperCamelCase : Optional[Any] = scope __UpperCamelCase : List[Any] = num_stages def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : int = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = UperNetForSemanticSegmentation(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : List[str] = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase : Dict = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase : Union[str, Any] = False lowercase : Tuple = False lowercase : Optional[int] = False lowercase : Tuple = False lowercase : List[str] = False lowercase : Any = False def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Tuple = UperNetModelTester(self ) __UpperCamelCase : str = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Tuple = model_class(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : List[str] = [*signature.parameters.keys()] __UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCamelCase : Any = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Any = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Tuple = _config_zero_init(__UpperCamelCase ) __UpperCamelCase : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __UpperCamelCase : List[str] = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' pass @slow def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : str = UperNetForSemanticSegmentation.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase_ (): __UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) __UpperCamelCase : List[str] = Image.open(_lowerCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) __UpperCamelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__UpperCamelCase ) __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : Any = processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) with torch.no_grad(): __UpperCamelCase : Any = model(**__UpperCamelCase ) __UpperCamelCase : Tuple = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) __UpperCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__UpperCamelCase ) __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : int = processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) with torch.no_grad(): __UpperCamelCase : int = model(**__UpperCamelCase ) __UpperCamelCase : Dict = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
171
1
def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) for i in range(1 , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = collection[i] __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[str] = i - 1 while low <= high: __SCREAMING_SNAKE_CASE : str = (low + high) // 2 if val < collection[mid]: __SCREAMING_SNAKE_CASE : List[str] = mid - 1 else: __SCREAMING_SNAKE_CASE : str = mid + 1 for j in range(lowercase__ , lowercase__ , -1 ): __SCREAMING_SNAKE_CASE : Any = collection[j - 1] __SCREAMING_SNAKE_CASE : Any = val return collection if __name__ == "__main__": __lowerCAmelCase : Any =input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : Any =[int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "spiece.model"} __lowerCamelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<sep>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<cls>" ,__UpperCAmelCase="<mask>" ,__UpperCAmelCase=["<eop>", "<eod>"] ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: A__ = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,additional_special_tokens=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) A__ = 3 A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) A__ = jieba A__ = str.maketrans(' \n' ,'\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case__ ( self ) -> List[str]: return len(self.sp_model ) def snake_case__ ( self ) -> Any: A__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: A__ = self.__dict__.copy() A__ = None return state def __setstate__( self ,__UpperCAmelCase ) -> Optional[int]: A__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self ,__UpperCAmelCase ) -> str: if self.remove_space: A__ = ' '.join(inputs.strip().split() ) else: A__ = inputs A__ = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: A__ = unicodedata.normalize('NFKD' ,__UpperCAmelCase ) A__ = ''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: A__ = outputs.lower() return outputs def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: A__ = self.preprocess_text(__UpperCAmelCase ) A__ = self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) A__ = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ = cur_pieces[1:] else: A__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[int]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tuple: A__ = ''.join(__UpperCAmelCase ).replace(__UpperCAmelCase ,' ' ).strip() return out_string def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: A__ = super()._decode(*__UpperCAmelCase ,**__UpperCAmelCase ) A__ = text.replace(' ' ,'' ).replace('\u2582' ,' ' ).replace('\u2583' ,'\n' ) return text
154
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
154
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase = Mapping[str, np.ndarray] lowerCamelCase = Mapping[str, Any] # Is a nested dict. lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=lowerCamelCase__ ) class __magic_name__ : '''simple docstring''' lowerCamelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCamelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCamelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCamelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCamelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCamelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCamelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCamelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCamelCase__ : Optional[Sequence[int]] = None def UpperCAmelCase__ ( _A : str ): '''simple docstring''' a__ =r'''(\[[A-Z]+\]\n)''' a__ =[tag.strip() for tag in re.split(_A , _A ) if len(_A ) > 0] a__ =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) a__ =["N", "CA", "C"] a__ =None a__ =None a__ =None for g in groups: if "[PRIMARY]" == g[0]: a__ =g[1][0].strip() for i in range(len(_A ) ): if seq[i] not in residue_constants.restypes: a__ ='''X''' # FIXME: strings are immutable a__ =np.array( [residue_constants.restype_order.get(_A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: a__ =[] for axis in range(3 ): tertiary.append(list(map(_A , g[1][axis].split() ) ) ) a__ =np.array(_A ) a__ =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_A ): a__ =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: a__ =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) a__ =np.zeros( ( len(_A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_A ): a__ =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_A , atom_mask=_A , aatype=_A , residue_index=np.arange(len(_A ) ) , b_factors=_A , ) def UpperCAmelCase__ ( _A : Protein , _A : int = 0 ): '''simple docstring''' a__ =[] a__ =prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) a__ =prot.parents a__ =prot.parents_chain_index if parents is not None and parents_chain_index is not None: a__ =[p for i, p in zip(_A , _A ) if i == chain_id] if parents is None or len(_A ) == 0: a__ =['''N/A'''] pdb_headers.append(F"""PARENT {" ".join(_A )}""" ) return pdb_headers def UpperCAmelCase__ ( _A : Protein , _A : str ): '''simple docstring''' a__ =[] a__ =pdb_str.split('''\n''' ) a__ =prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) a__ =42 if prot.parents is not None and len(prot.parents ) > 0: a__ =[] if prot.parents_chain_index is not None: a__ ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_A ) , [] ) parent_dict[str(_A )].append(_A ) a__ =max([int(_A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): a__ =parent_dict.get(str(_A ) , ['''N/A'''] ) parents_per_chain.append(_A ) else: parents_per_chain.append(list(prot.parents ) ) else: a__ =[['''N/A''']] def make_parent_line(_A : Sequence[str] ) -> str: return F"""PARENT {" ".join(_A )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) a__ =0 for i, l in enumerate(_A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_A ): a__ =parents_per_chain[chain_counter] else: a__ =['''N/A'''] out_pdb_lines.append(make_parent_line(_A ) ) return "\n".join(_A ) def UpperCAmelCase__ ( _A : Protein ): '''simple docstring''' a__ =residue_constants.restypes + ['''X'''] def res_atoa(_A : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) a__ =residue_constants.atom_types a__ =[] a__ =prot.atom_mask a__ =prot.aatype a__ =prot.atom_positions a__ =prot.residue_index.astype(np.intaa ) a__ =prot.b_factors a__ =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) a__ =get_pdb_headers(_A ) if len(_A ) > 0: pdb_lines.extend(_A ) a__ =aatype.shape[0] a__ =1 a__ =0 a__ =string.ascii_uppercase a__ =None # Add all atom sites. for i in range(_A ): a__ =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue a__ ='''ATOM''' a__ =atom_name if len(_A ) == 4 else F""" {atom_name}""" a__ ='''''' a__ ='''''' a__ =1.00 a__ =atom_name[0] # Protein supports only C, N, O, S, this works. a__ ='''''' a__ ='''A''' if chain_index is not None: a__ =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! a__ =( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_A ) atom_index += 1 a__ =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: a__ =True a__ =chain_index[i + 1] if should_terminate: # Close the chain. a__ ='''TER''' a__ =( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_A , _A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(_A ) def UpperCAmelCase__ ( _A : Protein ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCAmelCase__ ( _A : FeatureDict , _A : ModelOutput , _A : Optional[np.ndarray] = None , _A : Optional[np.ndarray] = None , _A : Optional[str] = None , _A : Optional[Sequence[str]] = None , _A : Optional[Sequence[int]] = None , ): '''simple docstring''' return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=_A , remark=_A , parents=_A , parents_chain_index=_A , )
188
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
1
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): """simple docstring""" if index == number_of_items: return 0 __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =knapsack(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index + 1 ) if weights[index] <= max_weight: __UpperCamelCase =values[index] + knapsack( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , max_weight - weights[index] , index + 1 ) return max(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" import os from pathlib import Path def lowerCAmelCase (): """simple docstring""" from torch.utils.cpp_extension import load __UpperCamelCase =Path(__UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __UpperCamelCase =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCamelCase , with_cuda=__UpperCamelCase , extra_include_paths=[str(__UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
85
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
63
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> bool: _a = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
63
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _a = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _a = parent _a = batch_size _a = num_channels _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std _a = do_rescale _a = rescale_factor _a = do_pad def _UpperCAmelCase ( self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: if not batched: _a = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): _a , _a = image.size else: _a , _a = image.shape[1], image.shape[2] if w < h: _a = int(self.size['''shortest_edge'''] * h / w ) _a = self.size['''shortest_edge'''] elif w > h: _a = self.size['''shortest_edge'''] _a = int(self.size['''shortest_edge'''] * w / h ) else: _a = self.size['''shortest_edge'''] _a = self.size['''shortest_edge'''] else: _a = [] for image in image_inputs: _a , _a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] _a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : int = ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[str]: _a = ConditionalDetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Any: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) _a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: pass def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Dict: # prepare image and target _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _a = json.loads(f.read() ) _a = {'''image_id''': 39769, '''annotations''': target} # encode them _a = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) _a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values _a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) ) # verify area _a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) ) # verify image_id _a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels _a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify orig_size _a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size _a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: # prepare image, target and masks_path _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _a = json.loads(f.read() ) _a = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _a = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _a = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) _a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values _a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) ) # verify area _a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) ) # verify image_id _a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels _a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify masks _a = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCAmelCase ) # verify orig_size _a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size _a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
153
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
153
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) lowercase = emb.weight.data return lin_layer def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) lowercase = mam_aaa['args'] or mam_aaa['cfg']['model'] lowercase = mam_aaa['model'] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) lowercase = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase = MaMaaaConfig( vocab_size=__SCREAMING_SNAKE_CASE , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowercase = state_dict['decoder.embed_tokens.weight'] lowercase = MaMaaaForConditionalGeneration(__SCREAMING_SNAKE_CASE ) model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCAmelCase = parser.parse_args() UpperCAmelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
195
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 1.5 lowercase = int(factor * num_class_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase = client.query(text=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowercase = int(factor * num_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowercase = 0 lowercase = 0 lowercase = tqdm(desc='downloading real regularization images' , total=__SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase = class_images[count] count += 1 try: lowercase = requests.get(images['url'] ) if img.status_code == 200: lowercase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser('' , add_help=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=__SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
195
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase_ : int = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' UpperCamelCase_ : Any = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' UpperCamelCase_ : Union[str, Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def _lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="https://github.com/krishnap25/mauve" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("string" ,id="sequence" ), "references": datasets.Value("string" ,id="sequence" ), } ) ,codebase_urls=["https://github.com/krishnap25/mauve"] ,reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] ,) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="auto" ,_SCREAMING_SNAKE_CASE=-1 ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=500 ,_SCREAMING_SNAKE_CASE="gpt2-large" ,_SCREAMING_SNAKE_CASE=-1 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=25 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=25 ,) -> List[str]: _snake_case = compute_mauve( p_text=_SCREAMING_SNAKE_CASE ,q_text=_SCREAMING_SNAKE_CASE ,p_features=_SCREAMING_SNAKE_CASE ,q_features=_SCREAMING_SNAKE_CASE ,p_tokens=_SCREAMING_SNAKE_CASE ,q_tokens=_SCREAMING_SNAKE_CASE ,num_buckets=_SCREAMING_SNAKE_CASE ,pca_max_data=_SCREAMING_SNAKE_CASE ,kmeans_explained_var=_SCREAMING_SNAKE_CASE ,kmeans_num_redo=_SCREAMING_SNAKE_CASE ,kmeans_max_iter=_SCREAMING_SNAKE_CASE ,featurize_model_name=_SCREAMING_SNAKE_CASE ,device_id=_SCREAMING_SNAKE_CASE ,max_text_length=_SCREAMING_SNAKE_CASE ,divergence_curve_discretization_size=_SCREAMING_SNAKE_CASE ,mauve_scaling_factor=_SCREAMING_SNAKE_CASE ,verbose=_SCREAMING_SNAKE_CASE ,seed=_SCREAMING_SNAKE_CASE ,) return out
355
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def __a ( _UpperCamelCase: Callable[[int | float], int | float] , _UpperCamelCase: int | float , _UpperCamelCase: int | float , _UpperCamelCase: int = 100 , ) -> float: """simple docstring""" _snake_case = x_start _snake_case = fnc(_UpperCamelCase ) _snake_case = 0.0 for _ in range(_UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area _snake_case = (x_end - x_start) / steps + xa _snake_case = fnc(_UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _snake_case = xa _snake_case = fxa return area if __name__ == "__main__": def __a ( _UpperCamelCase: Any ) -> Optional[int]: """simple docstring""" return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') UpperCamelCase_ : Optional[int] = 10 while i <= 100000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
142
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[int]: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def lowerCamelCase ( *__lowerCamelCase : List[str] ) ->Dict: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class a_ ( snake_case_ ): '''simple docstring''' def __new__( cls , A , A , A ) -> int: _SCREAMING_SNAKE_CASE = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE = getattr(A , """handle_key""" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE = value return new_cls @staticmethod def snake_case_( cls ) -> str: _SCREAMING_SNAKE_CASE = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE = ord(A ) _SCREAMING_SNAKE_CASE = cls.key_handler.get(A ) if handler: _SCREAMING_SNAKE_CASE = char return handler(cls ) else: return None def lowerCamelCase ( cls : Any ) ->Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) lowercase_ = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowercase_ = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowercase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowercase_ = [0] * args.vocab_size for k, v in counter.items(): lowercase_ = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
58
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = """RegNetConfig""" # Base docstring lowercase_ = """facebook/regnet-y-040""" lowercase_ = [1, 1088, 7, 7] # Image classification docstring lowercase_ = """facebook/regnet-y-040""" lowercase_ = """tabby, tabby cat""" lowercase_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _snake_case ( tf.keras.layers.Layer): def __init__( self : Any, __lowercase : int, __lowercase : int = 3, __lowercase : int = 1, __lowercase : int = 1, __lowercase : Optional[str] = "relu", **__lowercase : int, ): super().__init__(**__lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase__ = tf.keras.layers.ConvaD( filters=__lowercase, kernel_size=__lowercase, strides=__lowercase, padding="VALID", groups=__lowercase, use_bias=__lowercase, name="convolution", ) lowercase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization" ) lowercase__ = ACTaFN[activation] if activation is not None else tf.identity def A__ ( self : Optional[Any], __lowercase : str ): lowercase__ = self.convolution(self.padding(__lowercase ) ) lowercase__ = self.normalization(__lowercase ) lowercase__ = self.activation(__lowercase ) return hidden_state class _snake_case ( tf.keras.layers.Layer): def __init__( self : Union[str, Any], __lowercase : RegNetConfig, **__lowercase : Tuple ): super().__init__(**__lowercase ) lowercase__ = config.num_channels lowercase__ = TFRegNetConvLayer( out_channels=config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act, name="embedder", ) def A__ ( self : List[str], __lowercase : int ): lowercase__ = shape_list(__lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase__ = tf.transpose(__lowercase, perm=(0, 2, 3, 1) ) lowercase__ = self.embedder(__lowercase ) return hidden_state class _snake_case ( tf.keras.layers.Layer): def __init__( self : Optional[int], __lowercase : int, __lowercase : int = 2, **__lowercase : Union[str, Any] ): super().__init__(**__lowercase ) lowercase__ = tf.keras.layers.ConvaD( filters=__lowercase, kernel_size=1, strides=__lowercase, use_bias=__lowercase, name="convolution" ) lowercase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization" ) def A__ ( self : List[str], __lowercase : tf.Tensor, __lowercase : bool = False ): return self.normalization(self.convolution(__lowercase ), training=__lowercase ) class _snake_case ( tf.keras.layers.Layer): def __init__( self : Tuple, __lowercase : int, __lowercase : int, **__lowercase : Optional[int] ): super().__init__(**__lowercase ) lowercase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase, name="pooler" ) lowercase__ = [ tf.keras.layers.ConvaD(filters=__lowercase, kernel_size=1, activation="relu", name="attention.0" ), tf.keras.layers.ConvaD(filters=__lowercase, kernel_size=1, activation="sigmoid", name="attention.2" ), ] def A__ ( self : List[str], __lowercase : List[str] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase__ = self.pooler(__lowercase ) for layer_module in self.attention: lowercase__ = layer_module(__lowercase ) lowercase__ = hidden_state * pooled return hidden_state class _snake_case ( tf.keras.layers.Layer): def __init__( self : Optional[int], __lowercase : RegNetConfig, __lowercase : int, __lowercase : int, __lowercase : int = 1, **__lowercase : Union[str, Any] ): super().__init__(**__lowercase ) lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1, out_channels // config.groups_width ) lowercase__ = ( TFRegNetShortCut(__lowercase, stride=__lowercase, name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear", name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase__ = [ TFRegNetConvLayer(__lowercase, kernel_size=1, activation=config.hidden_act, name="layer.0" ), TFRegNetConvLayer( __lowercase, stride=__lowercase, groups=__lowercase, activation=config.hidden_act, name="layer.1" ), TFRegNetConvLayer(__lowercase, kernel_size=1, activation=__lowercase, name="layer.2" ), ] lowercase__ = ACTaFN[config.hidden_act] def A__ ( self : str, __lowercase : Tuple ): lowercase__ = hidden_state for layer_module in self.layers: lowercase__ = layer_module(__lowercase ) lowercase__ = self.shortcut(__lowercase ) hidden_state += residual lowercase__ = self.activation(__lowercase ) return hidden_state class _snake_case ( tf.keras.layers.Layer): def __init__( self : str, __lowercase : RegNetConfig, __lowercase : int, __lowercase : int, __lowercase : int = 1, **__lowercase : Optional[Any] ): super().__init__(**__lowercase ) lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1, out_channels // config.groups_width ) lowercase__ = ( TFRegNetShortCut(__lowercase, stride=__lowercase, name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear", name="shortcut" ) ) lowercase__ = [ TFRegNetConvLayer(__lowercase, kernel_size=1, activation=config.hidden_act, name="layer.0" ), TFRegNetConvLayer( __lowercase, stride=__lowercase, groups=__lowercase, activation=config.hidden_act, name="layer.1" ), TFRegNetSELayer(__lowercase, reduced_channels=int(round(in_channels / 4 ) ), name="layer.2" ), TFRegNetConvLayer(__lowercase, kernel_size=1, activation=__lowercase, name="layer.3" ), ] lowercase__ = ACTaFN[config.hidden_act] def A__ ( self : Any, __lowercase : List[Any] ): lowercase__ = hidden_state for layer_module in self.layers: lowercase__ = layer_module(__lowercase ) lowercase__ = self.shortcut(__lowercase ) hidden_state += residual lowercase__ = self.activation(__lowercase ) return hidden_state class _snake_case ( tf.keras.layers.Layer): def __init__( self : List[str], __lowercase : RegNetConfig, __lowercase : int, __lowercase : int, __lowercase : int = 2, __lowercase : int = 2, **__lowercase : Optional[Any] ): super().__init__(**__lowercase ) lowercase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowercase__ = [ # downsampling is done in the first layer with stride of 2 layer(__lowercase, __lowercase, __lowercase, stride=__lowercase, name="layers.0" ), *[layer(__lowercase, __lowercase, __lowercase, name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def A__ ( self : str, __lowercase : Tuple ): for layer_module in self.layers: lowercase__ = layer_module(__lowercase ) return hidden_state class _snake_case ( tf.keras.layers.Layer): def __init__( self : Optional[int], __lowercase : RegNetConfig, **__lowercase : Union[str, Any] ): super().__init__(**__lowercase ) lowercase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowercase, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], name="stages.0", ) ) lowercase__ = zip(config.hidden_sizes, config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowercase, config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowercase, __lowercase, __lowercase, depth=__lowercase, name=F'''stages.{i+1}''' ) ) def A__ ( self : Optional[Any], __lowercase : tf.Tensor, __lowercase : bool = False, __lowercase : bool = True ): lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(__lowercase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowercase, hidden_states=__lowercase ) @keras_serializable class _snake_case ( tf.keras.layers.Layer): UpperCamelCase__ : Optional[int] =RegNetConfig def __init__( self : str, __lowercase : Dict, **__lowercase : str ): super().__init__(**__lowercase ) lowercase__ = config lowercase__ = TFRegNetEmbeddings(__lowercase, name="embedder" ) lowercase__ = TFRegNetEncoder(__lowercase, name="encoder" ) lowercase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase, name="pooler" ) @unpack_inputs def A__ ( self : Any, __lowercase : tf.Tensor, __lowercase : Optional[bool] = None, __lowercase : Optional[bool] = None, __lowercase : bool = False, ): lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(__lowercase, training=__lowercase ) lowercase__ = self.encoder( __lowercase, output_hidden_states=__lowercase, return_dict=__lowercase, training=__lowercase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(__lowercase ) # Change to NCHW output format have uniformity in the modules lowercase__ = tf.transpose(__lowercase, perm=(0, 3, 1, 2) ) lowercase__ = tf.transpose(__lowercase, perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase__ = tuple([tf.transpose(__lowercase, perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase, pooler_output=__lowercase, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) class _snake_case ( lowercase__): UpperCamelCase__ : List[str] =RegNetConfig UpperCamelCase__ : Any ="""regnet""" UpperCamelCase__ : List[Any] ="""pixel_values""" @property def A__ ( self : List[str] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.floataa )} lowercase_ = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase_ = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , lowercase__ , ) class _snake_case ( lowercase__): def __init__( self : str, __lowercase : RegNetConfig, *__lowercase : Dict, **__lowercase : List[Any] ): super().__init__(__lowercase, *__lowercase, **__lowercase ) lowercase__ = TFRegNetMainLayer(__lowercase, name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=__lowercase, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def A__ ( self : Union[str, Any], __lowercase : tf.Tensor, __lowercase : Optional[bool] = None, __lowercase : Optional[bool] = None, __lowercase : List[str]=False, ): lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet( pixel_values=__lowercase, output_hidden_states=__lowercase, return_dict=__lowercase, training=__lowercase, ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowercase__ , ) class _snake_case ( lowercase__ , lowercase__): def __init__( self : Any, __lowercase : RegNetConfig, *__lowercase : int, **__lowercase : Optional[int] ): super().__init__(__lowercase, *__lowercase, **__lowercase ) lowercase__ = config.num_labels lowercase__ = TFRegNetMainLayer(__lowercase, name="regnet" ) # classification head lowercase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels, name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=__lowercase, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def A__ ( self : Union[str, Any], __lowercase : tf.Tensor = None, __lowercase : tf.Tensor = None, __lowercase : bool = None, __lowercase : bool = None, __lowercase : Dict=False, ): lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet( __lowercase, output_hidden_states=__lowercase, return_dict=__lowercase, training=__lowercase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier[0](__lowercase ) lowercase__ = self.classifier[1](__lowercase ) lowercase__ = None if labels is None else self.hf_compute_loss(labels=__lowercase, logits=__lowercase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowercase, logits=__lowercase, hidden_states=outputs.hidden_states )
224
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _snake_case ( lowercase__): UpperCamelCase__ : Any ="""perceiver""" def __init__( self : Any, __lowercase : Optional[Any]=256, __lowercase : List[str]=1280, __lowercase : Dict=768, __lowercase : int=1, __lowercase : Dict=26, __lowercase : Any=8, __lowercase : List[Any]=8, __lowercase : Dict=None, __lowercase : List[Any]=None, __lowercase : str="kv", __lowercase : str=1, __lowercase : Optional[Any]=1, __lowercase : str="gelu", __lowercase : List[str]=0.1, __lowercase : int=0.02, __lowercase : Union[str, Any]=1e-1_2, __lowercase : Optional[Any]=True, __lowercase : Optional[Any]=262, __lowercase : str=2048, __lowercase : Optional[Any]=56, __lowercase : str=[368, 496], __lowercase : str=16, __lowercase : int=1920, __lowercase : Dict=16, __lowercase : List[Any]=[1, 16, 224, 224], **__lowercase : str, ): super().__init__(**__lowercase ) lowercase__ = num_latents lowercase__ = d_latents lowercase__ = d_model lowercase__ = num_blocks lowercase__ = num_self_attends_per_block lowercase__ = num_self_attention_heads lowercase__ = num_cross_attention_heads lowercase__ = qk_channels lowercase__ = v_channels lowercase__ = cross_attention_shape_for_attention lowercase__ = self_attention_widening_factor lowercase__ = cross_attention_widening_factor lowercase__ = hidden_act lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = use_query_residual # masked language modeling attributes lowercase__ = vocab_size lowercase__ = max_position_embeddings # image classification attributes lowercase__ = image_size # flow attributes lowercase__ = train_size # multimodal autoencoding attributes lowercase__ = num_frames lowercase__ = audio_samples_per_frame lowercase__ = samples_per_patch lowercase__ = output_shape class _snake_case ( lowercase__): @property def A__ ( self : Optional[int] ): if self.task == "multiple-choice": lowercase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def A__ ( self : Optional[Any] ): return 1e-4 def A__ ( self : Tuple, __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], __lowercase : int = -1, __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional[TensorType] = None, __lowercase : int = 3, __lowercase : int = 40, __lowercase : int = 40, ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(__lowercase, __lowercase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension( __lowercase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = preprocessor.num_special_tokens_to_add(__lowercase ) lowercase__ = compute_effective_axis_dimension( __lowercase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [" ".join(["a"] ) * seq_length] * batch_size lowercase__ = dict(preprocessor(__lowercase, return_tensors=__lowercase ) ) lowercase__ = inputs.pop("input_ids" ) return inputs elif isinstance(__lowercase, __lowercase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension(__lowercase, fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase__ = self._generate_dummy_images(__lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = dict(preprocessor(images=__lowercase, return_tensors=__lowercase ) ) lowercase__ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
224
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case = False try: __snake_case = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = [] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = choices SCREAMING_SNAKE_CASE__ = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = '*' else: SCREAMING_SNAKE_CASE__ = '➔ ' def A_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCAmelCase_ ) else: forceWrite(self.choices[index] , UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(UpperCAmelCase_ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def A_ ( self : List[str] , UpperCAmelCase_ : Direction , UpperCAmelCase_ : int = 1 ): SCREAMING_SNAKE_CASE__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCAmelCase_ ) move_cursor(UpperCAmelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A_ ( self : Dict ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A_ ( self : int ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A_ ( self : str ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A_ ( self : Any ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCAmelCase_ )] for number in range(10 )] ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCAmelCase_ ) else: return else: return def A_ ( self : Union[str, Any] , UpperCAmelCase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) SCREAMING_SNAKE_CASE__ = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCAmelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ = default_choice else: SCREAMING_SNAKE_CASE__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(UpperCAmelCase_ , '\n' ) return choice
176
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __snake_case = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Any =PRETRAINED_VOCAB_FILES_MAP A__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple =["""input_ids""", """attention_mask"""] A__ : Optional[int] =BartTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : List[Any] , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE__ = 'post_processor' SCREAMING_SNAKE_CASE__ = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE__ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE__ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE__ = False if state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = True if state.get('trim_offsets' , UpperCAmelCase_ ) != trim_offsets: SCREAMING_SNAKE_CASE__ = trim_offsets SCREAMING_SNAKE_CASE__ = True if changes_to_apply: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) @property def A_ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self : Any , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value SCREAMING_SNAKE_CASE__ = value def A_ ( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
176
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1_0_0 , ): _UpperCamelCase : Any = x_start _UpperCamelCase : List[Any] = fnc(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0.0 for _ in range(UpperCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCamelCase : Union[str, Any] = (x_end - x_start) / steps + xa _UpperCamelCase : List[str] = fnc(UpperCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCamelCase : List[Any] = xa _UpperCamelCase : Union[str, Any] = fxa return area if __name__ == "__main__": def A__ ( UpperCAmelCase_ ): return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') snake_case_ : str = 10 while i <= 100000: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
236
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _UpperCamelCase : Any = 1_0_2_4 _UpperCamelCase : List[Any] = 4_0_9_6 _UpperCamelCase : List[str] = 2_4 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Union[str, Any] = [5, 1_1, 1_7, 2_3] _UpperCamelCase : Any = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] _UpperCamelCase : Tuple = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase : Optional[int] = 7_6_8 _UpperCamelCase : Optional[Any] = [1, 1, 1, 0.5] _UpperCamelCase : List[Any] = [2_5_6, 5_1_2, 7_6_8, 7_6_8] _UpperCamelCase : Optional[int] = 1_5_0 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Dict = (1, 3_8_4, 3_8_4) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = 'project' if "ade" in checkpoint_url: _UpperCamelCase : Dict = True _UpperCamelCase : Dict = 7_6_8 _UpperCamelCase : Union[str, Any] = [1, 1, 1, 0.5] _UpperCamelCase : Union[str, Any] = 1_5_0 _UpperCamelCase : str = 1_6 _UpperCamelCase : Tuple = 'huggingface/label-files' _UpperCamelCase : Tuple = 'ade20k-id2label.json' _UpperCamelCase : Tuple = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : str = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCamelCase : int = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase : List[str] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _UpperCamelCase : int = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _UpperCamelCase : Any = name.replace('patch_embed' , '' ) if "pos_embed" in name: _UpperCamelCase : Tuple = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _UpperCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _UpperCamelCase : int = name.replace('proj' , 'projection' ) if "blocks" in name: _UpperCamelCase : List[str] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _UpperCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _UpperCamelCase : Dict = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _UpperCamelCase : List[str] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _UpperCamelCase : List[str] = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _UpperCamelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _UpperCamelCase : int = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _UpperCamelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _UpperCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase : str = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _UpperCamelCase : Dict = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _UpperCamelCase : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _UpperCamelCase : Dict = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase : str = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase : Dict = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _UpperCamelCase : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: _UpperCamelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: _UpperCamelCase : Dict = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _UpperCamelCase : str = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _UpperCamelCase : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _UpperCamelCase : List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _UpperCamelCase : Dict = name.replace('..' , '.' ) if "stem.conv" in name: _UpperCamelCase : Tuple = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _UpperCamelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _UpperCamelCase : List[str] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _UpperCamelCase : Union[str, Any] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase : Dict = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _UpperCamelCase : str = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase : Tuple = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : int = in_proj_bias[: config.hidden_size] _UpperCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def A__ ( ): _UpperCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : int = get_dpt_config(UpperCAmelCase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase : Any = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : int = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model _UpperCamelCase : Union[str, Any] = DPTForSemanticSegmentation(UpperCAmelCase_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # Check outputs on an image _UpperCamelCase : Tuple = 4_8_0 if 'ade' in checkpoint_url else 3_8_4 _UpperCamelCase : Any = DPTImageProcessor(size=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='pt' ) # forward pass _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ).logits if 'ade' in checkpoint_url else model(**UpperCAmelCase_ ).predicted_depth if show_prediction: _UpperCamelCase : List[str] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=UpperCAmelCase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) snake_case_ : Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _snake_case ( lowercase__ ): # vision encoder if "img_encoder.pos_embed" in name: _lowerCamelCase : List[Any] = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Tuple = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: _lowerCamelCase : Union[str, Any] = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: _lowerCamelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : Optional[Any] = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : str = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Optional[int] = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: _lowerCamelCase : Optional[int] = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : int = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: _lowerCamelCase : Optional[int] = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : Optional[int] = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Any = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Union[str, Any] = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: _lowerCamelCase : str = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _lowerCamelCase : Any = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _lowerCamelCase : str = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _lowerCamelCase : Union[str, Any] = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: _lowerCamelCase : int = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: _lowerCamelCase : Tuple = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : Any = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: _lowerCamelCase : int = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: _lowerCamelCase : Optional[int] = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Union[str, Any] = orig_state_dict.pop(__lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Union[str, Any] = key.split('.' ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[str] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : Optional[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : List[str] = val[-dim:, :] else: _lowerCamelCase : List[str] = val[:dim] _lowerCamelCase : List[Any] = val[dim : dim * 2] _lowerCamelCase : str = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : List[str] = key.split('.' ) _lowerCamelCase : Optional[Any] = int(key_split[3] ) _lowerCamelCase : Dict = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : Dict = val[:dim, :] _lowerCamelCase : List[Any] = val[ dim : dim * 2, : ] _lowerCamelCase : List[str] = val[-dim:, :] else: _lowerCamelCase : int = val[:dim] _lowerCamelCase : Any = val[dim : dim * 2] _lowerCamelCase : Dict = val[-dim:] else: _lowerCamelCase : Dict = rename_key(__lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Dict = val.squeeze_() else: _lowerCamelCase : Tuple = val return orig_state_dict def _snake_case ( ): _lowerCamelCase : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__="groupvit-gcc-yfcc" , lowercase__=False ): _lowerCamelCase : Optional[Any] = GroupViTConfig() _lowerCamelCase : int = GroupViTModel(__lowercase ).eval() _lowerCamelCase : Any = torch.load(__lowercase , map_location='cpu' )['model'] _lowerCamelCase : Optional[int] = convert_state_dict(__lowercase , __lowercase ) _lowerCamelCase, _lowerCamelCase : int = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__lowercase ) == 0) # verify result _lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Tuple = processor(text=['a photo of a cat', 'a photo of a dog'] , images=__lowercase , padding=__lowercase , return_tensors='pt' ) with torch.no_grad(): _lowerCamelCase : Any = model(**__lowercase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : int = torch.tensor([[13.3523, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : List[str] = torch.tensor([[16.1873, 8.6_2_3_0]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , __lowercase , atol=1E-3 ) processor.save_pretrained(__lowercase ) model.save_pretrained(__lowercase ) print('Successfully saved processor and model to' , __lowercase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(__lowercase , organization='nielsr' ) model.push_to_hub(__lowercase , organization='nielsr' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) lowercase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
96
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : list[int] ): '''simple docstring''' _snake_case = len(lowercase ) _snake_case = [0] * len_array if len_array > 0: _snake_case = array[0] for i in range(1 , lowercase ): _snake_case = self.prefix_sum[i - 1] + array[i] def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A ( self : Union[str, Any] , lowercase : int ): '''simple docstring''' _snake_case = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
282
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["CLIPFeatureExtractor"] __A = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = tmp_path / '''file.csv''' __UpperCamelCase :Any = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = tmp_path / '''malformed_file.csv''' __UpperCamelCase :Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = tmp_path / '''csv_with_image.csv''' __UpperCamelCase :str = textwrap.dedent( f"""\ image {image_file} """ ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = tmp_path / '''csv_with_label.csv''' __UpperCamelCase :Tuple = textwrap.dedent( '''\ label good bad good ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = tmp_path / '''csv_with_int_list.csv''' __UpperCamelCase :Optional[Any] = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = Csv() __UpperCamelCase :Optional[int] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(SCREAMING_SNAKE_CASE , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(SCREAMING_SNAKE_CASE ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: __UpperCamelCase :List[Any] = f.read().splitlines()[1] __UpperCamelCase :List[Any] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) __UpperCamelCase :Optional[int] = csv._generate_tables([[csv_file_with_image]] ) __UpperCamelCase :Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() __UpperCamelCase :Tuple = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: __UpperCamelCase :List[Any] = f.read().splitlines()[1:] __UpperCamelCase :Optional[int] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) __UpperCamelCase :List[Any] = csv._generate_tables([[csv_file_with_label]] ) __UpperCamelCase :List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() __UpperCamelCase :List[str] = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(SCREAMING_SNAKE_CASE ) for label in labels] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda SCREAMING_SNAKE_CASE : [int(SCREAMING_SNAKE_CASE ) for i in x.split()]} ) __UpperCamelCase :Union[str, Any] = csv._generate_tables([[csv_file_with_int_list]] ) __UpperCamelCase :Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) __UpperCamelCase :str = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
43
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """ctrl""" a__ : Dict = ["""past_key_values"""] a__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=246_534 , __lowercase=256 , __lowercase=1_280 , __lowercase=8_192 , __lowercase=48 , __lowercase=16 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-6 , __lowercase=0.02 , __lowercase=True , **__lowercase , ) -> List[Any]: __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :Optional[Any] = n_positions __UpperCamelCase :Dict = n_embd __UpperCamelCase :Dict = n_layer __UpperCamelCase :List[Any] = n_head __UpperCamelCase :int = dff __UpperCamelCase :Union[str, Any] = resid_pdrop __UpperCamelCase :Optional[int] = embd_pdrop __UpperCamelCase :List[Any] = layer_norm_epsilon __UpperCamelCase :Dict = initializer_range __UpperCamelCase :Any = use_cache super().__init__(**__lowercase)
43
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase = '''bert-base-cased''' UpperCamelCase = '''fp16''' UpperCamelCase = '''bf16''' UpperCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class snake_case_ ( __A ): def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().setUp() lowercase__ : Union[str, Any] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase_ ): lowercase__ : int = self.dist_env.copy() lowercase__ : Dict = F'''{i + 1}''' lowercase__ : str = strategy with mockenv_context(**lowercase_ ): lowercase__ : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase_ ): lowercase__ : int = self.dist_env.copy() lowercase__ : Any = prefetch_policy with mockenv_context(**lowercase_ ): lowercase__ : Tuple = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __UpperCamelCase ( self : int ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase_ ): lowercase__ : Union[str, Any] = self.dist_env.copy() lowercase__ : List[Any] = state_dict_type with mockenv_context(**lowercase_ ): lowercase__ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : int = AutoModel.from_pretrained(lowercase_ ) for policy in FSDP_AUTO_WRAP_POLICY: lowercase__ : str = self.dist_env.copy() lowercase__ : int = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase__ : Tuple = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowercase__ : List[Any] = "2000" with mockenv_context(**lowercase_ ): lowercase__ : Dict = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowercase__ : Optional[int] = self.dist_env.copy() lowercase__ : int = "TRANSFORMER_BASED_WRAP" lowercase__ : List[Any] = "T5Layer" with mockenv_context(**lowercase_ ): lowercase__ : List[Any] = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) lowercase__ : Any = self.dist_env.copy() lowercase__ : str = "SIZE_BASED_WRAP" lowercase__ : Tuple = "0" with mockenv_context(**lowercase_ ): lowercase__ : Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase__ : str = self.dist_env.copy() lowercase__ : Dict = mp_dtype with mockenv_context(**lowercase_ ): lowercase__ : Union[str, Any] = Accelerator() if mp_dtype == "fp16": lowercase__ : int = torch.floataa elif mp_dtype == "bf16": lowercase__ : Union[str, Any] = torch.bfloataa lowercase__ : Tuple = MixedPrecision(param_dtype=lowercase_ , reduce_dtype=lowercase_ , buffer_dtype=lowercase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase__ : Any = self.dist_env.copy() lowercase__ : List[str] = str(lowercase_ ).lower() with mockenv_context(**lowercase_ ): lowercase__ : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase_ ) ) @require_fsdp @require_multi_gpu @slow class snake_case_ ( __A ): def __UpperCamelCase ( self : Union[str, Any] ) -> Any: super().setUp() lowercase__ : str = 0.82 lowercase__ : List[Any] = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowercase__ : int = { "multi_gpu_fp16": 32_00, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 20_00, "fsdp_full_shard_transformer_based_wrap_fp16": 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase__ : Optional[Any] = 1_60 lowercase__ : int = 1_60 lowercase__ : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowercase__ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def __UpperCamelCase ( self : Tuple ) -> int: lowercase__ : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" ) lowercase__ : Union[str, Any] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowercase__ : Optional[int] = cmd.copy() for i, strategy in enumerate(lowercase_ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Tuple = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) lowercase__ : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(lowercase_ ): lowercase__ : List[Any] = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue lowercase__ : Any = len(lowercase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase__ : Tuple = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) lowercase__ : Tuple = cmd_config[:-1] lowercase__ : Dict = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : List[str] = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) lowercase__ : int = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase__ : Union[str, Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(lowercase_ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> float: UpperCamelCase__ : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCAmelCase_ ( ) -> int: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
201
from math import factorial def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
201
1
'''simple docstring''' class a__ : def __init__( self : List[Any] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = {} def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple ): """simple docstring""" if vertex not in self.adjacency: __lowerCamelCase = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int , a : int , a : Dict ): """simple docstring""" self.add_vertex(a ) self.add_vertex(a ) if head == tail: return __lowerCamelCase = weight __lowerCamelCase = weight def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for i in range(len(a ) ): __lowerCamelCase = list(edges[i] ) edges.sort(key=lambda a : e[2] ) for i in range(len(a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCamelCase = edges[i][2] + 1 for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = weight __lowerCamelCase = weight def __str__( self : Dict ): """simple docstring""" __lowerCamelCase = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCamelCase = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE__ ( a : List[Any]=None , a : Union[str, Any]=None ): """simple docstring""" __lowerCamelCase = Graph() if vertices is None: __lowerCamelCase = [] if edges is None: __lowerCamelCase = [] for vertex in vertices: g.add_vertex(a ) for edge in edges: g.add_edge(*a ) return g class a__ : def __init__( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = {} __lowerCamelCase = {} def __len__( self : List[str] ): """simple docstring""" return len(self.parent ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : List[Any] ): """simple docstring""" if item in self.parent: return self.find(a ) __lowerCamelCase = item __lowerCamelCase = 0 return item def SCREAMING_SNAKE_CASE__ ( self : int , a : Any ): """simple docstring""" if item not in self.parent: return self.make_set(a ) if item != self.parent[item]: __lowerCamelCase = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE__ ( self : str , a : List[Any] , a : List[str] ): """simple docstring""" __lowerCamelCase = self.find(a ) __lowerCamelCase = self.find(a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCamelCase = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE__ ( a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = graph.num_vertices __lowerCamelCase = Graph.UnionFind() __lowerCamelCase = [] while num_components > 1: __lowerCamelCase = {} for vertex in graph.get_vertices(): __lowerCamelCase = -1 __lowerCamelCase = graph.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = union_find.find(a ) __lowerCamelCase = union_find.find(a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = cheap_edge[vertex] if union_find.find(a ) != union_find.find(a ): union_find.union(a , a ) mst_edges.append(cheap_edge[vertex] ) __lowerCamelCase = num_components - 1 __lowerCamelCase = Graph.build(edges=a ) return mst
237
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Any , *, a : int = 4 , a : int = 7_68 , a : int , a : Optional[int] , ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Parameter(torch.zeros(a ) ) # parameters for additional clip time embeddings __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.Linear(a , a ) # parameters for encoder hidden states __lowerCamelCase = clip_extra_context_tokens __lowerCamelCase = nn.Linear( a , self.clip_extra_context_tokens * cross_attention_dim ) __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.LayerNorm(a ) def SCREAMING_SNAKE_CASE__ ( self : int , *, a : Union[str, Any] , a : Any , a : str , a : Any ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowerCamelCase = image_embeddings.shape[0] __lowerCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowerCamelCase = classifier_free_guidance_embeddings.expand( a , -1 ) __lowerCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowerCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowerCamelCase = self.embedding_proj(a ) __lowerCamelCase = self.clip_image_embeddings_project_to_time_embeddings(a ) __lowerCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowerCamelCase = self.clip_extra_context_tokens_proj(a ) __lowerCamelCase = clip_extra_context_tokens.reshape(a , -1 , self.clip_extra_context_tokens ) __lowerCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowerCamelCase = self.encoder_hidden_states_proj(a ) __lowerCamelCase = self.text_encoder_hidden_states_norm(a ) __lowerCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
237
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCAmelCase : Any =logging.get_logger(__name__) class _lowercase (a_ ): '''simple docstring''' def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
128
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : Tuple =_symbol_database.Default() UpperCAmelCase : List[Any] =_descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) UpperCAmelCase : Optional[int] =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : str =None UpperCAmelCase : List[Any] =b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : str =45 UpperCAmelCase : Optional[Any] =1581 UpperCAmelCase : Dict =1517 UpperCAmelCase : str =1570 UpperCAmelCase : Optional[int] =1584 UpperCAmelCase : str =1793 UpperCAmelCase : Any =1795 UpperCAmelCase : Dict =1916 UpperCAmelCase : str =1864 UpperCAmelCase : Dict =1905 UpperCAmelCase : Union[str, Any] =1919 UpperCAmelCase : Any =2429 UpperCAmelCase : Dict =2208 UpperCAmelCase : int =2418 UpperCAmelCase : str =2323 UpperCAmelCase : Any =2407 # @@protoc_insertion_point(module_scope)
128
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowercase : '''simple docstring''' _A : Dict = XGLMConfig _A : Dict = {} _A : str = '''gelu''' def __init__( self : Optional[int] , _a : Any , _a : Dict=14 , _a : Optional[int]=7 , _a : Dict=True , _a : int=True , _a : List[Any]=True , _a : int=99 , _a : Optional[Any]=32 , _a : Any=2 , _a : Any=4 , _a : List[Any]=37 , _a : List[str]="gelu" , _a : Any=0.1 , _a : Optional[int]=0.1 , _a : Tuple=512 , _a : str=0.02 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = ffn_dim UpperCamelCase__ = activation_function UpperCamelCase__ = activation_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = None UpperCamelCase__ = 0 UpperCamelCase__ = 2 UpperCamelCase__ = 1 def A_ ( self : Optional[int] ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def A_ ( self : List[Any] ): UpperCamelCase__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = self.get_config() UpperCamelCase__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A_ ( self : Union[str, Any] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_a , ) def A_ ( self : Dict ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _A : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () _A : str = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) _A : str = False _A : str = False _A : Dict = False def A_ ( self : List[Any] ): UpperCamelCase__ = TFXGLMModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a , n_embd=37 ) def A_ ( self : Any ): self.config_tester.run_common_tests() @slow def A_ ( self : Any ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFXGLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def A_ ( self : int ): super().test_resize_token_embeddings() @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self : List[str] , _a : str=True ): UpperCamelCase__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase__ = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase__ = model.generate(_a , do_sample=_a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _a ) @slow def A_ ( self : Dict ): UpperCamelCase__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase__ = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase__ = model.generate(_a , do_sample=_a , seed=[7, 0] ) UpperCamelCase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) UpperCamelCase__ = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_a , _a ) @slow def A_ ( self : List[Any] ): UpperCamelCase__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ = '''left''' # use different length sentences to test batching UpperCamelCase__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase__ = tokenizer(_a , return_tensors='''tf''' , padding=_a ) UpperCamelCase__ = inputs['''input_ids'''] UpperCamelCase__ = model.generate(input_ids=_a , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase__ = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase__ = model.generate(input_ids=_a , max_new_tokens=12 ) UpperCamelCase__ = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase__ = model.generate(input_ids=_a , max_new_tokens=12 ) UpperCamelCase__ = tokenizer.batch_decode(_a , skip_special_tokens=_a ) UpperCamelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) UpperCamelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) UpperCamelCase__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] )
35
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' _A : Any = '''maskformer''' _A : Any = {'''hidden_size''': '''mask_feature_size'''} _A : List[str] = ['''resnet''', '''swin'''] _A : Tuple = ['''detr'''] def __init__( self : Optional[Any] , _a : int = 256 , _a : int = 256 , _a : float = 0.1 , _a : bool = False , _a : Optional[Dict] = None , _a : Optional[Dict] = None , _a : float = 0.02 , _a : float = 1.0 , _a : float = 1.0 , _a : float = 1.0 , _a : float = 20.0 , _a : Optional[bool] = None , **_a : List[str] , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCamelCase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): UpperCamelCase__ = backbone_config.pop('''model_type''' ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCamelCase__ = DetrConfig() else: # verify that the decoder is supported UpperCamelCase__ = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(_a , _a ): UpperCamelCase__ = CONFIG_MAPPING[decoder_type] UpperCamelCase__ = config_class.from_dict(_a ) UpperCamelCase__ = backbone_config UpperCamelCase__ = decoder_config # main feature dimension for the model UpperCamelCase__ = fpn_feature_size UpperCamelCase__ = mask_feature_size # initializer UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std # Hungarian matcher && loss UpperCamelCase__ = cross_entropy_weight UpperCamelCase__ = dice_weight UpperCamelCase__ = mask_weight UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = no_object_weight UpperCamelCase__ = output_auxiliary_logits UpperCamelCase__ = self.decoder_config.encoder_attention_heads UpperCamelCase__ = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def A_ ( cls : Tuple , _a : PretrainedConfig , _a : PretrainedConfig , **_a : str ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def A_ ( self : str ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.decoder_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ :List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ :Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ :int = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ :Union[str, Any] = 8 else: UpperCamelCase__ :Any = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCamelCase__ :Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def a ( __a , __a ) -> Optional[int]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1": UpperCamelCase__ :Union[str, Any] = 2 # New Code # UpperCamelCase__ :Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCamelCase__ :int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__a ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Union[str, Any] = config['''lr'''] UpperCamelCase__ :Dict = int(config['''num_epochs'''] ) UpperCamelCase__ :str = int(config['''seed'''] ) UpperCamelCase__ :Optional[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :Tuple = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ :Any = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ :Union[str, Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler UpperCamelCase__ :List[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__a ): UpperCamelCase__ :Optional[Any] = model(**__a ) UpperCamelCase__ :List[Any] = output.loss accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :str = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ :List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __a ) def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__a , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCamelCase__ :Tuple = parser.parse_args() UpperCamelCase__ :List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
97
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def a ( __a="ro" , __a="en" , __a="wmt16" , __a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) UpperCamelCase__ :int = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) UpperCamelCase__ :Tuple = datasets.load_dataset(__a , __a ) if save_dir is None: UpperCamelCase__ :Any = f'''{dataset}-{pair}''' UpperCamelCase__ :Dict = Path(__a ) save_dir.mkdir(exist_ok=__a ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets UpperCamelCase__ :Dict = '''val''' if split == '''validation''' else split UpperCamelCase__ :List[Any] = save_dir.joinpath(f'''{fn}.source''' ) UpperCamelCase__ :int = save_dir.joinpath(f'''{fn}.target''' ) UpperCamelCase__ :Union[str, Any] = src_path.open('''w+''' ) UpperCamelCase__ :Tuple = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCamelCase__ :Union[str, Any] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ : Any =get_tests_dir('''fixtures''') a__ : int =get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') a__ : int =get_tests_dir('''fixtures/dummy-config.json''') class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = 0 def _lowerCamelCase ( self : Dict ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ).to_dict() config_dict.pop('feature_extractor_type' ) __UpperCamelCase = WavaVecaFeatureExtractor(**__A ) # save in new folder model_config.save_pretrained(__A ) config.save_pretrained(__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) # make sure private variable is not incorrectly saved __UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : Dict ): with self.assertRaisesRegex( __A , 'bert-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained('bert-base' ) def _lowerCamelCase ( self : List[Any] ): with self.assertRaisesRegex( __A , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A , revision='aaaaaa' ) def _lowerCamelCase ( self : List[str] ): with self.assertRaisesRegex( __A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def _lowerCamelCase ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def _lowerCamelCase ( self : List[str] ): try: AutoConfig.register('custom' , __A ) AutoFeatureExtractor.register(__A , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoFeatureExtractor.register(__A , __A ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomFeatureExtractor.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self : Any ): class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =True try: AutoConfig.register('custom' , __A ) AutoFeatureExtractor.register(__A , __A ) # If remote code is not set, the default is to use local __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(__A , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
53
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case ( __lowerCamelCase ): """simple docstring""" def _lowerCamelCase ( self : Any ): __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = 8 # DPR tok __UpperCamelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__A , exist_ok=__A ) __UpperCamelCase = os.path.join(__A , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase = dict(zip(__A , range(len(__A ) ) ) ) __UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__A , exist_ok=__A ) __UpperCamelCase = os.path.join(__A , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(__A , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def _lowerCamelCase ( self : Tuple ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCamelCase ( self : Optional[int] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCamelCase ( self : Union[str, Any] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCamelCase ( self : str ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.get_dummy_dataset() __UpperCamelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: __UpperCamelCase = dataset __UpperCamelCase = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowerCamelCase ( self : Any , __A : bool ): __UpperCamelCase = self.get_dummy_dataset() __UpperCamelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: __UpperCamelCase = os.path.join(self.tmpdirname , 'dataset' ) __UpperCamelCase = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset __UpperCamelCase = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __UpperCamelCase = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __A ) , ) return retriever def _lowerCamelCase ( self : int ): __UpperCamelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCamelCase = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) __UpperCamelCase = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) __UpperCamelCase = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__A , open(__A , 'wb' ) ) __UpperCamelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) __UpperCamelCase = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = 1 __UpperCamelCase = self.get_dummy_canonical_hf_index_retriever() __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: __UpperCamelCase = self.get_dummy_dataset() retriever.save_pretrained(__A ) __UpperCamelCase = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = 1 __UpperCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) __UpperCamelCase = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = 1 __UpperCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) __UpperCamelCase = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = 1 __UpperCamelCase = self.get_dummy_legacy_index_retriever() __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , __A ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) __UpperCamelCase = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCamelCase ( self : Optional[Any] ): import torch __UpperCamelCase = 1 __UpperCamelCase = self.get_dummy_canonical_hf_index_retriever() __UpperCamelCase = [[5, 7], [1_0, 1_1]] __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase = retriever(__A , __A , prefix=retriever.config.generator.prefix , n_docs=__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__A , __A ) self.assertIsInstance(__A , __A ) self.assertIsInstance(__A , np.ndarray ) __UpperCamelCase = retriever( __A , __A , prefix=retriever.config.generator.prefix , n_docs=__A , return_tensors='pt' , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__A , torch.Tensor ) self.assertIsInstance(__A , torch.Tensor ) self.assertIsInstance(__A , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.get_dpr_ctx_encoder_tokenizer() __UpperCamelCase = 1 __UpperCamelCase = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) retriever.set_ctx_encoder_tokenizer(__A ) __UpperCamelCase = [[5, 7], [1_0, 1_1]] __UpperCamelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __UpperCamelCase = retriever(__A , __A , prefix=retriever.config.generator.prefix , n_docs=__A ) self.assertEqual( len(__A ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , __A ) # check for doc token related keys in dictionary.
53
1
def lowerCAmelCase__ ( _a : int ): snake_case_ : Optional[Any] = [], [] while len(snake_case_ ) > 1: snake_case_ : Optional[Any] = min(snake_case_ ), max(snake_case_ ) start.append(snake_case_ ) end.append(snake_case_ ) collection.remove(snake_case_ ) collection.remove(snake_case_ ) end.reverse() return start + collection + end if __name__ == "__main__": lowercase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowercase : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
355
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = size if size is not None else {"height": 256, "width": 256} snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : str = do_resize snake_case_ : Tuple = size snake_case_ : Tuple = resample snake_case_ : Dict = do_center_crop snake_case_ : Any = crop_size snake_case_ : int = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : Optional[int] = do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = size if size is not None else self.size snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : int = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Optional[int] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case_ : Optional[Any] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case_ : List[Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case_ : List[str] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : List[str] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
36
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase: int = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[str] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
297
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase__ ( _A = "laptop" ): a : Any = f"""https://www.amazon.in/laptop/s?k={product}""" a : Tuple = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } a : Any = BeautifulSoup(requests.get(_A , headers=_A ).text ) # Initialize a Pandas dataframe with the column titles a : Any = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: a : Optional[int] = item.ha.text a : str = 'https://www.amazon.in/' + item.ha.a['href'] a : List[str] = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: a : Optional[Any] = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: a : Union[str, Any] = 'Not available' try: a : str = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: a : int = '' try: a : Union[str, Any] = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: a : Any = float('nan' ) except AttributeError: pass a : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a : Any = ' ' a : List[str] = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase: str = 'headphones' get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
297
1
import math def lowercase_ ( A__ ) -> bool: """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False snake_case = range(3 , int(math.sqrt(A__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowercase_ ( A__ , A__=1 , **A__ ) -> Union[str, Any]: """simple docstring""" snake_case = factor * value snake_case = value while not is_prime(A__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **A__ ) return value
137
from __future__ import annotations from decimal import Decimal from numpy import array def lowercase_ ( A__ ) -> list[list[float]]: """simple docstring""" snake_case = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements snake_case = [[0.0, 0.0], [0.0, 0.0]] snake_case , snake_case = matrix[1][1], matrix[0][0] snake_case , snake_case = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix snake_case = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case = array(A__ ) for i in range(3 ): for j in range(3 ): snake_case = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
137
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __UpperCAmelCase : List[Any] = 8 def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=BITS) -> List[str]: __snake_case: Tuple = x.device __snake_case: str = (x * 255).int().clamp(0 , 255) __snake_case: List[str] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=SCREAMING_SNAKE_CASE__) __snake_case: Union[str, Any] = rearrange(SCREAMING_SNAKE_CASE__ , """d -> d 1 1""") __snake_case: Any = rearrange(SCREAMING_SNAKE_CASE__ , """b c h w -> b c 1 h w""") __snake_case: Optional[Any] = ((x & mask) != 0).float() __snake_case: Tuple = rearrange(SCREAMING_SNAKE_CASE__ , """b c d h w -> b (c d) h w""") __snake_case: int = bits * 2 - 1 return bits def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=BITS) -> int: __snake_case: List[str] = x.device __snake_case: Union[str, Any] = (x > 0).int() __snake_case: List[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=SCREAMING_SNAKE_CASE__ , dtype=torch.intaa) __snake_case: List[str] = rearrange(SCREAMING_SNAKE_CASE__ , """d -> d 1 1""") __snake_case: List[str] = rearrange(SCREAMING_SNAKE_CASE__ , """b (c d) h w -> b c d h w""" , d=8) __snake_case: Optional[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""") return (dec / 255).clamp(0.0 , 1.0) def A__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""") # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case: Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case: Any = self.alphas_cumprod[timestep] __snake_case: Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case: Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case: Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case: List[Any] = self.bit_scale if self.config.clip_sample: __snake_case: List[str] = torch.clamp(SCREAMING_SNAKE_CASE__ , -scale , SCREAMING_SNAKE_CASE__) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case: Optional[Any] = self._get_variance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: Dict = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case: List[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case: Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case: Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case: Optional[int] = model_output.device if torch.is_tensor(SCREAMING_SNAKE_CASE__) else """cpu""" __snake_case: Any = torch.randn(model_output.shape , dtype=model_output.dtype , generator=SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = self._get_variance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) ** 0.5 * eta * noise __snake_case: Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ , pred_original_sample=SCREAMING_SNAKE_CASE__) def A__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="epsilon" , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __snake_case: Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case: Optional[int] = torch.split(SCREAMING_SNAKE_CASE__ , sample.shape[1] , dim=1) else: __snake_case: List[str] = None # 1. compute alphas, betas __snake_case: List[str] = self.alphas_cumprod[t] __snake_case: Optional[Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case: List[Any] = 1 - alpha_prod_t __snake_case: Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case: List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case: Optional[int] = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''') # 3. Clip "predicted x_0" __snake_case: int = self.bit_scale if self.config.clip_sample: __snake_case: int = torch.clamp(SCREAMING_SNAKE_CASE__ , -scale , SCREAMING_SNAKE_CASE__) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case: Dict = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case: Union[str, Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case: List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case: str = 0 if t > 0: __snake_case: Union[str, Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=SCREAMING_SNAKE_CASE__).to(model_output.device) __snake_case: Union[str, Any] = (self._get_variance(SCREAMING_SNAKE_CASE__ , predicted_variance=SCREAMING_SNAKE_CASE__) ** 0.5) * noise __snake_case: Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ , pred_original_sample=SCREAMING_SNAKE_CASE__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : List[str] , A : UNetaDConditionModel , A : Union[DDIMScheduler, DDPMScheduler] , A : Optional[float] = 1.0 , ): super().__init__() __snake_case: Optional[int] = bit_scale __snake_case: List[Any] = ( ddim_bit_scheduler_step if isinstance(A , A ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self : Any , A : Optional[int] = 256 , A : Optional[int] = 256 , A : Optional[int] = 50 , A : Optional[torch.Generator] = None , A : Optional[int] = 1 , A : Optional[str] = "pil" , A : bool = True , **A : Tuple , ): __snake_case: Optional[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A , ) __snake_case: int = decimal_to_bits(A ) * self.bit_scale __snake_case: List[Any] = latents.to(self.device ) self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case: List[str] = self.unet(A , A ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case: int = self.scheduler.step(A , A , A ).prev_sample __snake_case: int = bits_to_decimal(A ) if output_type == "pil": __snake_case: Optional[int] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
111
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Any , A : Dict , A : Any ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(A ) for s in shape] )}.npy''' def UpperCAmelCase__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[int]=0 , A : Tuple=(4, 4, 64, 64) , A : Tuple=False ): __snake_case: Dict = jnp.bfloataa if fpaa else jnp.floataa __snake_case: str = jnp.array(load_hf_numpy(self.get_file_format(A , A ) ) , dtype=A ) return image def UpperCAmelCase__ ( self : Union[str, Any] , A : Any=False , A : Optional[Any]="CompVis/stable-diffusion-v1-4" ): __snake_case: List[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case: Union[str, Any] = """bf16""" if fpaa else None __snake_case , __snake_case: Optional[int] = FlaxUNetaDConditionModel.from_pretrained( A , subfolder="""unet""" , dtype=A , revision=A ) return model, params def UpperCAmelCase__ ( self : Tuple , A : Tuple=0 , A : str=(4, 77, 768) , A : List[str]=False ): __snake_case: Any = jnp.bfloataa if fpaa else jnp.floataa __snake_case: Dict = jnp.array(load_hf_numpy(self.get_file_format(A , A ) ) , dtype=A ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[Any] , A : str , A : Any ): __snake_case , __snake_case: Union[str, Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=A ) __snake_case: Tuple = self.get_latents(A , fpaa=A ) __snake_case: int = self.get_encoder_hidden_states(A , fpaa=A ) __snake_case: List[Any] = model.apply( {"""params""": params} , A , jnp.array(A , dtype=jnp.intaa ) , encoder_hidden_states=A , ).sample assert sample.shape == latents.shape __snake_case: str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case: Optional[int] = jnp.array(A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(A , A , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , A : int , A : Tuple , A : List[str] ): __snake_case , __snake_case: Union[str, Any] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=A ) __snake_case: Optional[int] = self.get_latents(A , shape=(4, 4, 96, 96) , fpaa=A ) __snake_case: str = self.get_encoder_hidden_states(A , shape=(4, 77, 1_024) , fpaa=A ) __snake_case: str = model.apply( {"""params""": params} , A , jnp.array(A , dtype=jnp.intaa ) , encoder_hidden_states=A , ).sample assert sample.shape == latents.shape __snake_case: Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case: Any = jnp.array(A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(A , A , atol=1E-2 )
111
1
from __future__ import annotations from collections.abc import Callable SCREAMING_SNAKE_CASE_ = list[list[float | int]] def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Matrix: '''simple docstring''' SCREAMING_SNAKE_CASE = len(__A ) SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__A )] SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 for row in range(__A ): for col in range(__A ): SCREAMING_SNAKE_CASE = matrix[row][col] SCREAMING_SNAKE_CASE = vector[row][0] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __A ): SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __A ): for row in range(__A ): SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A ) ] def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Callable[[int], int]: '''simple docstring''' SCREAMING_SNAKE_CASE = len(__A ) SCREAMING_SNAKE_CASE = [[0 for _ in range(__A )] for _ in range(__A )] SCREAMING_SNAKE_CASE = [[0] for _ in range(__A )] SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__A ): for col in range(__A ): SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE = y_val SCREAMING_SNAKE_CASE = solve(__A , __A ) def interpolated_func(_SCREAMING_SNAKE_CASE ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__A ) ) return interpolated_func def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowercase ( _SCREAMING_SNAKE_CASE = question_function , _SCREAMING_SNAKE_CASE = 10 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [func(__A ) for x_val in range(1 , order + 1 )] SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 for poly in polynomials: SCREAMING_SNAKE_CASE = 1 while func(__A ) == poly(__A ): x_val += 1 ret += poly(__A ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
357
class UpperCamelCase__ : '''simple docstring''' def __init__( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCamelCase__ ,""" -> """ ,""" -> """.join([str(lowerCamelCase__ ) for j in self.vertex[i]] ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase__ ) else: # else make a new vertex SCREAMING_SNAKE_CASE = [to_vertex] def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : list ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = True print(lowerCamelCase__ ,end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase__ ,lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
193
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _UpperCamelCase = '''xvjiarui/stable-diffusion-2-inpainting''' _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) _UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = 50 _UpperCamelCase = jax.device_count() _UpperCamelCase = num_samples * [prompt] _UpperCamelCase = num_samples * [init_image] _UpperCamelCase = num_samples * [mask_image] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = pipeline.prepare_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # shard inputs and rng _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipeline( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ) _UpperCamelCase = output.images.reshape(lowerCAmelCase__ , 512 , 512 , 3 ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
324
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCamelCase : List[Any] = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = True , ) -> List[str]: snake_case : int = [file for file in os.listdir(A ) if os.path.isfile(os.path.join(A , A ) )] if identifier is not None: snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(A , A ): for n_ in n_identifier: snake_case : Optional[int] = [file for file in files if n_ not in file] else: snake_case : int = [file for file in files if n_identifier not in file] snake_case : Any = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case : Dict = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , A ) if only_modules: snake_case : Any = file.split(""".""" )[0] try: snake_case : List[Any] = getattr(A , A ) snake_case : List[Any] = doctest.DocTestSuite(A ) snake_case : Tuple = unittest.TextTestRunner().run(A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = Path("""src/transformers""" ) snake_case : str = """modeling""" snake_case : Tuple = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(A , identifier=A , ignore_files=A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = Path("""src/transformers""" ) snake_case : List[str] = """tokenization""" self.analyze_directory(A , identifier=A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = Path("""src/transformers""" ) snake_case : str = """configuration""" self.analyze_directory(A , identifier=A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = Path("""src/transformers""" ) snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(A , n_identifier=A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Union[str, Any] = Path("""docs/source""" ) snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(A , ignore_files=A , only_modules=A )
176
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) requires_backends(self , """decord""" ) self.check_model_type(A ) def UpperCAmelCase ( self , A=None , A=None , A=None ) -> int: snake_case : Any = {} if frame_sampling_rate is not None: snake_case : int = frame_sampling_rate if num_frames is not None: snake_case : Union[str, Any] = num_frames snake_case : str = {} if top_k is not None: snake_case : Optional[int] = top_k return preprocess_params, {}, postprocess_params def __call__( self , A , **A ) -> Dict: return super().__call__(A , **A ) def UpperCAmelCase ( self , A , A=None , A=1 ) -> Tuple: if num_frames is None: snake_case : Tuple = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): snake_case : Optional[int] = BytesIO(requests.get(A ).content ) snake_case : Optional[Any] = VideoReader(A ) videoreader.seek(0 ) snake_case : Optional[Any] = 0 snake_case : Optional[Any] = num_frames * frame_sampling_rate - 1 snake_case : Any = np.linspace(A , A , num=A , dtype=np.intaa ) snake_case : int = videoreader.get_batch(A ).asnumpy() snake_case : List[Any] = list(A ) snake_case : Optional[Any] = self.image_processor(A , return_tensors=self.framework ) return model_inputs def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Dict = self.model(**A ) return model_outputs def UpperCAmelCase ( self , A , A=5 ) -> int: if top_k > self.model.config.num_labels: snake_case : str = self.model.config.num_labels if self.framework == "pt": snake_case : List[Any] = model_outputs.logits.softmax(-1 )[0] snake_case , snake_case : Tuple = probs.topk(A ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) snake_case : List[Any] = scores.tolist() snake_case : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A , A )]
176
1
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int): a : str = jnp.ones((batch_size, length)) / length return scores def __snake_case ( self : Optional[Any]): a : Optional[int] = None a : Optional[Any] = 20 a : Optional[int] = self._get_uniform_logits(batch_size=2 , length=__UpperCAmelCase) # tweak scores to not be uniform anymore a : int = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch a : Union[str, Any] = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax a : Dict = jax.nn.softmax(__UpperCAmelCase , axis=-1) a : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) a : Dict = FlaxTemperatureLogitsWarper(temperature=1.3) a : Any = jax.nn.softmax(temp_dist_warper_sharper(__UpperCAmelCase , scores.copy() , cur_len=__UpperCAmelCase) , axis=-1) a : Any = jax.nn.softmax(temp_dist_warper_smoother(__UpperCAmelCase , scores.copy() , cur_len=__UpperCAmelCase) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def __snake_case ( self : List[str]): a : Optional[int] = None a : Dict = 10 a : str = 2 # create ramp distribution a : Union[str, Any] = np.broadcast_to(np.arange(__UpperCAmelCase)[None, :] , (batch_size, vocab_size)).copy() a : Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size a : str = FlaxTopKLogitsWarper(3) a : Union[str, Any] = top_k_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case a : List[Any] = 5 a : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) a : Dict = np.broadcast_to(np.arange(__UpperCAmelCase)[None, :] , (batch_size, length)).copy() a : Any = top_k_warp_safety_check(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def __snake_case ( self : Tuple): a : List[Any] = None a : int = 10 a : Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) a : List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) a : List[Any] = FlaxTopPLogitsWarper(0.8) a : List[str] = np.exp(top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 a : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) # check edge cases with negative and extreme logits a : int = np.broadcast_to(np.arange(__UpperCAmelCase)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme a : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept a : int = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) a : str = top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def __snake_case ( self : List[str]): a : Union[str, Any] = 20 a : Any = 4 a : Any = 0 a : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__UpperCAmelCase) # check that min length is applied at length 5 a : Dict = ids_tensor((batch_size, 20) , vocab_size=20) a : Any = 5 a : List[str] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = min_dist_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 a : Any = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = 15 a : Dict = min_dist_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertFalse(jnp.isinf(__UpperCAmelCase).any()) def __snake_case ( self : str): a : Dict = 20 a : Any = 4 a : str = 0 a : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__UpperCAmelCase) # check that all scores are -inf except the bos_token_id score a : Dict = ids_tensor((batch_size, 1) , vocab_size=20) a : List[Any] = 1 a : List[Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : int = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 a : Optional[Any] = 3 a : List[Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertFalse(jnp.isinf(__UpperCAmelCase).any()) def __snake_case ( self : Dict): a : List[Any] = 20 a : Tuple = 4 a : List[Any] = 0 a : str = 5 a : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) # check that all scores are -inf except the eos_token_id when max_length is reached a : Union[str, Any] = ids_tensor((batch_size, 4) , vocab_size=20) a : Optional[int] = 4 a : Union[str, Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : str = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached a : Any = 3 a : List[Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertFalse(jnp.isinf(__UpperCAmelCase).any()) def __snake_case ( self : Optional[Any]): a : Optional[Any] = 4 a : int = 10 a : int = 15 a : int = 2 a : List[str] = 1 a : Dict = 15 # dummy input_ids and scores a : Any = ids_tensor((batch_size, sequence_length) , __UpperCAmelCase) a : List[Any] = input_ids.copy() a : Optional[int] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Dict = scores.copy() # instantiate all dist processors a : int = FlaxTemperatureLogitsWarper(temperature=0.5) a : int = FlaxTopKLogitsWarper(3) a : int = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors a : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__UpperCAmelCase) a : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__UpperCAmelCase) a : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) a : Tuple = 10 # no processor list a : str = temp_dist_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : int = top_k_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Tuple = top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Optional[Any] = min_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Dict = bos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : List[str] = eos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # with processor list a : str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) a : List[Any] = processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def __snake_case ( self : Optional[Any]): a : Dict = 4 a : Any = 10 a : Dict = 15 a : Union[str, Any] = 2 a : Tuple = 1 a : int = 15 # dummy input_ids and scores a : List[str] = ids_tensor((batch_size, sequence_length) , __UpperCAmelCase) a : List[str] = input_ids.copy() a : Union[str, Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = scores.copy() # instantiate all dist processors a : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5) a : Dict = FlaxTopKLogitsWarper(3) a : List[str] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors a : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__UpperCAmelCase) a : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__UpperCAmelCase) a : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) a : Optional[int] = 10 # no processor list def run_no_processor_list(__UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : List[str] = temp_dist_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : List[str] = top_k_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Tuple = top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : int = min_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : int = bos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : List[Any] = eos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) return scores # with processor list def run_processor_list(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]): a : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) a : Dict = processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) return scores a : List[Any] = jax.jit(__UpperCAmelCase) a : Union[str, Any] = jax.jit(__UpperCAmelCase) a : List[Any] = jitted_run_no_processor_list(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : List[str] = jitted_run_processor_list(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
40
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = False, False, False @dataclass class _snake_case : lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool = True lowerCAmelCase_ : Optional[str] = None # Automatically constructed lowerCAmelCase_ : ClassVar[str] = "dict" lowerCAmelCase_ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase_ : str = field(default="Audio" , init=lowercase_ , repr=lowercase_ ) def __call__( self ) -> Tuple: '''simple docstring''' return self.pa_type def lowerCAmelCase__ ( self , a__ ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(a__ , a__ ): return {"bytes": None, "path": value} elif isinstance(a__ , a__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ = BytesIO() sf.write(a__ , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: snake_case_ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32_767 snake_case_ = BytesIO(bytes() ) sf.write(a__ , a__ , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) snake_case_ , snake_case_ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err snake_case_ = xsplitext(a__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: snake_case_ = token_per_repo_id or {} snake_case_ = path.split("::" )[-1] try: snake_case_ = string_to_dict(a__ , config.HUB_DATASETS_URL )["repo_id"] snake_case_ = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ = None with xopen(a__ , "rb" , use_auth_token=a__ ) as f: snake_case_ , snake_case_ = sf.read(a__ ) else: snake_case_ , snake_case_ = sf.read(a__ ) snake_case_ = array.T if self.mono: snake_case_ = librosa.to_mono(a__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ = librosa.resample(a__ , orig_sr=a__ , target_sr=self.sampling_rate ) snake_case_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCAmelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCAmelCase__ ( self , a__ ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): snake_case_ = pa.array([None] * len(a__ ) , type=pa.binary() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ = pa.array([None] * len(a__ ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): snake_case_ = pa.array([Audio().encode_example(a__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: snake_case_ = storage.field("bytes" ) else: snake_case_ = pa.array([None] * len(a__ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: snake_case_ = storage.field("path" ) else: snake_case_ = pa.array([None] * len(a__ ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(a__ , self.pa_type ) def lowerCAmelCase__ ( self , a__ ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(a__ ): with xopen(a__ , "rb" ) as f: snake_case_ = f.read() return bytes_ snake_case_ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ = pa.array( [os.path.basename(a__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(a__ , self.pa_type )
92
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = int(snake_case ) assert noofclusters < len(snake_case ) # Find out the dimensionality snake_case_ = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case_ = list(range(len(snake_case ) ) ) shuffle(snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case_ = tf.placeholder("float64" , [dim] ) snake_case_ = [] for centroid in centroids: cent_assigns.append(tf.assign(snake_case , snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case_ = [tf.Variable(0 ) for i in range(len(snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case_ = tf.placeholder("int32" ) snake_case_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(snake_case , snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case_ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case_ = tf.reduce_mean(snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case_ = tf.placeholder("float" , [dim] ) snake_case_ = tf.placeholder("float" , [dim] ) snake_case_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(snake_case , snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case_ = tf.placeholder("float" , [noofclusters] ) snake_case_ = tf.argmin(snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case_ = tf.initialize_all_variables() # Initialize all variables sess.run(snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case_ = 1_0_0 for _ in range(snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(snake_case ) ): snake_case_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case_ = [ sess.run(snake_case , feed_dict={va: vect, va: sess.run(snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case_ = sess.run( snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(snake_case ): # Collect all the vectors assigned to this cluster snake_case_ = [ vectors[i] for i in range(len(snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case_ = sess.run( snake_case , feed_dict={mean_input: array(snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case_ = sess.run(snake_case ) snake_case_ = sess.run(snake_case ) return centroids, assignments
92
1
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): a__ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=1_25 , lowercase=None , **lowercase , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: a__: Optional[Any] = [f'<extra_id_{i}>' for i in range(lowercase)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens a__: Optional[int] = len(set(filter(lambda lowercase: bool('extra_id' in str(lowercase)) , lowercase))) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens') a__: Dict = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else pad_token a__: Optional[int] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else eos_token a__: Dict = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else unk_token super().__init__( eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , **lowercase , ) a__: Union[str, Any] = extra_ids a__: str = 2**8 # utf is 8 bits # define special tokens dict a__: Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } a__: Dict = len(self.special_tokens_encoder) a__: List[Any] = len(lowercase) for i, token in enumerate(lowercase): a__: Union[str, Any] = self.vocab_size + i - n a__: Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase)) + [1] return ([0] * len(lowercase)) + [1] + ([0] * len(lowercase)) + [1] def lowerCamelCase_ ( self , lowercase) -> List[int]: '''simple docstring''' if len(lowercase) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.') return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Dict = self._add_eos_if_not_present(lowercase) if token_ids_a is None: return token_ids_a else: a__: Optional[Any] = self._add_eos_if_not_present(lowercase) return token_ids_a + token_ids_a def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: int = [chr(lowercase) for i in text.encode('utf-8')] return tokens def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' if token in self.special_tokens_encoder: a__: List[str] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: a__: Union[str, Any] = self.added_tokens_encoder[token] elif len(lowercase) != 1: a__: List[Any] = self.unk_token_id else: a__: int = ord(lowercase) + self._num_special_tokens return token_id def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' if index in self.special_tokens_decoder: a__: Tuple = self.special_tokens_decoder[index] else: a__: Tuple = chr(index - self._num_special_tokens) return token def lowerCamelCase_ ( self , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Optional[Any] = B'' for token in tokens: if token in self.special_tokens_decoder: a__: Optional[Any] = self.special_tokens_decoder[token].encode('utf-8') elif token in self.added_tokens_decoder: a__: List[Any] = self.special_tokens_decoder[token].encode('utf-8') elif token in self.special_tokens_encoder: a__: Any = token.encode('utf-8') elif token in self.added_tokens_encoder: a__: Union[str, Any] = token.encode('utf-8') else: a__: Union[str, Any] = bytes([ord(lowercase)]) bstring += tok_string a__: str = bstring.decode('utf-8' , errors='ignore') return string def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' return ()
290
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( __lowerCAmelCase ): a__ = """decision_transformer""" a__ = ["""past_key_values"""] a__ = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=17 , lowercase=4 , lowercase=1_28 , lowercase=40_96 , lowercase=True , lowercase=1 , lowercase=10_24 , lowercase=3 , lowercase=1 , lowercase=None , lowercase="relu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=5_02_56 , lowercase=5_02_56 , lowercase=False , lowercase=False , **lowercase , ) -> Tuple: '''simple docstring''' a__: List[str] = state_dim a__: int = act_dim a__: List[Any] = hidden_size a__: List[str] = max_ep_len a__: List[Any] = action_tanh a__: Optional[Any] = vocab_size a__: Tuple = n_positions a__: Dict = n_layer a__: Optional[int] = n_head a__: Optional[int] = n_inner a__: Any = activation_function a__: Union[str, Any] = resid_pdrop a__: Any = embd_pdrop a__: Any = attn_pdrop a__: List[Any] = layer_norm_epsilon a__: Optional[Any] = initializer_range a__: Any = scale_attn_weights a__: Dict = use_cache a__: Optional[int] = scale_attn_by_inverse_layer_idx a__: List[str] = reorder_and_upcast_attn a__: Any = bos_token_id a__: int = eos_token_id super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase)
290
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) SCREAMING_SNAKE_CASE : Optional[Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') SCREAMING_SNAKE_CASE : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) SCREAMING_SNAKE_CASE : int = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) SCREAMING_SNAKE_CASE : Optional[int] = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions SCREAMING_SNAKE_CASE : Any = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) SCREAMING_SNAKE_CASE : str = tf.keras.preprocessing.image.img_to_array(test_image) SCREAMING_SNAKE_CASE : Dict = np.expand_dims(test_image, axis=0) SCREAMING_SNAKE_CASE : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: SCREAMING_SNAKE_CASE : Any = "Normal" if result[0][0] == 1: SCREAMING_SNAKE_CASE : Optional[int] = "Abnormality detected"
366
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): lowercase_ :int = logging.get_logger() # the current default level is logging.WARNING lowercase_ :List[str] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Tuple = logging.get_verbosity() lowercase_ :str = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Tuple = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase_ :Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Optional[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , UpperCamelCase_ ) lowercase_ :Any = logging.log_levels[env_level_str] lowercase_ :Optional[int] = logging.get_verbosity() self.assertEqual( UpperCamelCase_ , UpperCamelCase_ , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level lowercase_ :str = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() lowercase_ :Any = logging.logging.getLogger() with CaptureLogger(UpperCamelCase_ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def UpperCamelCase ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() lowercase_ :Optional[int] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowercase_ :Any = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
252
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_:List[Any] = TypeVar("""KEY""") SCREAMING_SNAKE_CASE_:Dict = TypeVar("""VAL""") @dataclass(frozen=SCREAMING_SNAKE_CASE__ , slots=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): '''simple docstring''' __lowerCamelCase : KEY __lowerCamelCase : VAL class SCREAMING_SNAKE_CASE__ ( _Item ): '''simple docstring''' def __init__( self ): super().__init__(lowerCamelCase__, lowerCamelCase__ ) def __bool__( self ): return False SCREAMING_SNAKE_CASE_:Optional[Any] = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 8, lowerCamelCase__ = 0.75 ): A : List[str] = initial_block_size A : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 A : Dict = capacity_factor A : Optional[Any] = 0 def _lowerCAmelCase ( self, lowerCamelCase__ ): return hash(lowerCamelCase__ ) % len(self._buckets ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return (ind + 1) % len(self._buckets ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : List[Any] = self._buckets[ind] if not stored: A : Optional[int] = _Item(lowerCamelCase__, lowerCamelCase__ ) self._len += 1 return True elif stored.key == key: A : int = _Item(lowerCamelCase__, lowerCamelCase__ ) return True else: return False def _lowerCAmelCase ( self ): A : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase__ ) def _lowerCAmelCase ( self ): if len(self._buckets ) <= self._initial_block_size: return False A : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = self._buckets A : Optional[Any] = [None] * new_size A : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def _lowerCAmelCase ( self ): self._resize(len(self._buckets ) * 2 ) def _lowerCAmelCase ( self ): self._resize(len(self._buckets ) // 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Union[str, Any] = self._get_bucket_index(lowerCamelCase__ ) for _ in range(len(self._buckets ) ): yield ind A : Dict = self._get_next_ind(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): if self._try_set(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): break def __setitem__( self, lowerCamelCase__, lowerCamelCase__ ): if self._is_full(): self._size_up() self._add_item(lowerCamelCase__, lowerCamelCase__ ) def __delitem__( self, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): A : Tuple = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase__ ) if item is _deleted: continue if item.key == key: A : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): A : int = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase__ ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): A : Union[str, Any] = """ ,""".join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
116
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class a : def __init__( self , A_ , A_=13 , A_=7 , A_=False , A_=True , A_=False , A_=True , A_=33 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ): '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Union[str, Any] = use_token_type_ids _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : str = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : Tuple = scope def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Tuple = None if self.use_labels: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = EsmModel(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ ) _UpperCAmelCase : Union[str, Any] = model(A_ ) _UpperCAmelCase : Any = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = EsmForMaskedLM(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Optional[int] = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : Union[str, Any] = EsmForTokenClassification(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Dict = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : int = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = False _lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _lowercase = () _lowercase = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) _lowercase = True def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = EsmModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=A_ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : List[str] = type self.model_tester.create_and_check_model(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = EsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()[0] _UpperCAmelCase : int = EsmEmbeddings(config=A_ ) _UpperCAmelCase : List[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _UpperCAmelCase : str = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _UpperCAmelCase : str = create_position_ids_from_input_ids(A_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(A_ , A_ ) ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()[0] _UpperCAmelCase : List[Any] = EsmEmbeddings(config=A_ ) _UpperCAmelCase : Union[str, Any] = torch.empty(2 , 4 , 30 ) _UpperCAmelCase : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _UpperCAmelCase : Optional[Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) _UpperCAmelCase : Tuple = embeddings.create_position_ids_from_inputs_embeds(A_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(A_ , A_ ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch class a ( UpperCAmelCase ): @slow def _UpperCAmelCase ( self ): '''simple docstring''' with torch.no_grad(): _UpperCAmelCase : Optional[Any] = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() _UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : List[str] = model(A_ )[0] _UpperCAmelCase : List[str] = 33 _UpperCAmelCase : Optional[int] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , A_ ) _UpperCAmelCase : Tuple = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' with torch.no_grad(): _UpperCAmelCase : Any = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() _UpperCAmelCase : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCAmelCase : List[Any] = model(A_ )[0] # compare the actual values for a slice. _UpperCAmelCase : Dict = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4 ) )
360
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class a : def __init__( self , A_ = None ): '''simple docstring''' if components is None: _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = list(A_ ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = len(self ) if size == len(A_ ): _UpperCAmelCase : Union[str, Any] = [self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception("must have the same size" ) def __sub__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = len(self ) if size == len(A_ ): _UpperCAmelCase : Optional[Any] = [self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , A_ ): '''simple docstring''' ... @overload def __mul__( self , A_ ): '''simple docstring''' ... def __mul__( self , A_ ): '''simple docstring''' if isinstance(A_ , (float, int) ): _UpperCAmelCase : str = [c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): _UpperCAmelCase : int = len(self ) _UpperCAmelCase : Any = [self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception("invalid operand!" ) def _UpperCAmelCase ( self ): '''simple docstring''' return Vector(self.__components ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCAmelCase : Any = value def _UpperCAmelCase ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("Vector is empty" ) _UpperCAmelCase : Dict = [c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _UpperCAmelCase ( self , A_ , A_ = False ): '''simple docstring''' _UpperCAmelCase : List[Any] = self * other _UpperCAmelCase : str = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) return Vector([0] * dimension ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , lowerCAmelCase )) _UpperCAmelCase : Tuple = [0] * dimension _UpperCAmelCase : Optional[Any] = 1 return Vector(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float , lowerCAmelCase: Vector , lowerCAmelCase: Vector ) -> Vector: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , (int, float) )) ) return x * scalar + y def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> Vector: random.seed(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class a : def __init__( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = matrix _UpperCAmelCase : Union[str, Any] = w _UpperCAmelCase : str = h def __str__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[int] = [] for i in range(self.__height ): _UpperCAmelCase : List[str] = [ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , A_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[Any] = [] for i in range(self.__height ): _UpperCAmelCase : Tuple = [ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , A_ ): '''simple docstring''' ... @overload def __mul__( self , A_ ): '''simple docstring''' ... def __mul__( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: _UpperCAmelCase : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): _UpperCAmelCase : List[Any] = [ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(A_ , (int, float) ): # matrix-scalar _UpperCAmelCase : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _UpperCAmelCase ( self ): '''simple docstring''' return self.__height def _UpperCAmelCase ( self ): '''simple docstring''' return self.__width def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCAmelCase : Tuple = value else: raise Exception("change_component: indices out of bounds" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) _UpperCAmelCase : Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): _UpperCAmelCase : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception("Indices out of bounds" ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCAmelCase : Dict = [ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Matrix: _UpperCAmelCase : list[list[float]] = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> Matrix: random.seed(lowerCAmelCase ) _UpperCAmelCase : list[list[float]] = [ [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
189
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __lt__( self , __lowercase ) -> List[str]: return self[-1] < other[-1] def __eq__( self , __lowercase ) -> List[Any]: return self[-1] == other[-1] def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: lowerCAmelCase_ : list[Stack] = [] # sort into stacks for element in collection: lowerCAmelCase_ : Optional[int] = Stack([element] ) lowerCAmelCase_ : Dict = bisect_left(lowerCAmelCase_ , lowerCAmelCase_ ) if i != len(lowerCAmelCase_ ): stacks[i].append(lowerCAmelCase_ ) else: stacks.append(lowerCAmelCase_ ) # use a heap-based merge to merge stack efficiently lowerCAmelCase_ : Optional[int] = merge(*(reversed(lowerCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] =input("""Enter numbers separated by a comma:\n""").strip() _UpperCAmelCase : List[str] =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
262
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase : List[Any] = datasets.load_iris() lowerCAmelCase : List[str] = np.array(data['data']) lowerCAmelCase : Any = np.array(data['target']) lowerCAmelCase : Dict = data['target_names'] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = train_test_split(X, y) def A_ ( a , a ): """simple docstring""" return np.linalg.norm(np.array(a ) - np.array(a ) ) def A_ ( a , a , a , a , a=5 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = zip(a , a ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE_ : List[Any] = [] for data_point in data: SCREAMING_SNAKE_CASE_ : Optional[int] = euclidean_distance(data_point[0] , a ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE_ : List[str] = [i[1] for i in sorted(a )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE_ : List[Any] = Counter(a ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
253
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __snake_case ( _a): snake_case__ : Union[str, Any] = """retribert""" def __init__( self : Any , __lowerCAmelCase : Tuple=3_0_5_2_2 , __lowerCAmelCase : Union[str, Any]=7_6_8 , __lowerCAmelCase : Tuple=8 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : str=3_0_7_2 , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Any=5_1_2 , __lowerCAmelCase : str=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : int=1E-12 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=1_2_8 , __lowerCAmelCase : int=0 , **__lowerCAmelCase : Any , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : int = type_vocab_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = share_encoders _lowerCamelCase : Tuple = projection_dim
368
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowerCAmelCase__ = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def snake_case_ ( A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _lowerCamelCase : Union[str, Any] = int(re.match(R'''.*layer_(\d*).*''', A_ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def snake_case_ ( A_ : List[Any] ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 _lowerCamelCase : List[str] = re.search(R'''[^\d](\d+)$''', str(A_ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) _lowerCamelCase : Optional[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case_ ( A_ : str, A_ : Any, A_ : int, A_ : List[str], A_ : Any ): '''simple docstring''' if bloom_config_file == "": _lowerCamelCase : Dict = BloomConfig() else: _lowerCamelCase : Any = BloomConfig.from_json_file(A_ ) if shard_model: _lowerCamelCase : Optional[int] = os.listdir(A_ ) _lowerCamelCase : List[str] = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s, A_ ) ) _lowerCamelCase : str = {'''weight_map''': {}, '''metadata''': {}} _lowerCamelCase : List[str] = 0 _lowerCamelCase : str = None _lowerCamelCase : str = BloomConfig() for j, file in enumerate(A_ ): print('''Processing file: {}'''.format(A_ ) ) _lowerCamelCase : List[Any] = None for i in range(A_ ): # load all TP files _lowerCamelCase : Any = file.replace('''model_00''', F'''model_0{i}''' ) _lowerCamelCase : Any = torch.load(os.path.join(A_, A_ ), map_location='''cpu''' ) # Rename keys in the transformers names _lowerCamelCase : Optional[Any] = list(temp.keys() ) for key in keys: _lowerCamelCase : List[Any] = temp.pop(A_ ) if tensors is None: _lowerCamelCase : Any = temp else: for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _lowerCamelCase : List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _lowerCamelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _lowerCamelCase : Optional[Any] = tensors[key] / pretraining_tp torch.save( A_, os.path.join( A_, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ), str(len(A_ ) ).zfill(5 ) ), ), ) for key in tensors.keys(): _lowerCamelCase : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _lowerCamelCase : Tuple = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ), str(len(A_ ) ).zfill(5 ) ) _lowerCamelCase : List[Any] = BloomConfig() _lowerCamelCase : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME _lowerCamelCase : Union[str, Any] = total_size with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A_, WEIGHTS_NAME + '''.index.json''' ), '''w''', encoding='''utf-8''' ) as f: _lowerCamelCase : Any = json.dumps(A_, indent=2, sort_keys=A_ ) + '''\n''' f.write(A_ ) else: _lowerCamelCase : Tuple = BloomModel(A_ ) _lowerCamelCase : Optional[int] = os.listdir(A_ ) _lowerCamelCase : Union[str, Any] = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s, A_ ) ) _lowerCamelCase : int = None for i, file in enumerate(A_ ): _lowerCamelCase : Optional[int] = None for i in range(A_ ): # load all TP files _lowerCamelCase : str = file.replace('''model_00''', F'''model_0{i}''' ) _lowerCamelCase : List[Any] = torch.load(os.path.join(A_, A_ ), map_location='''cpu''' ) # Rename keys in the transformers names _lowerCamelCase : List[Any] = list(temp.keys() ) for key in keys: _lowerCamelCase : Dict = temp.pop(A_ ) if tensors is None: _lowerCamelCase : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _lowerCamelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _lowerCamelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _lowerCamelCase : List[Any] = tensors[key] / pretraining_tp _lowerCamelCase : List[str] = model.load_state_dict(A_, strict=A_ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: _lowerCamelCase : Optional[Any] = set(other_keys.missing_keys ) else: _lowerCamelCase : Union[str, Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(A_, exist_ok=A_ ) _lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _lowerCamelCase : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: _lowerCamelCase : Dict = model.to(config.torch_dtype ) torch.save(model.state_dict(), A_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowerCAmelCase__ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
175
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[str] = 'swin2sr' lowerCAmelCase : str = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] ,_UpperCAmelCase : Tuple=64 ,_UpperCAmelCase : str=1 ,_UpperCAmelCase : List[Any]=3 ,_UpperCAmelCase : Any=180 ,_UpperCAmelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] ,_UpperCAmelCase : Any=[6, 6, 6, 6, 6, 6] ,_UpperCAmelCase : int=8 ,_UpperCAmelCase : Any=2.0 ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : Tuple=0.0 ,_UpperCAmelCase : Optional[int]=0.0 ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : List[str]="gelu" ,_UpperCAmelCase : Tuple=False ,_UpperCAmelCase : Optional[int]=0.02 ,_UpperCAmelCase : Union[str, Any]=1E-5 ,_UpperCAmelCase : int=2 ,_UpperCAmelCase : Tuple=1.0 ,_UpperCAmelCase : Union[str, Any]="1conv" ,_UpperCAmelCase : Tuple="pixelshuffle" ,**_UpperCAmelCase : List[str] ,): super().__init__(**_UpperCAmelCase ) _a : List[str] = image_size _a : Dict = patch_size _a : Optional[int] = num_channels _a : Optional[int] = embed_dim _a : Union[str, Any] = depths _a : Optional[int] = len(_UpperCAmelCase ) _a : Optional[Any] = num_heads _a : str = window_size _a : Optional[Any] = mlp_ratio _a : Optional[int] = qkv_bias _a : Tuple = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Any = drop_path_rate _a : str = hidden_act _a : Tuple = use_absolute_embeddings _a : Dict = layer_norm_eps _a : Any = initializer_range _a : Optional[Any] = upscale _a : int = img_range _a : Union[str, Any] = resi_connection _a : int = upsampler
89
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ :Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any: '''simple docstring''' require_version(deps[pkg] , a__ )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Tuple = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class A ( lowerCamelCase__ ): '''simple docstring''' A__ = '''speech_to_text_2''' A__ = ['''past_key_values'''] A__ = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Union[str, Any] , _UpperCAmelCase : Optional[int]=1_0000 , _UpperCAmelCase : Optional[int]=6 , _UpperCAmelCase : Optional[int]=2048 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict="relu" , _UpperCAmelCase : int=256 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : str=1024 , **_UpperCAmelCase : Dict , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = decoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_target_positions super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
358
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__(self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Any , ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=''' f''' {type(_UpperCAmelCase )}.''' ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 1 / 0.18_215 * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
146
0
from typing import Any class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = data __lowerCAmelCase = None class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = None def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) __lowerCAmelCase = temp.next print() def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = Node(_A ) __lowerCAmelCase = self.head __lowerCAmelCase = new_node def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if node_data_a == node_data_a: return else: __lowerCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: __lowerCAmelCase = node_a.next __lowerCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: __lowerCAmelCase = node_a.next if node_a is None or node_a is None: return __lowerCAmelCase , __lowerCAmelCase = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
92
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__ ( snake_case__ , unittest.TestCase ): _a : Dict = KandinskyImgaImgPipeline _a : List[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] _a : str = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] _a : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _a : int = False @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 3_2 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 3_2 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.time_input_dim @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1_0_0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) __lowerCAmelCase = MultilingualCLIP(_A ) __lowerCAmelCase = text_encoder.eval() return text_encoder @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCAmelCase = UNetaDConditionModel(**_A ) return model @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __lowerCAmelCase = DDIMScheduler(**_A ) __lowerCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ): """simple docstring""" __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(_A ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(_A ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(_A ) else: __lowerCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) __lowerCAmelCase = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**_A ) __lowerCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(_A ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __lowerCAmelCase = "A red cartoon frog, 4k" __lowerCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __lowerCAmelCase = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __lowerCAmelCase = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
92
1
"""simple docstring""" def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : int ) -> float: if digit_amount > 0: return round(number - int(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return number - int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
# flake8: noqa # Lint as: python3 _UpperCAmelCase : Dict =[ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
262
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[Any] =logging.get_logger(__name__) _UpperCAmelCase : str ={ """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """vit_mae""" def __init__( self , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase=3_0_7_2 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1e-12 , __lowercase=2_2_4 , __lowercase=1_6 , __lowercase=3 , __lowercase=True , __lowercase=1_6 , __lowercase=5_1_2 , __lowercase=8 , __lowercase=2_0_4_8 , __lowercase=0.75 , __lowercase=False , **__lowercase , ) -> str: super().__init__(**__lowercase ) lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = image_size lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : List[str] = qkv_bias lowerCAmelCase_ : List[Any] = decoder_num_attention_heads lowerCAmelCase_ : int = decoder_hidden_size lowerCAmelCase_ : Optional[int] = decoder_num_hidden_layers lowerCAmelCase_ : Tuple = decoder_intermediate_size lowerCAmelCase_ : Tuple = mask_ratio lowerCAmelCase_ : Any = norm_pix_loss
262
1
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __A = logging.get_logger(__name__) class _snake_case ( a__ ): snake_case__ = "linear" snake_case__ = "cosine" snake_case__ = "cosine_with_restarts" snake_case__ = "polynomial" snake_case__ = "constant" snake_case__ = "constant_with_warmup" snake_case__ = "piecewise_constant" def lowercase_ ( _lowerCamelCase: Optimizer , _lowerCamelCase: int = -1 ) -> int: '''simple docstring''' return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optimizer , _lowerCamelCase: int , _lowerCamelCase: int = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(_lowerCamelCase: int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optimizer , _lowerCamelCase: str , _lowerCamelCase: int = -1 ) -> Tuple: '''simple docstring''' __lowerCamelCase : List[Any] = {} __lowerCamelCase : str = step_rules.split("," ) for rule_str in rule_list[:-1]: __lowerCamelCase , __lowerCamelCase : int = rule_str.split(":" ) __lowerCamelCase : Union[str, Any] = int(_lowerCamelCase ) __lowerCamelCase : List[str] = float(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = value __lowerCamelCase : Any = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase: Any , _lowerCamelCase: Dict ): def rule_func(_lowerCamelCase: int ) -> float: __lowerCamelCase : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __lowerCamelCase : List[str] = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: List[Any] , _lowerCamelCase: int , _lowerCamelCase: List[str]=-1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(_lowerCamelCase: int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optimizer , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: float = 0.5 , _lowerCamelCase: int = -1 ) -> Any: '''simple docstring''' def lr_lambda(_lowerCamelCase: str ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __lowerCamelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optimizer , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int = 1 , _lowerCamelCase: int = -1 ) -> Dict: '''simple docstring''' def lr_lambda(_lowerCamelCase: Optional[Any] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __lowerCamelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: List[Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any]=1E-7 , _lowerCamelCase: Optional[Any]=1.0 , _lowerCamelCase: str=-1 ) -> Dict: '''simple docstring''' __lowerCamelCase : int = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_lowerCamelCase: int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __lowerCamelCase : Dict = lr_init - lr_end __lowerCamelCase : Optional[Any] = num_training_steps - num_warmup_steps __lowerCamelCase : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps __lowerCamelCase : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __A = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase_ ( _lowerCamelCase: Union[str, SchedulerType] , _lowerCamelCase: Optimizer , _lowerCamelCase: Optional[str] = None , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: int = 1 , _lowerCamelCase: float = 1.0 , _lowerCamelCase: int = -1 , ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[int] = SchedulerType(_lowerCamelCase ) __lowerCamelCase : Any = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
64
"""simple docstring""" import requests __A = '''YOUR API KEY''' def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str = giphy_api_key ) -> list: '''simple docstring''' __lowerCamelCase : Dict = "+".join(query.split() ) __lowerCamelCase : Optional[int] = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __lowerCamelCase : Optional[Any] = requests.get(_lowerCamelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
64
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : Any = 42 A_ : int = 42 class SCREAMING_SNAKE_CASE__ : def __init__(self : Tuple , a__ : Tuple ): """simple docstring""" __snake_case = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): __snake_case = Node(__UpperCAmelCase , self.head ) def __iter__(self : Any ): """simple docstring""" __snake_case = self.head while node: yield node.data __snake_case = node.next_node def __len__(self : Optional[Any] ): """simple docstring""" return sum(1 for _ in self ) def __str__(self : int ): """simple docstring""" return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def lowerCamelCase__ ( snake_case_ : SortedLinkedList , snake_case_ : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
24
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger() @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :nn.Module __SCREAMING_SNAKE_CASE :List[nn.Module] = field(default_factory=__a ) __SCREAMING_SNAKE_CASE :list = field(default_factory=__a ) def snake_case__ ( self : List[str] , a__ : str , a__ : Tensor , a__ : Tensor ): __magic_name__ = len(list(m.modules() ) ) == 1 or isinstance(a__ , nn.Convad ) or isinstance(a__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a__ ) def __call__( self : List[Any] , a__ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a__ ) [x.remove() for x in self.handles] return self @property def snake_case__ ( self : Dict ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :nn.Module __SCREAMING_SNAKE_CASE :nn.Module __SCREAMING_SNAKE_CASE :int = 0 __SCREAMING_SNAKE_CASE :List = field(default_factory=__a ) __SCREAMING_SNAKE_CASE :List = field(default_factory=__a ) def __call__( self : int , a__ : Tensor ): __magic_name__ = Tracker(self.dest )(a__ ).parametrized __magic_name__ = Tracker(self.src )(a__ ).parametrized __magic_name__ = list(filter(lambda a__ : type(a__ ) not in self.src_skip , a__ ) ) __magic_name__ = list(filter(lambda a__ : type(a__ ) not in self.dest_skip , a__ ) ) if len(a__ ) != len(a__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(a__ )} operations while''' F''' destination module has {len(a__ )}.''' ) for dest_m, src_m in zip(a__ , a__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def UpperCamelCase ( a , a , a , a = True ) -> Any: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): __magic_name__ = timm.create_model(a , pretrained=a ).eval() __magic_name__ = ResNetForImageClassification(a ).eval() __magic_name__ = ModuleTransfer(src=a , dest=a ) __magic_name__ = torch.randn((1, 3, 224, 224) ) module_transfer(a ) assert torch.allclose(from_model(a ) , our_model(a ).logits ), "The model logits don't match the original one." __magic_name__ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(a ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a , ) # we can use the convnext one __magic_name__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCamelCase ( a , a = None , a = True ) -> int: '''simple docstring''' __magic_name__ = '''imagenet-1k-id2label.json''' __magic_name__ = 1000 __magic_name__ = (1, num_labels) __magic_name__ = '''huggingface/label-files''' __magic_name__ = num_labels __magic_name__ = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(a ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} __magic_name__ = partial(a , num_labels=a , idalabel=a , labelaid=a ) __magic_name__ = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a , names_to_config[model_name] , a , a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a , a , a , a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
358
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __magic_name__ = MaskFormerConfig(backbone_config=a ) __magic_name__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __magic_name__ = 847 __magic_name__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __magic_name__ = 150 __magic_name__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __magic_name__ = 171 __magic_name__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __magic_name__ = 133 __magic_name__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __magic_name__ = 19 __magic_name__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __magic_name__ = 65 __magic_name__ = '''mapillary-vistas-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(a ): v for k, v in idalabel.items()} return config def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' __magic_name__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def UpperCamelCase ( a , a , a ) -> str: '''simple docstring''' __magic_name__ = dct.pop(a ) __magic_name__ = val def UpperCamelCase ( a , a ) -> List[str]: '''simple docstring''' __magic_name__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __magic_name__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __magic_name__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[:dim, :] __magic_name__ = in_proj_bias[: dim] __magic_name__ = in_proj_weight[ dim : dim * 2, : ] __magic_name__ = in_proj_bias[ dim : dim * 2 ] __magic_name__ = in_proj_weight[ -dim :, : ] __magic_name__ = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( a , a ) -> int: '''simple docstring''' # fmt: off __magic_name__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: hidden_size, :] __magic_name__ = in_proj_bias[:config.hidden_size] __magic_name__ = in_proj_weight[hidden_size : hidden_size * 2, :] __magic_name__ = in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ = in_proj_weight[-hidden_size :, :] __magic_name__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: hidden_size, :] __magic_name__ = in_proj_bias[:config.hidden_size] __magic_name__ = in_proj_weight[hidden_size : hidden_size * 2, :] __magic_name__ = in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ = in_proj_weight[-hidden_size :, :] __magic_name__ = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase ( ) -> torch.Tensor: '''simple docstring''' __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def UpperCamelCase ( a , a , a , a = False ) -> Dict: '''simple docstring''' __magic_name__ = get_maskformer_config(a ) # load original state_dict with open(a , '''rb''' ) as f: __magic_name__ = pickle.load(a ) __magic_name__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __magic_name__ = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_swin_q_k_v(a , config.backbone_config ) read_in_decoder_q_k_v(a , a ) # update to torch tensors for key, value in state_dict.items(): __magic_name__ = torch.from_numpy(a ) # load 🤗 model __magic_name__ = MaskFormerForInstanceSegmentation(a ) model.eval() for name, param in model.named_parameters(): print(a , param.shape ) __magic_name__ , __magic_name__ = model.load_state_dict(a , strict=a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(a ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __magic_name__ = prepare_img() if "vistas" in model_name: __magic_name__ = 65 elif "cityscapes" in model_name: __magic_name__ = 6_5535 else: __magic_name__ = 255 __magic_name__ = True if '''ade''' in model_name else False __magic_name__ = MaskFormerImageProcessor(ignore_index=a , reduce_labels=a ) __magic_name__ = image_processor(a , return_tensors='''pt''' ) __magic_name__ = model(**a ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __magic_name__ = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
98
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
212
import re def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: if len(re.findall('[ATCG]' , SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
212
1
import os def UpperCamelCase ( ): '''simple docstring''' with open(os.path.dirname(__lowercase ) + '/grid.txt' ) as f: A_ : List[str] = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowercase ) for x in f.readline().split()] ) A_ : Union[str, Any] = 0 # right for i in range(20 ): for j in range(17 ): A_ : str = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A_ : Dict = temp # down for i in range(17 ): for j in range(20 ): A_ : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A_ : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): A_ : List[str] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A_ : str = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): A_ : List[str] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A_ : Dict = temp return maximum if __name__ == "__main__": print(solution())
192
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
1
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : Union[str, Any] = 1_00_00_00 ) -> Tuple: '''simple docstring''' __lowerCAmelCase = set(range(3 , lowerCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase_ , lowerCAmelCase_ ) ) ) __lowerCAmelCase = [float(lowerCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase_ , limit + 1 , lowerCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
229
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase__ (lowerCAmelCase_ = 100_0000 , lowerCAmelCase_ = 10 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = defaultdict(lowerCAmelCase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __SCREAMING_SNAKE_CASE = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __SCREAMING_SNAKE_CASE = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCAmelCase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
54
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] UpperCamelCase = 0 for log in Path().glob('''*.log'''): UpperCamelCase = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase = f'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase = [] log.unlink() UpperCamelCase = '''''' UpperCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase = [] UpperCamelCase = {} for test in failed_tests: UpperCamelCase = test[0].split('''::''') UpperCamelCase = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase = [test[0] for test in failed_table] UpperCamelCase = list(set(files)) # Count number of instances in failed_tests UpperCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCamelCase = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase = len(err) + 10 UpperCamelCase = message[: 3000 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: UpperCamelCase = '''No failed tests! 🤗''' print(f'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) UpperCamelCase = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) UpperCamelCase = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase = row[0] else: UpperCamelCase = '''''' UpperCamelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
334
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
1
from ...processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ = ['image_processor', 'feature_extractor'] lowercase_ = 'TvltImageProcessor' lowercase_ = 'TvltFeatureExtractor' def __init__(self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any) ->int: '''simple docstring''' super().__init__(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE) lowerCamelCase__: Optional[int] =image_processor lowerCamelCase__: List[str] =feature_extractor def __call__(self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Tuple=False , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int , ) ->Any: '''simple docstring''' if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process.") lowerCamelCase__: Union[str, Any] =None if images is not None: lowerCamelCase__: Optional[Any] =self.image_processor(_SCREAMING_SNAKE_CASE , mask_pixel=_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if images_mixed is not None: lowerCamelCase__: Tuple =self.image_processor(_SCREAMING_SNAKE_CASE , is_mixed=_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is not None: lowerCamelCase__: Union[str, Any] =self.feature_extractor( _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , mask_audio=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) lowerCamelCase__: Optional[Any] ={} if audio is not None: output_dict.update(_SCREAMING_SNAKE_CASE) if images is not None: output_dict.update(_SCREAMING_SNAKE_CASE) if images_mixed_dict is not None: output_dict.update(_SCREAMING_SNAKE_CASE) return output_dict @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processor.model_input_names lowerCamelCase__: Optional[Any] =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
10
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class a ( __lowerCamelCase ): __lowerCAmelCase : List[Any] = """codegen""" __lowerCAmelCase : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :str ,__lowercase :List[Any]=5_0_4_0_0 ,__lowercase :List[str]=2_0_4_8 ,__lowercase :Tuple=2_0_4_8 ,__lowercase :List[Any]=4_0_9_6 ,__lowercase :Union[str, Any]=2_8 ,__lowercase :Optional[Any]=1_6 ,__lowercase :List[str]=6_4 ,__lowercase :List[Any]=None ,__lowercase :Union[str, Any]="gelu_new" ,__lowercase :Dict=0.0 ,__lowercase :str=0.0 ,__lowercase :List[Any]=0.0 ,__lowercase :str=1e-5 ,__lowercase :List[Any]=0.02 ,__lowercase :int=True ,__lowercase :Optional[Any]=5_0_2_5_6 ,__lowercase :Any=5_0_2_5_6 ,__lowercase :Optional[Any]=False ,**__lowercase :Dict ,): snake_case__ : List[Any] = vocab_size snake_case__ : Optional[Any] = n_ctx snake_case__ : Optional[int] = n_positions snake_case__ : Optional[int] = n_embd snake_case__ : Any = n_layer snake_case__ : List[Any] = n_head snake_case__ : List[str] = n_inner snake_case__ : Tuple = rotary_dim snake_case__ : Union[str, Any] = activation_function snake_case__ : Any = resid_pdrop snake_case__ : int = embd_pdrop snake_case__ : Tuple = attn_pdrop snake_case__ : Dict = layer_norm_epsilon snake_case__ : int = initializer_range snake_case__ : Dict = use_cache snake_case__ : Tuple = bos_token_id snake_case__ : int = eos_token_id super().__init__( bos_token_id=__lowercase ,eos_token_id=__lowercase ,tie_word_embeddings=__lowercase ,**__lowercase ) class a ( __lowerCamelCase ): def __init__( self :List[Any] ,__lowercase :PretrainedConfig ,__lowercase :str = "default" ,__lowercase :List[PatchingSpec] = None ,__lowercase :bool = False ,): super().__init__(__lowercase ,task=__lowercase ,patching_specs=__lowercase ,use_past=__lowercase ) if not getattr(self._config ,'''pad_token_id''' ,__lowercase ): # TODO: how to do that better? snake_case__ : Dict = 0 @property def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__lowercase ,direction='''inputs''' ) snake_case__ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: snake_case__ : Dict = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCamelCase ( self :int ): return self._config.n_layer @property def __lowerCamelCase ( self :Union[str, Any] ): return self._config.n_head def __lowerCamelCase ( self :Optional[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Optional[int] = super(__lowercase ,self ).generate_dummy_inputs( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) # We need to order the input in the way they appears in the forward() snake_case__ : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : Optional[Any] = seqlen + 2 snake_case__ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case__ : Any = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(self.num_layers ) ] snake_case__ : List[Any] = common_inputs['''attention_mask'''] if self.use_past: snake_case__ : List[Any] = ordered_inputs['''attention_mask'''].dtype snake_case__ : int = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowercase ,__lowercase ,dtype=__lowercase )] ,dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self :Optional[int] ): return 1_3
362
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = original_name.split('''.''' )[0] snake_case__ : List[str] = key.split('''.''' ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 2] ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 1] ) snake_case__ : Any = orig_block_num - offset snake_case__ : Tuple = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = OrderedDict() snake_case__ , snake_case__ : List[str] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case__ : int = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case__ : Tuple = key[: key.find('''proj''' )] snake_case__ : Union[str, Any] = key.replace(__lowerCAmelCase , f"""patch_embeddings.{total_embed_found}.""" ) snake_case__ : Dict = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case__ : Optional[int] = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case__ : Optional[Any] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case__ : int = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case__ : Tuple = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case__ : str = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case__ : Union[str, Any] = key.replace('''head''' , '''classifier''' ) snake_case__ : Union[str, Any] = value return new_state_dict def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : List[str] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = PoolFormerConfig() # set attributes based on model_name snake_case__ : List[Any] = '''huggingface/label-files''' snake_case__ : Union[str, Any] = model_name[-3:] snake_case__ : List[Any] = 1000 snake_case__ : Tuple = '''imagenet-1k-id2label.json''' snake_case__ : Optional[int] = (1, 1000) # set config attributes snake_case__ : Dict = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} if size == "s12": snake_case__ : List[str] = [2, 2, 6, 2] snake_case__ : Union[str, Any] = [64, 128, 320, 512] snake_case__ : Optional[int] = 4.0 snake_case__ : Tuple = 0.9 elif size == "s24": snake_case__ : Tuple = [4, 4, 12, 4] snake_case__ : Tuple = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Dict = 0.9 elif size == "s36": snake_case__ : Optional[Any] = [6, 6, 18, 6] snake_case__ : str = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Any = 1E-6 snake_case__ : Any = 0.9 elif size == "m36": snake_case__ : Any = [6, 6, 18, 6] snake_case__ : Union[str, Any] = [96, 192, 384, 768] snake_case__ : Dict = 4.0 snake_case__ : Union[str, Any] = 1E-6 snake_case__ : List[Any] = 0.95 elif size == "m48": snake_case__ : Optional[int] = [8, 8, 24, 8] snake_case__ : List[str] = [96, 192, 384, 768] snake_case__ : str = 4.0 snake_case__ : str = 1E-6 snake_case__ : Any = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case__ : Optional[Any] = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) # Prepare image snake_case__ : Optional[int] = prepare_img() snake_case__ : str = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case__ : List[str] = torch.load(__lowerCAmelCase , map_location=torch.device('''cpu''' ) ) # rename keys snake_case__ : str = rename_keys(__lowerCAmelCase ) # create HuggingFace model and load state dict snake_case__ : List[str] = PoolFormerForImageClassification(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Define image processor snake_case__ : int = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case__ : Dict = model(__lowerCAmelCase ) snake_case__ : str = outputs.logits # define expected logit slices for different models if size == "s12": snake_case__ : Tuple = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": snake_case__ : Optional[int] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": snake_case__ : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": snake_case__ : Optional[int] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": snake_case__ : List[str] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class snake_case_( a__ ): __UpperCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
60
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = PandasConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Union[str, Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): with open(_UpperCAmelCase , 'rb') as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase)) yield i, self._cast_table(_UpperCAmelCase)
190
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib a__: List[Any] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } a__: str = logging.WARNING def UpperCamelCase__( )->Dict: A__ = os.getenv('''DATASETS_VERBOSITY''' , UpperCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def UpperCamelCase__( )->str: return __name__.split('''.''' )[0] def UpperCamelCase__( )->logging.Logger: return logging.getLogger(_get_library_name() ) def UpperCamelCase__( )->None: # Apply our default configuration to the library root logger. A__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCamelCase__( )->None: A__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCamelCase__( UpperCamelCase__ : Optional[str] = None )->logging.Logger: if name is None: A__ = _get_library_name() return logging.getLogger(UpperCamelCase__ ) def UpperCamelCase__( )->int: return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase__( UpperCamelCase__ : int )->None: _get_library_root_logger().setLevel(UpperCamelCase__ ) def UpperCamelCase__( )->List[Any]: return set_verbosity(UpperCamelCase__ ) def UpperCamelCase__( )->Optional[Any]: return set_verbosity(UpperCamelCase__ ) def UpperCamelCase__( )->Dict: return set_verbosity(UpperCamelCase__ ) def UpperCamelCase__( )->Any: return set_verbosity(UpperCamelCase__ ) def UpperCamelCase__( )->None: A__ = False def UpperCamelCase__( )->None: A__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE__ : def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): # pylint: disable=unused-argument A__ = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self,__lowerCamelCase ): def empty_fn(*__lowerCamelCase,**__lowerCamelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): return a__: Dict = True class SCREAMING_SNAKE_CASE__ : def __call__( self,*__lowerCamelCase,__lowerCamelCase=False,**__lowerCamelCase ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase,**__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): A__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() a__: str = _tqdm_cls() def UpperCamelCase__( )->bool: global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase__( )->Optional[Any]: global _tqdm_active A__ = True def UpperCamelCase__( )->int: global _tqdm_active A__ = False
39
def UpperCamelCase__( )->Dict: A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 19_01 A__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
39
1
"""simple docstring""" from math import isqrt, loga def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]: '''simple docstring''' lowercase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __lowerCAmelCase , __lowerCAmelCase ): lowercase_ = False return [i for i in range(2 , __lowerCAmelCase ) if is_prime[i]] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 80_08_00 , __lowerCAmelCase = 80_08_00 ) -> int: '''simple docstring''' lowercase_ = degree * loga(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = calculate_prime_numbers(__lowerCAmelCase ) lowercase_ = 0 lowercase_ = 0 lowercase_ = len(__lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
136
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : Union[str, Any] = TypeVar("T") UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]] UpperCAmelCase : int = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
136
1
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __lowerCAmelCase, unittest.TestCase ): UpperCAmelCase__ = PhobertTokenizer UpperCAmelCase__ = False def A_ ( self : Any ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] lowerCamelCase__ : List[str] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) lowerCamelCase__ : Optional[Any] = ['''#version: 0.2''', '''l à</w>'''] lowerCamelCase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def A_ ( self : str , **UpperCAmelCase : Optional[Any] ) -> Any: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def A_ ( self : List[str] , UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = '''Tôi là VinAI Research''' lowerCamelCase__ : Tuple = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : Tuple = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ : int = '''Tôi là VinAI Research''' lowerCamelCase__ : Any = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() lowerCamelCase__ : int = tokenizer.tokenize(lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase__ : str = tokens + [tokenizer.unk_token] lowerCamelCase__ : Tuple = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
356
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : Any ) -> int: lowerCamelCase__ : int = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) lowerCamelCase__ : Any = 'The dog is cute and lives in the garden house' lowerCamelCase__ : Union[str, Any] = jnp.array([tokenizer.encode(UpperCAmelCase )] ) lowerCamelCase__ : Optional[int] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase__ : str = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase )['last_hidden_state'] self.assertEqual(output.shape , UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCAmelCase , atol=1e-3 ) )
45
0
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class A__ ( A__ ): def __init__( self : List[str] , _a : Optional[Any]="" , _a : Any="train" ) -> int: '''simple docstring''' assert os.path.isdir(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =os.listdir(_a ) for story_filename in story_filenames_list: if "summary" in story_filename: continue _SCREAMING_SNAKE_CASE =os.path.join(_a , _a ) if not os.path.isfile(_a ): continue self.documents.append(_a ) def __len__( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return len(self.documents ) def __getitem__( self : Optional[int] , _a : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.documents[idx] _SCREAMING_SNAKE_CASE =document_path.split('/' )[-1] with open(_a , encoding='utf-8' ) as source: _SCREAMING_SNAKE_CASE =source.read() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =process_story(_a ) return document_name, story_lines, summary_lines def _lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =list(filter(lambda _UpperCamelCase : len(_UpperCamelCase ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it _SCREAMING_SNAKE_CASE =[_add_missing_period(_UpperCamelCase ) for line in nonempty_lines] # gather article lines _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =deque(_UpperCamelCase ) while True: try: _SCREAMING_SNAKE_CASE =lines.popleft() if element.startswith('@highlight' ): break story_lines.append(_UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _SCREAMING_SNAKE_CASE =list(filter(lambda _UpperCamelCase : not t.startswith('@highlight' ) , _UpperCamelCase ) ) return story_lines, summary_lines def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" if len(_UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_UpperCamelCase )) ) return sequence def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.ones_like(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =sequence == pad_token_id _SCREAMING_SNAKE_CASE =0 return mask def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[tokenizer.encode(_UpperCamelCase ) for line in story_lines] _SCREAMING_SNAKE_CASE =[token for sentence in story_lines_token_ids for token in sentence] _SCREAMING_SNAKE_CASE =[tokenizer.encode(_UpperCamelCase ) for line in summary_lines] _SCREAMING_SNAKE_CASE =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for sequence in batch: _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_UpperCamelCase ) return torch.tensor(_UpperCamelCase )
47
'''simple docstring''' import copy import re class A__ : A__ = 'hp' A__ = {} A__ = None @classmethod def A ( cls : Optional[Any] , _a : Optional[Any] , _a : Any ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =prefix _SCREAMING_SNAKE_CASE =defaults cls.build_naming_info() @staticmethod def A ( _a : Optional[Any] , _a : List[Any] ) -> Any: '''simple docstring''' if len(_a ) == 0: return "" _SCREAMING_SNAKE_CASE =None if any(char.isdigit() for char in word ): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_a ) + 1 ): _SCREAMING_SNAKE_CASE =word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE =prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_a : str ): _SCREAMING_SNAKE_CASE ='' while integer != 0: _SCREAMING_SNAKE_CASE =chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s _SCREAMING_SNAKE_CASE =0 while True: _SCREAMING_SNAKE_CASE =word + '#' + int_to_alphabetic(_a ) if sword in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE =sword break _SCREAMING_SNAKE_CASE =short_word _SCREAMING_SNAKE_CASE =word return short_word @staticmethod def A ( _a : Optional[Any] , _a : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =param_name.split('_' ) _SCREAMING_SNAKE_CASE =[TrialShortNamer.shortname_for_word(_a , _a ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _SCREAMING_SNAKE_CASE =['', '_'] for separator in separators: _SCREAMING_SNAKE_CASE =separator.join(_a ) if shortname not in info["reverse_short_param"]: _SCREAMING_SNAKE_CASE =shortname _SCREAMING_SNAKE_CASE =param_name return shortname return param_name @staticmethod def A ( _a : Dict , _a : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TrialShortNamer.shortname_for_key(_a , _a ) _SCREAMING_SNAKE_CASE =short_name _SCREAMING_SNAKE_CASE =param_name @classmethod def A ( cls : Optional[int] ) -> Tuple: '''simple docstring''' if cls.NAMING_INFO is not None: return _SCREAMING_SNAKE_CASE ={ 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } _SCREAMING_SNAKE_CASE =list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_a , _a ) _SCREAMING_SNAKE_CASE =info @classmethod def A ( cls : List[Any] , _a : int ) -> int: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _SCREAMING_SNAKE_CASE =[copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _SCREAMING_SNAKE_CASE =cls.NAMING_INFO['short_param'][k] if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =1 if v else 0 _SCREAMING_SNAKE_CASE ='' if isinstance(_a , (int, float) ) else '-' _SCREAMING_SNAKE_CASE =f"{key}{sep}{v}" name.append(_a ) return "_".join(_a ) @classmethod def A ( cls : Optional[Any] , _a : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =repr[len(cls.PREFIX ) + 1 :] if repr == "": _SCREAMING_SNAKE_CASE =[] else: _SCREAMING_SNAKE_CASE =repr.split('_' ) _SCREAMING_SNAKE_CASE ={} for value in values: if "-" in value: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =value.split('-' ) else: _SCREAMING_SNAKE_CASE =re.sub('[0-9.]' , '' , _a ) _SCREAMING_SNAKE_CASE =float(re.sub('[^0-9.]' , '' , _a ) ) _SCREAMING_SNAKE_CASE =cls.NAMING_INFO['reverse_short_param'][p_k] _SCREAMING_SNAKE_CASE =p_v for k in cls.DEFAULTS: if k not in parameters: _SCREAMING_SNAKE_CASE =cls.DEFAULTS[k] return parameters
47
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCAmelCase (__lowerCAmelCase ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _snake_case ( ): UpperCAmelCase : List[Any] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" UpperCAmelCase : Optional[int] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert("""RGB""" ) return image def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def _snake_case ( UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : str ): UpperCAmelCase : str = dct.pop(_snake_case ) UpperCAmelCase : Any = val def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : int ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase : Union[str, Any] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) UpperCAmelCase : Dict = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict UpperCAmelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(_snake_case , requires_grad=_snake_case ), v_bias) ) UpperCAmelCase : Any = qkv_bias def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : int = 364 if "coco" in model_name else 224 UpperCAmelCase : Dict = InstructBlipVisionConfig(image_size=_snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: UpperCAmelCase : Any = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: UpperCAmelCase : Union[str, Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: UpperCAmelCase : List[Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 UpperCAmelCase : List[Any] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() UpperCAmelCase : str = InstructBlipConfig(vision_config=_snake_case , text_config=_snake_case , qformer_config=_snake_case ) return config, image_size @torch.no_grad() def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=False ): UpperCAmelCase : Any = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: UpperCAmelCase : Optional[Any] = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) UpperCAmelCase : List[Any] = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) UpperCAmelCase : Dict = get_blipa_config(_snake_case ) UpperCAmelCase : int = InstructBlipForConditionalGeneration(_snake_case ).eval() UpperCAmelCase : Optional[int] = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } UpperCAmelCase : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) UpperCAmelCase : str = "cuda:1" if torch.cuda.is_available() else "cpu" UpperCAmelCase : Optional[int] = "cuda:2" if torch.cuda.is_available() else "cpu" UpperCAmelCase : List[str] = load_model_and_preprocess( name=_snake_case , model_type=_snake_case , is_eval=_snake_case , device=_snake_case ) original_model.eval() print("""Done!""" ) # update state dict keys UpperCAmelCase : str = original_model.state_dict() UpperCAmelCase : Optional[int] = create_rename_keys(_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase : int = state_dict.pop(_snake_case ) if key.startswith("""Qformer.bert""" ): UpperCAmelCase : Dict = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: UpperCAmelCase : str = key.replace("""self""" , """attention""" ) if "llm_proj" in key: UpperCAmelCase : int = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: UpperCAmelCase : Dict = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): UpperCAmelCase : Optional[int] = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): UpperCAmelCase : Optional[int] = key.replace("""t5""" , """language""" ) UpperCAmelCase : Union[str, Any] = val # read in qv biases read_in_q_v_bias(_snake_case , _snake_case ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_snake_case , strict=_snake_case ) UpperCAmelCase : Union[str, Any] = load_demo_image() UpperCAmelCase : Tuple = "What is unusual about this image?" # create processor UpperCAmelCase : str = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_snake_case , image_std=_snake_case ) UpperCAmelCase : Tuple = InstructBlipProcessor( image_processor=_snake_case , tokenizer=_snake_case , qformer_tokenizer=_snake_case , ) UpperCAmelCase : List[str] = processor(images=_snake_case , text=_snake_case , return_tensors="""pt""" ).to(_snake_case ) # make sure processor creates exact same pixel values UpperCAmelCase : List[Any] = vis_processors["eval"](_snake_case ).unsqueeze(0 ).to(_snake_case ) UpperCAmelCase : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _snake_case ) original_model.to(_snake_case ) hf_model.to(_snake_case ) with torch.no_grad(): if "vicuna" in model_name: UpperCAmelCase : Tuple = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits UpperCAmelCase : List[Any] = hf_model(**_snake_case ).logits else: UpperCAmelCase : int = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits UpperCAmelCase : Dict = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(_snake_case ) UpperCAmelCase : Optional[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) UpperCAmelCase : Optional[Any] = hf_model(**_snake_case , labels=_snake_case ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape UpperCAmelCase : List[str] = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , _snake_case , atol=_snake_case ) print("""Looks ok!""" ) print("""Generating with original model...""" ) UpperCAmelCase : Dict = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) UpperCAmelCase : Optional[int] = hf_model.generate( **_snake_case , do_sample=_snake_case , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? UpperCAmelCase : Tuple = 2 print("""Original generation:""" , _snake_case ) UpperCAmelCase : Dict = processor.batch_decode(_snake_case , skip_special_tokens=_snake_case ) UpperCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if push_to_hub: processor.push_to_hub(F"Salesforce/{model_name}" ) hf_model.push_to_hub(F"Salesforce/{model_name}" ) if __name__ == "__main__": A: Union[str, Any] = argparse.ArgumentParser() A: Tuple = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) A: Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
109
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=False ) -> List[str]: '''simple docstring''' __magic_name__ : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Any , _snake_case : Dict=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : int = "" else: __magic_name__ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __magic_name__ : int = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Dict = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : List[str] = in_proj_bias[: config.hidden_size] __magic_name__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = dct.pop(_snake_case ) __magic_name__ : List[Any] = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Any , _snake_case : int=False ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_snake_case , ) __magic_name__ : List[str] = ViTHybridConfig(backbone_config=_snake_case , image_size=384 , num_labels=1000 ) __magic_name__ : str = False # load original model from timm __magic_name__ : Union[str, Any] = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys __magic_name__ : List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) __magic_name__ : Tuple = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) __magic_name__ : List[str] = "huggingface/label-files" __magic_name__ : int = "imagenet-1k-id2label.json" __magic_name__ : Optional[int] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __magic_name__ : int = {int(_snake_case ): v for k, v in idalabel.items()} __magic_name__ : List[str] = idalabel __magic_name__ : List[str] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __magic_name__ : List[str] = ViTHybridModel(_snake_case ).eval() else: __magic_name__ : str = ViTHybridForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # create image processor __magic_name__ : List[Any] = create_transform(**resolve_data_config({} , model=_snake_case ) ) __magic_name__ : int = transform.transforms __magic_name__ : List[str] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } __magic_name__ : int = ViTHybridImageProcessor( do_resize=_snake_case , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __magic_name__ : List[Any] = prepare_img() __magic_name__ : Any = transform(_snake_case ).unsqueeze(0 ) __magic_name__ : Tuple = processor(_snake_case , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_snake_case , _snake_case ) # verify logits with torch.no_grad(): __magic_name__ : Optional[int] = model(_snake_case ) __magic_name__ : List[str] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: __magic_name__ : List[str] = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: __magic_name__ : Any = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_snake_case ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCAmelCase = logging.getLogger(__name__) def UpperCamelCase ( ) -> List[str]: UpperCamelCase : Optional[Any] = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=snake_case__ , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=snake_case__ , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=snake_case__ , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=snake_case__ , default='data/dump' , help='The dump file prefix.' ) UpperCamelCase : Optional[int] = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCamelCase : Dict = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase : List[str] = tokenizer.special_tokens_map['cls_token'] # `[CLS]` UpperCamelCase : str = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCamelCase : int = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase : List[Any] = tokenizer.special_tokens_map['cls_token'] # `<s>` UpperCamelCase : List[str] = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": UpperCamelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase : List[str] = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` UpperCamelCase : Optional[Any] = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: UpperCamelCase : Dict = fp.readlines() logger.info('Start encoding' ) logger.info(F"""{len(snake_case__ )} examples to process.""" ) UpperCamelCase : List[Any] = [] UpperCamelCase : Dict = 0 UpperCamelCase : List[Any] = 10000 UpperCamelCase : Optional[int] = time.time() for text in data: UpperCamelCase : Dict = F"""{bos} {text.strip()} {sep}""" UpperCamelCase : int = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) rslt.append(snake_case__ ) iter += 1 if iter % interval == 0: UpperCamelCase : Dict = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCamelCase : List[str] = time.time() logger.info('Finished binarization' ) logger.info(F"""{len(snake_case__ )} examples processed.""" ) UpperCamelCase : str = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCamelCase : Union[str, Any] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCamelCase : str = [np.uintaa(snake_case__ ) for d in rslt] else: UpperCamelCase : str = [np.intaa(snake_case__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(snake_case__ , 'wb' ) as handle: pickle.dump(rslt_ , snake_case__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
103
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') __UpperCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) UpperCAmelCase__ : Optional[str] = field(default=a__ , metadata={"help": "A folder containing the training data."} ) UpperCAmelCase__ : Optional[str] = field(default=a__ , metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase__ : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) UpperCAmelCase__ : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : List[Any] = {} if self.train_dir is not None: UpperCamelCase : Any = self.train_dir if self.validation_dir is not None: UpperCamelCase : Union[str, Any] = self.validation_dir UpperCamelCase : List[str] = data_files if data_files else None @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = field( default=a__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(a__ )} , ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) UpperCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase__ : str = field(default=a__ , metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase__ : bool = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={"help": "Stride to use for the encoder."} , ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_=192, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=0.6 ) -> Optional[Any]: UpperCamelCase : List[Any] = input_size UpperCamelCase : Any = mask_patch_size UpperCamelCase : Tuple = model_patch_size UpperCamelCase : Optional[Any] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) UpperCamelCase : Tuple = self.input_size // self.mask_patch_size UpperCamelCase : int = self.mask_patch_size // self.model_patch_size UpperCamelCase : Union[str, Any] = self.rand_size**2 UpperCamelCase : str = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: UpperCamelCase : Union[str, Any] = np.random.permutation(self.token_count )[: self.mask_count] UpperCamelCase : Tuple = np.zeros(self.token_count, dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = 1 UpperCamelCase : Union[str, Any] = mask.reshape((self.rand_size, self.rand_size) ) UpperCamelCase : str = mask.repeat(self.scale, axis=0 ).repeat(self.scale, axis=1 ) return torch.tensor(mask.flatten() ) def UpperCamelCase ( snake_case__ : int ) -> int: UpperCamelCase : List[Any] = torch.stack([example['pixel_values'] for example in examples] ) UpperCamelCase : Optional[Any] = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCamelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. UpperCamelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase : Tuple = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: UpperCamelCase : List[str] = ds['train'].train_test_split(data_args.train_val_split ) UpperCamelCase : str = split['train'] UpperCamelCase : Any = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : Tuple = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCamelCase : Dict = AutoConfig.from_pretrained(model_args.config_name_or_path , **snake_case__ ) elif model_args.model_name_or_path: UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: UpperCamelCase : str = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(snake_case__ , 'decoder_type' ): UpperCamelCase : Tuple = 'simmim' # adapt config UpperCamelCase : List[str] = model_args.image_size if model_args.image_size is not None else config.image_size UpperCamelCase : str = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCamelCase : Dict = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case__ ) elif model_args.model_name_or_path: UpperCamelCase : List[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: UpperCamelCase : Optional[int] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCamelCase : Dict = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCamelCase : Union[str, Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) UpperCamelCase : Union[str, Any] = AutoModelForMaskedImageModeling.from_config(snake_case__ ) if training_args.do_train: UpperCamelCase : Optional[int] = ds['train'].column_names else: UpperCamelCase : Optional[int] = ds['validation'].column_names if data_args.image_column_name is not None: UpperCamelCase : Dict = data_args.image_column_name elif "image" in column_names: UpperCamelCase : Union[str, Any] = 'image' elif "img" in column_names: UpperCamelCase : int = 'img' else: UpperCamelCase : Optional[int] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCamelCase : Optional[int] = Compose( [ Lambda(lambda snake_case__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCamelCase : Optional[int] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(snake_case__ : List[Any] ): UpperCamelCase : Any = [transforms(snake_case__ ) for image in examples[image_column_name]] UpperCamelCase : Tuple = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: UpperCamelCase : Tuple = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: UpperCamelCase : str = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case__ ) # Initialize our trainer UpperCamelCase : Any = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: UpperCamelCase : Dict = None if training_args.resume_from_checkpoint is not None: UpperCamelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase : Tuple = last_checkpoint UpperCamelCase : List[Any] = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase : List[str] = trainer.evaluate() trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) # Write model card and (optionally) push to hub UpperCamelCase : List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
103
1
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = [1] __lowercase ,__lowercase ,__lowercase : List[str] = 0, 0, 0 __lowercase : List[str] = ugly_nums[ia] * 2 __lowercase : Any = ugly_nums[ia] * 3 __lowercase : str = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): __lowercase : Union[str, Any] = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 __lowercase : List[str] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __lowercase : int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __lowercase : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_0_0) = }")
249
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case ) class UpperCAmelCase_ ( snake_case ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase =field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCamelCase =Features({"question": Value("string" ), "context": Value("string" )} ) UpperCamelCase =Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) UpperCamelCase ="question" UpperCamelCase ="context" UpperCamelCase ="answers" @property def _lowerCamelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
249
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 100 ): """simple docstring""" __UpperCAmelCase : Optional[int] = set() __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[str] = n + 1 # maximum limit for a in range(2 , lowerCAmelCase__ ): for b in range(2 , lowerCAmelCase__ ): __UpperCAmelCase : Tuple = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
16
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : Tuple ): '''simple docstring''' _lowerCamelCase : int = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCamelCase : List[str] = 1_28 elif "12-12" in model_name: _lowerCamelCase : str = 12 _lowerCamelCase : Any = 12 elif "14-14" in model_name: _lowerCamelCase : Dict = 14 _lowerCamelCase : int = 14 elif "16-16" in model_name: _lowerCamelCase : Tuple = 16 _lowerCamelCase : List[str] = 16 else: raise ValueError('''Model not supported''' ) _lowerCamelCase : str = '''huggingface/label-files''' if "speech-commands" in model_name: _lowerCamelCase : int = 35 _lowerCamelCase : Optional[Any] = '''speech-commands-v2-id2label.json''' else: _lowerCamelCase : List[Any] = 5_27 _lowerCamelCase : Optional[int] = '''audioset-id2label.json''' _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( A_ : int ): '''simple docstring''' if "module.v" in name: _lowerCamelCase : Dict = name.replace('''module.v''', '''audio_spectrogram_transformer''' ) if "cls_token" in name: _lowerCamelCase : Any = name.replace('''cls_token''', '''embeddings.cls_token''' ) if "dist_token" in name: _lowerCamelCase : Optional[Any] = name.replace('''dist_token''', '''embeddings.distillation_token''' ) if "pos_embed" in name: _lowerCamelCase : Tuple = name.replace('''pos_embed''', '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: _lowerCamelCase : Union[str, Any] = name.replace('''blocks''', '''encoder.layer''' ) if "attn.proj" in name: _lowerCamelCase : int = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name: _lowerCamelCase : Tuple = name.replace('''attn''', '''attention.self''' ) if "norm1" in name: _lowerCamelCase : Any = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase : List[str] = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace('''mlp.fc2''', '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCamelCase : Optional[Any] = name.replace('''audio_spectrogram_transformer.norm''', '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: _lowerCamelCase : int = name.replace('''module.mlp_head.0''', '''classifier.layernorm''' ) if "module.mlp_head.1" in name: _lowerCamelCase : Union[str, Any] = name.replace('''module.mlp_head.1''', '''classifier.dense''' ) return name def snake_case_ ( A_ : Any, A_ : int ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase : Union[str, Any] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: _lowerCamelCase : List[str] = key.split('''.''' ) _lowerCamelCase : Optional[Any] = int(key_split[3] ) _lowerCamelCase : Union[str, Any] = config.hidden_size if "weight" in key: _lowerCamelCase : Dict = val[:dim, :] _lowerCamelCase : Optional[int] = val[dim : dim * 2, :] _lowerCamelCase : Tuple = val[-dim:, :] else: _lowerCamelCase : Tuple = val[:dim] _lowerCamelCase : Optional[int] = val[dim : dim * 2] _lowerCamelCase : Dict = val[-dim:] else: _lowerCamelCase : str = val return orig_state_dict def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(snake_case__, snake_case__ ) @torch.no_grad() def snake_case_ ( A_ : Optional[Any], A_ : int, A_ : Optional[int]=False ): '''simple docstring''' _lowerCamelCase : Optional[Any] = get_audio_spectrogram_transformer_config(snake_case__ ) _lowerCamelCase : Optional[int] = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict _lowerCamelCase : List[str] = model_name_to_url[model_name] _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(snake_case__, map_location='''cpu''' ) # remove some keys remove_keys(snake_case__ ) # rename some keys _lowerCamelCase : Tuple = convert_state_dict(snake_case__, snake_case__ ) # load 🤗 model _lowerCamelCase : List[Any] = ASTForAudioClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCamelCase : Union[str, Any] = -4.2677393 if '''speech-commands''' not in model_name else -6.845978 _lowerCamelCase : Optional[Any] = 4.5689974 if '''speech-commands''' not in model_name else 5.5654526 _lowerCamelCase : Optional[int] = 10_24 if '''speech-commands''' not in model_name else 1_28 _lowerCamelCase : Optional[int] = ASTFeatureExtractor(mean=snake_case__, std=snake_case__, max_length=snake_case__ ) if "speech-commands" in model_name: _lowerCamelCase : Tuple = load_dataset('''speech_commands''', '''v0.02''', split='''validation''' ) _lowerCamelCase : str = dataset[0]['''audio''']['''array'''] else: _lowerCamelCase : Dict = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''', filename='''sample_audio.flac''', repo_type='''dataset''', ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = torchaudio.load(snake_case__ ) _lowerCamelCase : int = waveform.squeeze().numpy() _lowerCamelCase : Union[str, Any] = feature_extractor(snake_case__, sampling_rate=1_60_00, return_tensors='''pt''' ) # forward pass _lowerCamelCase : Optional[Any] = model(**snake_case__ ) _lowerCamelCase : Optional[Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCamelCase : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCamelCase : Any = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCamelCase : List[str] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCamelCase : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCamelCase : Any = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCamelCase : Optional[int] = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCamelCase : int = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCamelCase : Optional[Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3], snake_case__, atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(snake_case__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
72
"""simple docstring""" def lowercase (snake_case__ : list ) -> list: '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] lowerCAmelCase = [] def generate(snake_case__ : int , snake_case__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase , lowerCAmelCase = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase , lowerCAmelCase = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": a = input('Enter numbers separated by a comma:\n').strip() a = [int(item) for item in user_input.split(',')] print(heaps(arr))
155
0
from __future__ import annotations import time a__ = list[tuple[int, int]] a__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a , _a , _a ) -> Any: _a : Any = pos_x _a : Union[str, Any] = pos_y _a : Dict = (pos_y, pos_x) _a : Union[str, Any] = goal_x _a : Union[str, Any] = goal_y _a : int = parent class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a ) -> int: _a : str = Node(start[1] , start[0] , goal[1] , goal[0] , _a ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , _a ) _a : int = [self.start] _a : List[Any] = False def __lowercase ( self ) -> Path | None: while self.node_queue: _a : Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : List[Any] = True return self.retrace_path(_a ) _a : Optional[Any] = self.get_successors(_a ) for node in successors: self.node_queue.append(_a ) if not self.reached: return [self.start.pos] return None def __lowercase ( self , _a ) -> list[Node]: _a : List[Any] = [] for action in delta: _a : List[Any] = parent.pos_x + action[1] _a : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_a , _a , self.target.pos_y , self.target.pos_x , _a ) ) return successors def __lowercase ( self , _a ) -> Path: _a : Dict = node _a : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : List[Any] = current_node.parent path.reverse() return path class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a ) -> List[Any]: _a : Optional[int] = BreadthFirstSearch(_a , _a ) _a : List[str] = BreadthFirstSearch(_a , _a ) _a : Tuple = False def __lowercase ( self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[Any] = True return self.retrace_bidirectional_path( _a , _a ) _a : List[Any] = current_bwd_node _a : Dict = current_fwd_node _a : int = { self.fwd_bfs: self.fwd_bfs.get_successors(_a ), self.bwd_bfs: self.bwd_bfs.get_successors(_a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __lowercase ( self , _a , _a ) -> Path: _a : str = self.fwd_bfs.retrace_path(_a ) _a : Any = self.bwd_bfs.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() _a : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a__ = (0, 0) a__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a__ = time.time() a__ = BreadthFirstSearch(init, goal) a__ = bfs.search() a__ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) a__ = time.time() a__ = BidirectionalBreadthFirstSearch(init, goal) a__ = bd_bfs.search() a__ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , )-> Union[str, Any]: lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 20} lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_flip_channel_order def _snake_case ( self )-> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Tuple = MobileViTImageProcessor if is_vision_available() else None def _snake_case ( self )-> List[str]: lowerCamelCase_ =MobileViTImageProcessingTester(self ) @property def _snake_case ( self )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self )-> Any: lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_flip_channel_order""" ) ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _snake_case ( self )-> Union[str, Any]: pass def _snake_case ( self )-> Dict: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> str: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> List[Any]: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
154
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : Any , _A : Optional[int] ) ->List[str]: """simple docstring""" lowerCamelCase_ =s.rsplit(_A , _A ) return new.join(_A ) def __UpperCamelCase ( _A : List[Any] ) ->Dict: """simple docstring""" # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( _A : str ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase_ =key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowerCamelCase_ =key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowerCamelCase_ =rreplace(_A , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowerCamelCase_ =rreplace(_A , """.b""" , """.bias""" , 1 ) lowerCamelCase_ =value.float() return upgrade @torch.no_grad() def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any]=None , _A : Dict=True ) ->Optional[int]: """simple docstring""" from dall_e import Encoder lowerCamelCase_ =Encoder() if os.path.exists(_A ): lowerCamelCase_ =torch.load(_A ) else: lowerCamelCase_ =torch.hub.load_state_dict_from_url(_A ) if isinstance(_A , _A ): lowerCamelCase_ =ckpt.state_dict() encoder.load_state_dict(_A ) if config_path is not None: lowerCamelCase_ =FlavaImageCodebookConfig.from_pretrained(_A ) else: lowerCamelCase_ =FlavaImageCodebookConfig() lowerCamelCase_ =FlavaImageCodebook(_A ).eval() lowerCamelCase_ =encoder.state_dict() lowerCamelCase_ =upgrade_state_dict(_A ) hf_model.load_state_dict(_A ) lowerCamelCase_ =hf_model.state_dict() lowerCamelCase_ =count_parameters(_A ) lowerCamelCase_ =count_parameters(_A ) assert torch.allclose(_A , _A , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_A ) else: return hf_state_dict if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __A : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
154
1
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase__ ( lowerCamelCase : np.ndarray ,lowerCamelCase : np.ndarray ,lowerCamelCase : np.ndarray ,lowerCamelCase : int ,lowerCamelCase : int ): _A : Dict = cva.getAffineTransform(lowerCamelCase ,lowerCamelCase ) return cva.warpAffine(lowerCamelCase ,lowerCamelCase ,(rows, cols) ) if __name__ == "__main__": # read original image A : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A : List[Any] = gray_img.shape # set different points to rotate image A : Any = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A : Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A : Any = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A : Dict = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A : Optional[Any] = plt.figure(1) A : List[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
352
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : Union[str, Any] = torch.device('''cpu''') def lowerCAmelCase__ ( ): _A : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A : Dict = Image.open(requests.get(lowerCamelCase ,stream=lowerCamelCase ).raw ) return im def lowerCAmelCase__ ( lowerCamelCase : List[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ): _A : Union[str, Any] = dct.pop(lowerCamelCase ) _A : List[str] = val def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ): _A : Optional[Any] = [] for k in state_dict.keys(): _A : Optional[int] = k if ".pwconv" in k: _A : str = k_new.replace('.pwconv' ,'.point_wise_conv' ) if ".dwconv" in k: _A : Any = k_new.replace('.dwconv' ,'.depth_wise_conv' ) if ".Proj." in k: _A : Optional[Any] = k_new.replace('.Proj.' ,'.proj.' ) if "patch_embed" in k_new: _A : Optional[int] = k_new.replace('patch_embed' ,'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: _A : Tuple = k_new.split('.' ) if ls[2].isdigit(): _A : List[Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: _A : List[str] = k_new.replace('network' ,'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : str ,lowerCamelCase : List[str] ): _A : Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _A : Any = 1000 _A : int = 'huggingface/label-files' _A : List[Any] = 'imagenet-1k-id2label.json' _A : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase ,lowerCamelCase ,repo_type='dataset' ) ,'r' ) ) _A : Dict = {int(lowerCamelCase ): v for k, v in idalabel.items()} _A : Optional[int] = idalabel _A : Any = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _A : Optional[Any] = [3, 3, 6, 4] _A : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _A : List[Any] = [3, 3, 9, 6] _A : Tuple = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _A : int = [4, 3, 10, 5] _A : int = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _A : Optional[Any] = [4, 4, 12, 6] _A : Any = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): _A : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase ,map_location='cpu' ,check_hash=lowerCamelCase ) else: _A : Union[str, Any] = torch.load(lowerCamelCase ,map_location='cpu' ) _A : Union[str, Any] = checkpoint _A : List[str] = create_rename_keys(lowerCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) # load HuggingFace model _A : str = SwiftFormerForImageClassification(lowerCamelCase ).eval() hf_model.load_state_dict(lowerCamelCase ) # prepare test inputs _A : Any = prepare_img() _A : Optional[int] = ViTImageProcessor.from_pretrained('preprocessor_config' ) _A : Any = processor(images=lowerCamelCase ,return_tensors='pt' ) # compare outputs from both models _A : int = get_expected_output(lowerCamelCase ) _A : Optional[int] = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] ,lowerCamelCase ,atol=1E-3 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') A : List[str] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
227
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : int = logging.get_logger(__name__) def A ( snake_case__ , snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): SCREAMING_SNAKE_CASE__ = """segformer.encoder.""" + key if key.startswith("""backbone""" ): SCREAMING_SNAKE_CASE__ = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE__ = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] SCREAMING_SNAKE_CASE__ = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(snake_case__ )-1}""" ) if "norm" in key: SCREAMING_SNAKE_CASE__ = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE__ = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] SCREAMING_SNAKE_CASE__ = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(snake_case__ )-1}""" ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE__ = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE__ = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE__ = key[key.find("""block""" ) + len("""block""" )] SCREAMING_SNAKE_CASE__ = key.replace(f"""block{idx}""" , f"""block.{int(snake_case__ )-1}""" ) if "attn.q" in key: SCREAMING_SNAKE_CASE__ = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: SCREAMING_SNAKE_CASE__ = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: SCREAMING_SNAKE_CASE__ = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: SCREAMING_SNAKE_CASE__ = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: SCREAMING_SNAKE_CASE__ = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE__ = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) SCREAMING_SNAKE_CASE__ = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE__ = key[key.find("""linear_c""" ) + len("""linear_c""" )] SCREAMING_SNAKE_CASE__ = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(snake_case__ )-1}""" ) if key.startswith("""head""" ): SCREAMING_SNAKE_CASE__ = key.replace("""head""" , """classifier""" ) SCREAMING_SNAKE_CASE__ = value return new_state_dict def A ( snake_case__ , snake_case__ ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE__ = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE__ = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE__ = kv_bias[ config.hidden_sizes[i] : ] def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = SegformerConfig() SCREAMING_SNAKE_CASE__ = False # set attributes based on model_name SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "segformer" in model_name: SCREAMING_SNAKE_CASE__ = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: SCREAMING_SNAKE_CASE__ = 1_50 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE__ = (1, 1_50, 1_28, 1_28) elif "city" in model_name: SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" SCREAMING_SNAKE_CASE__ = (1, 19, 1_28, 1_28) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_name[4:6] SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ = (1, 10_00) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(snake_case__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 2_56 elif size == "b2": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 4, 6, 3] elif size == "b3": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 4, 18, 3] elif size == "b4": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 8, 27, 3] elif size == "b5": SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) SCREAMING_SNAKE_CASE__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) # prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) ) else: SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys SCREAMING_SNAKE_CASE__ = rename_keys(snake_case__ , encoder_only=snake_case__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(snake_case__ , snake_case__ ) # create HuggingFace model and load state dict if encoder_only: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = SegformerForImageClassification(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = SegformerForSemanticSegmentation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # forward pass SCREAMING_SNAKE_CASE__ = model(snake_case__ ) SCREAMING_SNAKE_CASE__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: SCREAMING_SNAKE_CASE__ = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A_ : Dict = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
165
"""simple docstring""" from __future__ import annotations from collections import namedtuple def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
165
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): snake_case : Dict = 'perceiver' def __init__( self , __lowerCAmelCase=256 , __lowerCAmelCase=1280 , __lowerCAmelCase=768 , __lowerCAmelCase=1 , __lowerCAmelCase=26 , __lowerCAmelCase=8 , __lowerCAmelCase=8 , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="kv" , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=262 , __lowerCAmelCase=2048 , __lowerCAmelCase=56 , __lowerCAmelCase=[368, 496] , __lowerCAmelCase=16 , __lowerCAmelCase=1920 , __lowerCAmelCase=16 , __lowerCAmelCase=[1, 16, 224, 224] , **__lowerCAmelCase , ): super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = num_latents UpperCamelCase__ = d_latents UpperCamelCase__ = d_model UpperCamelCase__ = num_blocks UpperCamelCase__ = num_self_attends_per_block UpperCamelCase__ = num_self_attention_heads UpperCamelCase__ = num_cross_attention_heads UpperCamelCase__ = qk_channels UpperCamelCase__ = v_channels UpperCamelCase__ = cross_attention_shape_for_attention UpperCamelCase__ = self_attention_widening_factor UpperCamelCase__ = cross_attention_widening_factor UpperCamelCase__ = hidden_act UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_query_residual # masked language modeling attributes UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings # image classification attributes UpperCamelCase__ = image_size # flow attributes UpperCamelCase__ = train_size # multimodal autoencoding attributes UpperCamelCase__ = num_frames UpperCamelCase__ = audio_samples_per_frame UpperCamelCase__ = samples_per_patch UpperCamelCase__ = output_shape class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): @property def _lowerCamelCase ( self ): if self.task == "multiple-choice": UpperCamelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def _lowerCamelCase ( self ): return 1E-4 def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 3 , __lowerCAmelCase = 40 , __lowerCAmelCase = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [""" """.join(["""a"""] ) * seq_length] * batch_size UpperCamelCase__ = dict(preprocessor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = inputs.pop("""input_ids""" ) return inputs elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase__ = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase__ = dict(preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
368
import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """masked_bert""" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="topK" , __lowerCAmelCase="constant" , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = pruning_method UpperCamelCase__ = mask_init UpperCamelCase__ = mask_scale
87
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(__snake_case , '''_dynamo''' ): return False return isinstance(__snake_case , torch._dynamo.eval_frame.OptimizedModule ) def a_ ( __snake_case : Tuple , __snake_case : bool = True ) -> List[str]: """simple docstring""" lowerCamelCase_ =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ =is_compiled_module(__snake_case ) if is_compiled: lowerCamelCase_ =model lowerCamelCase_ =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__snake_case , __snake_case ): lowerCamelCase_ =model.module if not keep_fpaa_wrapper: lowerCamelCase_ =getattr(__snake_case , '''forward''' ) lowerCamelCase_ =model.__dict__.pop('''_original_forward''' , __snake_case ) if original_forward is not None: while hasattr(__snake_case , '''__wrapped__''' ): lowerCamelCase_ =forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ =forward if getattr(__snake_case , '''_converted_to_transformer_engine''' , __snake_case ): convert_model(__snake_case , to_transformer_engine=__snake_case ) if is_compiled: lowerCamelCase_ =model lowerCamelCase_ =compiled_model return model def a_ ( ) -> Optional[Any]: """simple docstring""" PartialState().wait_for_everyone() def a_ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__snake_case , __snake_case ) elif PartialState().local_process_index == 0: torch.save(__snake_case , __snake_case ) @contextmanager def a_ ( **__snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): lowerCamelCase_ =str(__snake_case ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a_ ( __snake_case : Tuple ) -> List[Any]: """simple docstring""" if not hasattr(__snake_case , '''__qualname__''' ) and not hasattr(__snake_case , '''__name__''' ): lowerCamelCase_ =getattr(__snake_case , '''__class__''' , __snake_case ) if hasattr(__snake_case , '''__qualname__''' ): return obj.__qualname__ if hasattr(__snake_case , '''__name__''' ): return obj.__name__ return str(__snake_case ) def a_ ( __snake_case : Dict , __snake_case : Any ) -> Tuple: """simple docstring""" for key, value in source.items(): if isinstance(__snake_case , __snake_case ): lowerCamelCase_ =destination.setdefault(__snake_case , {} ) merge_dicts(__snake_case , __snake_case ) else: lowerCamelCase_ =value return destination def a_ ( __snake_case : int = None ) -> bool: """simple docstring""" if port is None: lowerCamelCase_ =2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
75
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : list[int] , __lowerCamelCase : float ): '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) ) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] _UpperCAmelCase : str =math.log(len(__lowerCamelCase ) , 2 ) print(f"Optimal value : {minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
353
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase =logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ): @register_to_config def __init__( self , snake_case , snake_case = None , snake_case = None) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCAmelCase : str =torch.zeros(snake_case , snake_case) else: _UpperCAmelCase : Tuple =None _UpperCAmelCase : int =torch.nn.Parameter(snake_case) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case , transformer=snake_case , text_encoder=snake_case , tokenizer=snake_case , scheduler=snake_case , learned_classifier_free_sampling_embeddings=snake_case , ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : int =len(snake_case) if isinstance(snake_case , snake_case) else 1 # get prompt text embeddings _UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _UpperCAmelCase : Union[str, Any] =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase : str =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}") _UpperCAmelCase : Union[str, Any] =text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase : Optional[int] =self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCAmelCase : List[str] =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Optional[Any] =prompt_embeds.repeat_interleave(snake_case , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCAmelCase : Dict =self.learned_classifier_free_sampling_embeddings.embeddings _UpperCAmelCase : Any =negative_prompt_embeds.unsqueeze(0).repeat(snake_case , 1 , 1) else: _UpperCAmelCase : str =[''] * batch_size _UpperCAmelCase : Dict =text_input_ids.shape[-1] _UpperCAmelCase : str =self.tokenizer( snake_case , padding='max_length' , max_length=snake_case , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : str =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings _UpperCAmelCase : Tuple =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase : int =negative_prompt_embeds.shape[1] _UpperCAmelCase : List[str] =negative_prompt_embeds.repeat(1 , snake_case , 1) _UpperCAmelCase : Optional[int] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : str =torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self , snake_case , snake_case = 1_0_0 , snake_case = 5.0 , snake_case = 1.0 , snake_case = 1 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case , snake_case): _UpperCAmelCase : Tuple =1 elif isinstance(snake_case , snake_case): _UpperCAmelCase : int =len(snake_case) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case)}") _UpperCAmelCase : Optional[Any] =batch_size * num_images_per_prompt _UpperCAmelCase : Union[str, Any] =guidance_scale > 1.0 _UpperCAmelCase : Any =self._encode_prompt(snake_case , snake_case , snake_case) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case)}.") # get the initial completely masked latents unless the user supplied it _UpperCAmelCase : List[Any] =(batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCAmelCase : Optional[Any] =self.transformer.num_vector_embeds - 1 _UpperCAmelCase : Optional[int] =torch.full(snake_case , snake_case).to(self.device) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f" {self.transformer.num_vector_embeds - 1} (inclusive).") _UpperCAmelCase : Optional[Any] =latents.to(self.device) # set timesteps self.scheduler.set_timesteps(snake_case , device=self.device) _UpperCAmelCase : int =self.scheduler.timesteps.to(self.device) _UpperCAmelCase : Dict =latents for i, t in enumerate(self.progress_bar(snake_case)): # expand the sample if we are doing classifier free guidance _UpperCAmelCase : Union[str, Any] =torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCAmelCase : Optional[Any] =self.transformer(snake_case , encoder_hidden_states=snake_case , timestep=snake_case).sample if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Dict =model_output.chunk(2) _UpperCAmelCase : Dict =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case , dim=1 , keepdim=snake_case) _UpperCAmelCase : Any =self.truncate(snake_case , snake_case) # remove `log(0)`'s (`-inf`s) _UpperCAmelCase : int =model_output.clamp(-7_0) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[Any] =self.scheduler.step(snake_case , timestep=snake_case , sample=snake_case , generator=snake_case).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case) _UpperCAmelCase : List[str] =self.vqvae.config.vq_embed_dim _UpperCAmelCase : Optional[int] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCAmelCase : int =self.vqvae.quantize.get_codebook_entry(snake_case , shape=snake_case) _UpperCAmelCase : str =self.vqvae.decode(snake_case , force_not_quantize=snake_case).sample _UpperCAmelCase : str =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : Tuple =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : Optional[int] =self.numpy_to_pil(snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case) def lowerCAmelCase ( self , snake_case , snake_case) -> torch.FloatTensor: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict =torch.sort(snake_case , 1 , descending=snake_case) _UpperCAmelCase : Dict =torch.exp(snake_case) _UpperCAmelCase : str =sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCAmelCase : Optional[int] =torch.full_like(keep_mask[:, 0:1, :] , snake_case) _UpperCAmelCase : Any =torch.cat((all_true, keep_mask) , dim=1) _UpperCAmelCase : Dict =keep_mask[:, :-1, :] _UpperCAmelCase : Any =keep_mask.gather(1 , indices.argsort(1)) _UpperCAmelCase : str =log_p_x_0.clone() _UpperCAmelCase : Any =-torch.inf # -inf = log(0) return rv
242
0
class lowerCamelCase__ ( __lowercase): '''simple docstring''' pass class lowerCamelCase__ ( __lowercase): '''simple docstring''' pass class lowerCamelCase__ : '''simple docstring''' def __init__( self :Any ) -> Optional[Any]: __UpperCamelCase : str = [ [], [], [], ] def _lowerCamelCase ( self :Dict , a :int , a :int ) -> None: try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(a ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _lowerCamelCase ( self :Optional[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self :Optional[int] ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :int ) -> str: __UpperCamelCase : Any = [] def _lowerCamelCase ( self :Any , a :int ) -> None: if len(self.queue ) == 1_0_0: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(a ) def _lowerCamelCase ( self :Optional[Any] ) -> int: if not self.queue: raise UnderFlowError("The queue is empty" ) else: __UpperCamelCase : List[Any] = min(self.queue ) self.queue.remove(a ) return data def __str__( self :Tuple ) -> str: return str(self.queue ) def _SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCamelCase : Dict = FixedPriorityQueue() fpq.enqueue(0 , 10) fpq.enqueue(1 , 70) fpq.enqueue(0 , 100) fpq.enqueue(2 , 1) fpq.enqueue(2 , 5) fpq.enqueue(1 , 7) fpq.enqueue(2 , 4) fpq.enqueue(1 , 64) fpq.enqueue(0 , 128) print(_lowerCamelCase) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(_lowerCamelCase) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) def _SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCamelCase : Any = ElementPriorityQueue() epq.enqueue(10) epq.enqueue(70) epq.enqueue(100) epq.enqueue(1) epq.enqueue(5) epq.enqueue(7) epq.enqueue(4) epq.enqueue(64) epq.enqueue(128) print(_lowerCamelCase) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(_lowerCamelCase) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
232
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__( self :List[Any] , a :Dict , a :Any=3 , a :Any=3_2 , a :Optional[Any]=3 , a :str=1_0 , a :Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , a :Optional[Any]=[1, 1, 2, 1] , a :Optional[Any]=True , a :Dict=True , a :Tuple="relu" , a :List[str]=3 , a :Tuple=None , ) -> Tuple: __UpperCamelCase : Optional[Any] = parent __UpperCamelCase : Dict = batch_size __UpperCamelCase : int = image_size __UpperCamelCase : Dict = num_channels __UpperCamelCase : Optional[int] = embeddings_size __UpperCamelCase : List[Any] = hidden_sizes __UpperCamelCase : Optional[Any] = depths __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Union[str, Any] = use_labels __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : Tuple = num_labels __UpperCamelCase : Tuple = scope __UpperCamelCase : Dict = len(a ) def _lowerCamelCase ( self :Optional[int] ) -> Any: __UpperCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : List[str] = None if self.use_labels: __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self :Union[str, Any] ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _lowerCamelCase ( self :List[Any] , a :Dict , a :int , a :Optional[Any] ) -> Tuple: __UpperCamelCase : str = TFResNetModel(config=a ) __UpperCamelCase : Union[str, Any] = model(a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowerCamelCase ( self :Union[str, Any] , a :Optional[int] , a :List[str] , a :Optional[Any] ) -> Any: __UpperCamelCase : str = self.num_labels __UpperCamelCase : Optional[int] = TFResNetForImageClassification(a ) __UpperCamelCase : List[str] = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Optional[int] ) -> List[str]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = config_and_inputs __UpperCamelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _A = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) _A = False _A = False _A = False _A = False _A = False def _lowerCamelCase ( self :int ) -> List[str]: __UpperCamelCase : Union[str, Any] = TFResNetModelTester(self ) __UpperCamelCase : List[Any] = ConfigTester(self , config_class=a , has_text_modality=a ) def _lowerCamelCase ( self :int ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self :str ) -> Optional[Any]: return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def _lowerCamelCase ( self :Tuple ) -> Tuple: pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def _lowerCamelCase ( self :List[Any] ) -> List[str]: pass def _lowerCamelCase ( self :Optional[int] ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Dict = model_class(a ) __UpperCamelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Dict = [*signature.parameters.keys()] __UpperCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self :List[str] ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> Tuple: def check_hidden_states_output(a :Optional[Any] , a :Optional[int] , a :List[str] ): __UpperCamelCase : int = model_class(a ) __UpperCamelCase : int = model(**self._prepare_for_class(a , a ) ) __UpperCamelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCamelCase : int = layer_type __UpperCamelCase : int = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : int = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _lowerCamelCase ( self :Dict ) -> Dict: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] = TFResNetModel.from_pretrained(a ) self.assertIsNotNone(a ) def _SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self :Optional[Any] ) -> Tuple: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: __UpperCamelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCamelCase : List[Any] = self.default_image_processor __UpperCamelCase : List[str] = prepare_img() __UpperCamelCase : List[str] = image_processor(images=a , return_tensors="tf" ) # forward pass __UpperCamelCase : Dict = model(**a ) # verify the logits __UpperCamelCase : Dict = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) __UpperCamelCase : Union[str, Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4 ) )
232
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Optional[int] = "▁" _lowercase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _lowercase : Any = { "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off _lowercase : List[str] = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[int] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token lowercase_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : Any = legacy_behaviour super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : List[str] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : Any = 1 lowercase_ : Any = len(self.sp_model ) lowercase_ : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : str = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : Any = src_lang if src_lang is not None else '''eng_Latn''' lowercase_ : Any = self.lang_code_to_id[self._src_lang] lowercase_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowercase_ : Union[str, Any] = self.__dict__.copy() lowercase_ : Union[str, Any] = None lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Union[str, Any] = {} lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = [1] * len(self.prefix_tokens ) lowercase_ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : str = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Optional[int] = src_lang lowercase_ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : int = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Union[str, Any] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Any = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "eng_Latn" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fra_Latn" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = src_lang lowercase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase_ : Any = [] lowercase_ : Tuple = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : str = [self.cur_lang_code] lowercase_ : Optional[Any] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase_ : Tuple = [] lowercase_ : int = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : Any = [self.cur_lang_code] lowercase_ : str = [self.eos_token_id]
264
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : int = {} lowercase_ : Any = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase_ : Tuple = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase_ : Tuple = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase_ : List[Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase_ : str = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flax_dict[key] lowercase_ : Any = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase_ : str = torch.from_numpy(converted_dict[key].T ) else: lowercase_ : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): """simple docstring""" lowercase_ : List[str] = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: lowercase_ : List[str] = PixaStructVisionConfig() lowercase_ : Optional[Any] = PixaStructTextConfig() else: lowercase_ : Optional[int] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase_ : Dict = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase_ : str = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) lowercase_ : int = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase_ : str = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase_ : List[Any] = PixaStructImageProcessor() lowercase_ : int = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: lowercase_ : Tuple = 4096 lowercase_ : Optional[int] = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _lowercase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
264
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __UpperCAmelCase ( UpperCAmelCase_ : list[list[float]] ) -> list[list[float]]: '''simple docstring''' __snake_case : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCAmelCase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __snake_case : Dict = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements __snake_case : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] __snake_case , __snake_case : Tuple = matrix[1][1], matrix[0][0] __snake_case , __snake_case : str = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCAmelCase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCAmelCase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __snake_case : str = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix __snake_case : Dict = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __snake_case : int = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __snake_case : List[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __snake_case : List[str] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __snake_case : Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __snake_case : Tuple = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __snake_case : Dict = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __snake_case : Union[str, Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __snake_case : Tuple = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __snake_case : Any = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __snake_case : Optional[Any] = array(UpperCAmelCase_ ) for i in range(3 ): for j in range(3 ): __snake_case : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __snake_case : Optional[int] = array(UpperCAmelCase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCAmelCase_ ) # Calculate the inverse of the matrix return [[float(d(UpperCAmelCase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
172
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : str= { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a : Any= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
172
1
"""simple docstring""" _snake_case = [0, 2, 4, 6, 8] _snake_case = [1, 3, 5, 7, 9] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __UpperCAmelCase : Optional[int] = 0 for digit in range(10 ): __UpperCAmelCase : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, snake_case__, snake_case__ ) return result __UpperCAmelCase : Tuple = 0 for digita in range(10 ): __UpperCAmelCase : Union[str, Any] = digita if (remainder + digita) % 2 == 0: __UpperCAmelCase : List[str] = ODD_DIGITS else: __UpperCAmelCase : Any = EVEN_DIGITS for digita in other_parity_digits: __UpperCAmelCase : List[Any] = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, snake_case__, snake_case__, ) return result def _UpperCamelCase ( snake_case__ = 9 ) -> int: __UpperCAmelCase : Union[str, Any] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(snake_case__, 0, [0] * length, snake_case__ ) return result if __name__ == "__main__": print(F'{solution() = }')
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = tempfile.mkdtemp() # fmt: off lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = self.prepare_image_inputs() lowerCamelCase : int = image_processor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = "lower newer" lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" ) lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = "google/owlvit-base-patch32" lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Tuple = ["cat", "nasa badge"] lowerCamelCase : str = processor(text=__A ) lowerCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "google/owlvit-base-patch32" lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]] lowerCamelCase : int = processor(text=__A ) lowerCamelCase : Tuple = 16 lowerCamelCase : Any = len(__A ) lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "google/owlvit-base-patch32" lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : List[Any] = ["cat", "nasa badge"] lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : int = 16 lowerCamelCase : List[str] = inputs["input_ids"] lowerCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase : Any = processor(images=__A , query_images=__A ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
283
1
"""simple docstring""" def _snake_case ( lowercase__ ): if collection == []: return [] # get some information about the collection _lowerCamelCase : Optional[int] = len(UpperCamelCase__ ) _lowerCamelCase : List[Any] = max(UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = min(UpperCamelCase__ ) # create the counting array _lowerCamelCase : Union[str, Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): _lowerCamelCase : str = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Any = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): _lowerCamelCase : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
362
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = UnCLIPImageVariationPipeline snake_case = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} snake_case = IMAGE_VARIATION_BATCH_PARAMS snake_case = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] snake_case = False @property def _snake_case ( self )->Any: '''simple docstring''' return 32 @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' return 32 @property def _snake_case ( self )->Any: '''simple docstring''' return self.time_input_dim @property def _snake_case ( self )->List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def _snake_case ( self )->List[str]: '''simple docstring''' return 100 @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )->str: '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } A_ : Tuple = UnCLIPTextProjModel(**_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self )->List[str]: '''simple docstring''' torch.manual_seed(0 ) A_ : List[str] = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } A_ : int = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self )->Any: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _snake_case ( self )->int: '''simple docstring''' torch.manual_seed(0 ) A_ : Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _snake_case ( self )->int: '''simple docstring''' torch.manual_seed(1 ) A_ : Dict = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[str] = self.dummy_decoder A_ : List[str] = self.dummy_text_proj A_ : Optional[Any] = self.dummy_text_encoder A_ : Any = self.dummy_tokenizer A_ : Optional[Any] = self.dummy_super_res_first A_ : Union[str, Any] = self.dummy_super_res_last A_ : str = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) A_ : Optional[Any] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) A_ : Optional[int] = CLIPImageProcessor(crop_size=32 , size=32 ) A_ : Optional[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=True )->Optional[Any]: '''simple docstring''' A_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Dict = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) if pil_image: A_ : str = input_image * 0.5 + 0.5 A_ : int = input_image.clamp(0 , 1 ) A_ : Any = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A_ : Any = DiffusionPipeline.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : int = '''cpu''' A_ : int = self.get_dummy_components() A_ : Any = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = pipe(**_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = output.images A_ : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : Tuple = pipe( **_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ : Optional[int] = image[0, -3:, -3:, -1] A_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Any = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self )->Any: '''simple docstring''' A_ : int = '''cpu''' A_ : Optional[int] = self.get_dummy_components() A_ : Any = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : Dict = pipe(**_SCREAMING_SNAKE_CASE ) A_ : List[Any] = output.images A_ : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : Tuple = pipe( **_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ : Any = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Dict = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = '''cpu''' A_ : Any = self.get_dummy_components() A_ : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ : Any = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] A_ : str = pipe(**_SCREAMING_SNAKE_CASE ) A_ : str = output.images A_ : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : Dict = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] A_ : List[str] = pipe( **_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ : List[Any] = image[0, -3:, -3:, -1] A_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) A_ : Tuple = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = torch.device('''cpu''' ) class _lowerCamelCase : """simple docstring""" snake_case = 1 A_ : List[Any] = self.get_dummy_components() A_ : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) A_ : Union[str, Any] = pipe.decoder.dtype A_ : int = 1 A_ : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) A_ : int = pipe.prepare_latents( _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , scheduler=DummyScheduler() ) A_ : Optional[int] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) A_ : Optional[int] = pipe.prepare_latents( _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , scheduler=DummyScheduler() ) A_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe( **_SCREAMING_SNAKE_CASE , decoder_latents=_SCREAMING_SNAKE_CASE , super_res_latents=_SCREAMING_SNAKE_CASE ).images A_ : Dict = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) # Don't pass image, instead pass embedding A_ : str = pipeline_inputs.pop('''image''' ) A_ : List[str] = pipe.image_encoder(_SCREAMING_SNAKE_CASE ).image_embeds A_ : List[Any] = pipe( **_SCREAMING_SNAKE_CASE , decoder_latents=_SCREAMING_SNAKE_CASE , super_res_latents=_SCREAMING_SNAKE_CASE , image_embeddings=_SCREAMING_SNAKE_CASE , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _snake_case ( self )->str: '''simple docstring''' A_ : Optional[Any] = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor A_ : Union[str, Any] = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=_SCREAMING_SNAKE_CASE ) @skip_mps def _snake_case ( self )->str: '''simple docstring''' A_ : str = torch_device == '''cpu''' A_ : Tuple = True A_ : int = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes A_ : Optional[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=_SCREAMING_SNAKE_CASE , additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE ) @skip_mps def _snake_case ( self )->Optional[int]: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self )->Optional[int]: '''simple docstring''' return super().test_save_load_local() @skip_mps def _snake_case ( self )->Dict: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->Any: '''simple docstring''' A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) A_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) A_ : Optional[Any] = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) A_ : Tuple = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ : Dict = pipeline( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) A_ : Tuple = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 15 )
186
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->None: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Tuple = size if size is not None else {'''shortest_edge''': 224} A_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) A_ : str = do_resize A_ : Tuple = size A_ : Optional[Any] = resample A_ : Tuple = do_center_crop A_ : List[Any] = crop_size A_ : Optional[int] = do_rescale A_ : Tuple = rescale_factor A_ : Any = do_normalize A_ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : Any = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Any = do_convert_rgb def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' A_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ : Any = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' A_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )->PIL.Image.Image: '''simple docstring''' A_ : Optional[int] = do_resize if do_resize is not None else self.do_resize A_ : int = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = resample if resample is not None else self.resample A_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : List[str] = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : int = do_normalize if do_normalize is not None else self.do_normalize A_ : Tuple = image_mean if image_mean is not None else self.image_mean A_ : Tuple = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : Optional[int] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : List[str] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. A_ : int = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A_ : Tuple = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: A_ : Union[str, Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A_ : Tuple = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A_ : List[Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] A_ : str = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] A_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
186
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = analyze_text(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowercase__ : int = sum(single_char_strings.values() ) # one length string lowercase__ : List[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowercase__ : List[str] = single_char_strings[ch] lowercase__ : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(SCREAMING_SNAKE_CASE_ ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowercase__ : Optional[int] = sum(two_char_strings.values() ) lowercase__ : Tuple = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowercase__ : Any = cha + cha if sequence in two_char_strings: lowercase__ : Union[str, Any] = two_char_strings[sequence] lowercase__ : Any = int(SCREAMING_SNAKE_CASE_ ) / all_sum my_sec_sum += prob * math.loga(SCREAMING_SNAKE_CASE_ ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Dict = Counter() # type: ignore lowercase__ : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def snake_case__ ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
216
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore snake_case_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" snake_case_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') snake_case_ = [file for file in filepaths if ''' ''' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') snake_case_ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') snake_case_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') snake_case_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
216
1
'''simple docstring''' __lowerCAmelCase = 0 # The first color of the flag. __lowerCAmelCase = 1 # The second color of the flag. __lowerCAmelCase = 2 # The third color of the flag. __lowerCAmelCase = (red, white, blue) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not sequence: return [] if len(_SCREAMING_SNAKE_CASE ) == 1: return list(_SCREAMING_SNAKE_CASE ) _snake_case = 0 _snake_case = len(_SCREAMING_SNAKE_CASE ) - 1 _snake_case = 0 while mid <= high: if sequence[mid] == colors[0]: _snake_case, _snake_case = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _snake_case, _snake_case = sequence[high], sequence[mid] high -= 1 else: _snake_case = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input('Enter numbers separated by commas:\n').strip() __lowerCAmelCase = [int(item.strip()) for item in user_input.split(',')] print(f'''{dutch_national_flag_sort(unsorted)}''')
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self , __UpperCAmelCase ) -> float: return 0.0 def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> tuple[int | float, int | float]: _lowerCAmelCase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =512 _lowerCAmelCase =[1] + [0] * (size - 1) _lowerCAmelCase =[filter_type.process(__UpperCamelCase ) for item in inputs] _lowerCAmelCase =[0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase =np.abs(np.fft.fft(__UpperCamelCase ) ) _lowerCAmelCase =20 * np.logaa(__UpperCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCAmelCase =get_bounds(__UpperCamelCase , __UpperCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__UpperCamelCase ) plt.show() def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =512 _lowerCAmelCase =[1] + [0] * (size - 1) _lowerCAmelCase =[filter_type.process(__UpperCamelCase ) for item in inputs] _lowerCAmelCase =[0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase =np.angle(np.fft.fft(__UpperCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__UpperCamelCase , -2 * pi ) ) plt.show()
341
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class a__ ( a_ ): _SCREAMING_SNAKE_CASE : int = "deit" def __init__( self , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=224 , _UpperCamelCase=16 , _UpperCamelCase=3 , _UpperCamelCase=True , _UpperCamelCase=16 , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : str = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : str = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : List[Any] = initializer_range _lowercase : str = layer_norm_eps _lowercase : Tuple = image_size _lowercase : Any = patch_size _lowercase : Dict = num_channels _lowercase : List[str] = qkv_bias _lowercase : str = encoder_stride class a__ ( a_ ): _SCREAMING_SNAKE_CASE : List[str] = version.parse('1.11' ) @property def _lowerCamelCase ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self ): """simple docstring""" return 1E-4
250
"""simple docstring""" from itertools import product def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowerCAmelCase__ : Union[str, Any] = sides_number lowerCAmelCase__ : Optional[int] = max_face_number * dice_number lowerCAmelCase__ : List[str] = [0] * (max_total + 1) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Optional[int] = range(__UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(__UpperCAmelCase , repeat=__UpperCAmelCase ): lowerCAmelCase__ : str = sum(__UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase_ ( ) -> float: lowerCAmelCase__ : Union[str, Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase__ : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 9 lowerCAmelCase__ : Tuple = 4 * 9 lowerCAmelCase__ : Optional[int] = 6 for peter_total in range(__UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase__ : Tuple = (4**9) * (6**6) lowerCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number lowerCAmelCase__ : Optional[int] = round(__UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
242
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__() lowerCAmelCase__ :int = nn.Linear(3 , 4 ) lowerCAmelCase__ :str = nn.BatchNormad(4 ) lowerCAmelCase__ :Any = nn.Linear(4 , 5 ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__UpperCAmelCase ) ) ) class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return output + 1 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = ModelForTest() lowerCAmelCase__ :int = ModelHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(test_model._hf_hook , __UpperCAmelCase ) self.assertTrue(hasattr(__UpperCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__UpperCAmelCase ) self.assertFalse(hasattr(__UpperCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(__UpperCAmelCase , '_old_forward' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ModelForTest() lowerCAmelCase__ :List[str] = ModelHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase , append=__UpperCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__UpperCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__UpperCAmelCase ) self.assertFalse(hasattr(__UpperCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(__UpperCAmelCase , '_old_forward' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = ModelForTest() lowerCAmelCase__ :Optional[int] = torch.randn(2 , 3 ) lowerCAmelCase__ :int = test_model(x + 1 ) lowerCAmelCase__ :int = test_model(x + 2 ) lowerCAmelCase__ :Optional[Any] = PreForwardHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ :Any = PreForwardHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ :int = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = test_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = ModelForTest() lowerCAmelCase__ :int = torch.randn(2 , 3 ) lowerCAmelCase__ :int = test_model(__UpperCAmelCase ) lowerCAmelCase__ :Any = PostForwardHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ :Optional[Any] = PostForwardHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ :Dict = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = test_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , output + 2 , atol=1E-5 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = ModelForTest() lowerCAmelCase__ :List[str] = torch.randn(2 , 3 ) lowerCAmelCase__ :Tuple = test_model(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = PostForwardHook() add_hook_to_module(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCAmelCase__ :Dict = True lowerCAmelCase__ :Union[str, Any] = test_model(__UpperCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCAmelCase__ :Dict = torch.randn(2 , 3 ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__UpperCAmelCase , AlignDevicesHook(io_same_device=__UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = torch.randn(2 , 3 ).to(0 ) lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCAmelCase__ :List[str] = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ :Union[str, Any] = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCAmelCase ) lowerCAmelCase__ :Any = torch.randn(2 , 3 ) lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase ) self.assertEqual(output.device , __UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload lowerCAmelCase__ :int = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCAmelCase__ :List[str] = torch.randn(2 , 3 ) lowerCAmelCase__ :Any = model(__UpperCAmelCase ) self.assertEqual(output.device , __UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCAmelCase__ :List[Any] = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(__UpperCAmelCase , execution_device=__UpperCAmelCase , offload=__UpperCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ :List[Any] = torch.device(__UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCAmelCase ) lowerCAmelCase__ :str = torch.randn(2 , 3 ) lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase ) self.assertEqual(output.device , __UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(__UpperCAmelCase , execution_device=__UpperCAmelCase , offload=__UpperCAmelCase , offload_buffers=__UpperCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCAmelCase__ :Any = torch.randn(2 , 3 ) lowerCAmelCase__ :str = model(__UpperCAmelCase ) self.assertEqual(output.device , __UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCAmelCase__ :Optional[int] = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( __UpperCAmelCase , execution_device=__UpperCAmelCase , offload=__UpperCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ :Any = torch.device(__UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = torch.randn(2 , 3 ) lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase ) self.assertEqual(output.device , __UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( __UpperCAmelCase , execution_device=__UpperCAmelCase , offload=__UpperCAmelCase , weights_map=model.state_dict() , offload_buffers=__UpperCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCAmelCase__ :Tuple = torch.randn(2 , 3 ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase ) self.assertEqual(output.device , __UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
354
"""simple docstring""" __A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __A (_SCREAMING_SNAKE_CASE ) ->list[list[int]]: """simple docstring""" lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) * [False] lowerCAmelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Dict = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: lowerCAmelCase__ :Union[str, Any] = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
254
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Union[str, Any] = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A : Optional[List[str]] = None A : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A : str = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class _lowercase : """simple docstring""" A__ = True A__ = None # Automatically constructed A__ = "PIL.Image.Image" A__ = pa.struct({"bytes": pa.binary(), "path": pa.string()}) A__ = field(default="Image" , init=lowercase__ , repr=lowercase__) def __call__( self : Any ): '''simple docstring''' return self.pa_type def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : str = np.array(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(__lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCamelCase ) elif isinstance(__lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCamelCase ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowerCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : List[Any]=None ): '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ , lowerCamelCase__ : Optional[int] = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = PIL.Image.open(__lowerCamelCase ) else: lowerCamelCase__ : Tuple = path.split("::" )[-1] try: lowerCamelCase__ : str = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )["repo_id"] lowerCamelCase__ : Any = token_per_repo_id.get(__lowerCamelCase ) except ValueError: lowerCamelCase__ : int = None with xopen(__lowerCamelCase , "rb" , use_auth_token=__lowerCamelCase ) as f: lowerCamelCase__ : List[str] = BytesIO(f.read() ) lowerCamelCase__ : Optional[int] = PIL.Image.open(bytes_ ) else: lowerCamelCase__ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase ( self : Dict ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) lowerCamelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase__ : List[Any] = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : Any = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowerCamelCase__ : Dict = storage.field("bytes" ) else: lowerCamelCase__ : Optional[int] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowerCamelCase__ : Dict = storage.field("path" ) else: lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCamelCase__ : Union[str, Any] = pa.array( [encode_np_array(np.array(__lowerCamelCase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowerCAmelCase ( self : int , __lowerCamelCase : pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Union[str, Any] ): with xopen(__lowerCamelCase , "rb" ) as f: lowerCamelCase__ : str = f.read() return bytes_ lowerCamelCase__ : List[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase__ : Optional[int] = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowerCamelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowercase_ ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCamelCase__ : List[str] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowercase_ ( _A : "PIL.Image.Image" ): """simple docstring""" lowerCamelCase__ : Optional[Any] = BytesIO() if image.format in list_image_compression_formats(): lowerCamelCase__ : int = image.format else: lowerCamelCase__ : int = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_A , format=_A ) return buffer.getvalue() def lowercase_ ( _A : "PIL.Image.Image" ): """simple docstring""" if hasattr(_A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_A )} def lowercase_ ( _A : np.ndarray ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) lowerCamelCase__ : int = array.dtype lowerCamelCase__ : List[str] = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowerCamelCase__ : List[str] = dtype.kind lowerCamelCase__ : Optional[Any] = dtype.itemsize lowerCamelCase__ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCamelCase__ : List[Any] = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCamelCase__ : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCamelCase__ : Optional[Any] = dtype_byteorder + dtype_kind + str(_A ) lowerCamelCase__ : int = np.dtype(_A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) lowerCamelCase__ : List[Any] = PIL.Image.fromarray(array.astype(_A ) ) return {"path": None, "bytes": image_to_bytes(_A )} def lowercase_ ( _A : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: lowerCamelCase__ , lowerCamelCase__ : int = first_non_null_value(_A ) if isinstance(_A , _A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_A , np.ndarray ): lowerCamelCase__ : Optional[Any] = no_op_if_value_is_null(_A ) return [obj_to_image_dict_func(_A ) for obj in objs] elif isinstance(_A , PIL.Image.Image ): lowerCamelCase__ : int = no_op_if_value_is_null(_A ) return [obj_to_image_dict_func(_A ) for obj in objs] else: return objs else: return objs
184
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = """table-transformer""" UpperCamelCase_ : str = ["""past_key_values"""] UpperCamelCase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Tuple=1_00 , SCREAMING_SNAKE_CASE_ : int=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE_ : Tuple=8 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : Tuple=20_48 , SCREAMING_SNAKE_CASE_ : Tuple=8 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : int="relu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_56 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : str="sine" , SCREAMING_SNAKE_CASE_ : int="resnet50" , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : str=1 , SCREAMING_SNAKE_CASE_ : Tuple=5 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : int=0.1 , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A: Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: Tuple = backbone_config.get('''model_type''' ) A: Dict = CONFIG_MAPPING[backbone_model_type] A: Any = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None A , A , A: Optional[Any] = None, None, None A: str = use_timm_backbone A: List[Any] = backbone_config A: Tuple = num_channels A: str = num_queries A: Optional[Any] = d_model A: Dict = encoder_ffn_dim A: Optional[int] = encoder_layers A: Dict = encoder_attention_heads A: List[str] = decoder_ffn_dim A: Tuple = decoder_layers A: Tuple = decoder_attention_heads A: List[Any] = dropout A: List[Any] = attention_dropout A: Tuple = activation_dropout A: Optional[Any] = activation_function A: List[Any] = init_std A: Optional[Any] = init_xavier_std A: Dict = encoder_layerdrop A: List[str] = decoder_layerdrop A: Optional[int] = encoder_layers A: List[str] = auxiliary_loss A: List[str] = position_embedding_type A: List[Any] = backbone A: Union[str, Any] = use_pretrained_backbone A: Any = dilation # Hungarian matcher A: Tuple = class_cost A: Union[str, Any] = bbox_cost A: Dict = giou_cost # Loss coefficients A: Tuple = mask_loss_coefficient A: Optional[Any] = dice_loss_coefficient A: Optional[int] = bbox_loss_coefficient A: Dict = giou_loss_coefficient A: Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _snake_case ( self : Tuple ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : Dict ) -> int: '''simple docstring''' return self.d_model class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = version.parse("""1.11""" ) @property def _snake_case ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _snake_case ( self : Optional[Any] ) -> float: '''simple docstring''' return 1E-5 @property def _snake_case ( self : Any ) -> int: '''simple docstring''' return 12
334
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a__ ( _UpperCamelCase : bool = True ,*_UpperCamelCase : Optional[Any] ,**_UpperCamelCase : Tuple ): if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) __lowerCamelCase = False if main_process_only: __lowerCamelCase = PartialState().local_process_index == 0 return _tqdm(*_UpperCamelCase ,**_UpperCamelCase ,disable=_UpperCamelCase )
330
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
1
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowercase : str = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' _lowercase : Dict = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' _lowercase : Union[str, Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def a ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def a ( self : List[str] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : List[str]=None , _lowercase : Union[str, Any]=None , _lowercase : Tuple=None , _lowercase : str=None , _lowercase : Any="auto" , _lowercase : Optional[Any]=-1 , _lowercase : Dict=0.9 , _lowercase : Union[str, Any]=5 , _lowercase : str=5_00 , _lowercase : Tuple="gpt2-large" , _lowercase : Union[str, Any]=-1 , _lowercase : Dict=10_24 , _lowercase : Tuple=25 , _lowercase : List[str]=5 , _lowercase : Union[str, Any]=True , _lowercase : Union[str, Any]=25 , ): __UpperCAmelCase = compute_mauve( p_text=_lowercase , q_text=_lowercase , p_features=_lowercase , q_features=_lowercase , p_tokens=_lowercase , q_tokens=_lowercase , num_buckets=_lowercase , pca_max_data=_lowercase , kmeans_explained_var=_lowercase , kmeans_num_redo=_lowercase , kmeans_max_iter=_lowercase , featurize_model_name=_lowercase , device_id=_lowercase , max_text_length=_lowercase , divergence_curve_discretization_size=_lowercase , mauve_scaling_factor=_lowercase , verbose=_lowercase , seed=_lowercase , ) return out
86
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
1