code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A__ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") A__ = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode("""utf-8""").split() A__ = """|""".join(sys.argv[1:]) A__ = re.compile(Rf"^({joined_dirs}).*?\.py$") A__ = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
82
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A__ = logging.getLogger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''summarization''' __lowerCamelCase = ['''loss'''] __lowerCamelCase = ROUGE_KEYS __lowerCamelCase = '''rouge2''' def __init__( self , _snake_case , **_snake_case ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: _lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(_snake_case , num_labels=_snake_case , mode=self.mode , **_snake_case ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) _lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" _lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) _lowerCAmelCase = 0 _lowerCAmelCase = defaultdict(_snake_case ) _lowerCAmelCase = self.config.model_type _lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size _lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } _lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _lowerCAmelCase = get_git_info()["""repo_sha"""] _lowerCAmelCase = hparams.num_workers _lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _snake_case ): _lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _lowerCAmelCase = self.decoder_start_token_id _lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) _lowerCAmelCase = False _lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _lowerCAmelCase = self.hparams.eval_max_gen_length else: _lowerCAmelCase = self.model.config.max_length _lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(_snake_case , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) _lowerCAmelCase = True return readable_batch def snake_case ( self , _snake_case , **_snake_case ): """simple docstring""" return self.model(_snake_case , **_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) return lmap(str.strip , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.tokenizer.pad_token_id _lowerCAmelCase , _lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] _lowerCAmelCase = batch["""labels"""] if isinstance(self.model , _snake_case ): _lowerCAmelCase = self.model._shift_right(_snake_case ) else: _lowerCAmelCase = shift_tokens_right(_snake_case , _snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _lowerCAmelCase = decoder_input_ids self.save_readable_batch(_snake_case ) _lowerCAmelCase = self(_snake_case , attention_mask=_snake_case , decoder_input_ids=_snake_case , use_cache=_snake_case ) _lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=_snake_case ) assert lm_logits.shape[-1] == self.vocab_size _lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _lowerCAmelCase = nn.functional.log_softmax(_snake_case , dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = label_smoothed_nll_loss( _snake_case , _snake_case , self.hparams.label_smoothing , ignore_index=_snake_case ) return (loss,) @property def snake_case ( self ): """simple docstring""" return self.tokenizer.pad_token_id def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self._step(_snake_case ) _lowerCAmelCase = dict(zip(self.loss_names , _snake_case ) ) # tokens per batch _lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() _lowerCAmelCase = batch["""input_ids"""].shape[0] _lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() _lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return self._generative_step(_snake_case ) def snake_case ( self , _snake_case , _snake_case="val" ): """simple docstring""" self.step_count += 1 _lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _lowerCAmelCase = losses["""loss"""] _lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } _lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _lowerCAmelCase = torch.tensor(_snake_case ).type_as(_snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_snake_case ) _lowerCAmelCase = {F'{prefix}_avg_{k}': x for k, x in losses.items()} _lowerCAmelCase = self.step_count self.metrics[prefix].append(_snake_case ) # callback writes this to self.metrics_save_path _lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return calculate_rouge(_snake_case , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _lowerCAmelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=_snake_case , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] _lowerCAmelCase = self.ids_to_clean_text(_snake_case ) _lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) _lowerCAmelCase = self._step(_snake_case ) _lowerCAmelCase = dict(zip(self.loss_names , _snake_case ) ) _lowerCAmelCase = self.calc_generative_metrics(_snake_case , _snake_case ) _lowerCAmelCase = np.mean(lmap(_snake_case , _snake_case ) ) base_metrics.update(gen_time=_snake_case , gen_len=_snake_case , preds=_snake_case , target=_snake_case , **_snake_case ) return base_metrics def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return self._generative_step(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" return self.validation_epoch_end(_snake_case , prefix="""test""" ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.n_obs[type_path] _lowerCAmelCase = self.target_lens[type_path] _lowerCAmelCase = self.dataset_class( self.tokenizer , type_path=_snake_case , n_obs=_snake_case , max_target_length=_snake_case , **self.dataset_kwargs , ) return dataset def snake_case ( self , _snake_case , _snake_case , _snake_case = False ): """simple docstring""" _lowerCAmelCase = self.get_dataset(_snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _lowerCAmelCase = dataset.make_sortish_sampler(_snake_case , distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case , batch_sampler=_snake_case , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=_snake_case ) return dataloader def snake_case ( self ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def snake_case ( self ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case ( _snake_case , _snake_case ): """simple docstring""" BaseTransformer.add_model_specific_args(_snake_case , _snake_case ) add_generic_args(_snake_case , _snake_case ) parser.add_argument( """--max_source_length""" , default=1024 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=_snake_case ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=_snake_case ) parser.add_argument("""--max_tokens_per_batch""" , type=_snake_case , default=_snake_case ) parser.add_argument("""--logger_name""" , type=_snake_case , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=_snake_case , default=-1 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=_snake_case , default=500 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=_snake_case , default=-1 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=_snake_case , default="""summarization""" , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=_snake_case , default=0.0 , required=_snake_case ) parser.add_argument("""--src_lang""" , type=_snake_case , default="""""" , required=_snake_case ) parser.add_argument("""--tgt_lang""" , type=_snake_case , default="""""" , required=_snake_case ) parser.add_argument("""--eval_beams""" , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument( """--val_metric""" , type=_snake_case , default=_snake_case , required=_snake_case , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=_snake_case , default=_snake_case , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=_snake_case , default=1 , required=_snake_case , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=_snake_case , default=-1 , required=_snake_case , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''translation''' __lowerCamelCase = ['''loss'''] __lowerCamelCase = ['''bleu'''] __lowerCamelCase = '''bleu''' def __init__( self , _snake_case , **_snake_case ): """simple docstring""" super().__init__(_snake_case , **_snake_case ) _lowerCAmelCase = hparams.src_lang _lowerCAmelCase = hparams.tgt_lang def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return calculate_bleu(_snake_case , _snake_case ) def _UpperCAmelCase ( snake_case , snake_case=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=snake_case ) check_output_dir(snake_case , expected_items=3 ) if model is None: if "summarization" in args.task: _lowerCAmelCase = SummarizationModule(snake_case ) else: _lowerCAmelCase = TranslationModule(snake_case ) _lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): _lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , snake_case ) _lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=snake_case ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: _lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _lowerCAmelCase = False _lowerCAmelCase = args.val_metric == """loss""" _lowerCAmelCase = generic_train( snake_case , snake_case , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , snake_case ) , early_stopping_callback=snake_case , logger=snake_case , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model _lowerCAmelCase = """""" _lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=snake_case ) ) if checkpoints: _lowerCAmelCase = checkpoints[-1] _lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A__ = argparse.ArgumentParser() A__ = pl.Trainer.add_argparse_args(parser) A__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A__ = parser.parse_args() main(args)
82
1
from pathlib import Path import numpy as np from PIL import Image def lowerCAmelCase__ ( lowerCamelCase_ : np.ndarray): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowerCAmelCase__ ( lowerCamelCase_ : np.ndarray): '''simple docstring''' return (gray > 127) & (gray <= 255) def lowerCAmelCase__ ( lowerCamelCase_ : np.ndarray ,lowerCamelCase_ : np.ndarray): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.zeros_like(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image lowerCAmelCase__ : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): lowerCAmelCase__ : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase__ : Optional[int] = int(summation > 0) return output if __name__ == "__main__": # read original image __snake_case : List[Any] =Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __snake_case : Optional[Any] =np.array(Image.open(lena_path)) # kernel to be applied __snake_case : Union[str, Any] =np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __snake_case : Optional[Any] =dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __snake_case : Optional[int] =Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
94
def lowerCAmelCase__ ( lowerCamelCase_ : int = 1000): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = 1, 1 lowerCAmelCase__ : Any = 2 while True: lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Any = fa + fa lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = fa, f index += 1 for _ in str(lowerCamelCase_): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCamelCase_ ( __a ): def __init__( self : Union[str, Any] , _A : List[Any] , _A : int=False , _A : Union[str, Any]=True , _A : Any=False , _A : Any="<s>" , _A : str="</s>" , _A : List[str]="<unk>" , _A : List[Any]="<sep>" , _A : Dict="<pad>" , _A : Dict="<cls>" , _A : List[Any]="<mask>" , _A : Dict=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase__ : int = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token UpperCAmelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Any = do_lower_case UpperCAmelCase__ : int = remove_space UpperCAmelCase__ : Tuple = keep_accents UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) UpperCAmelCase__ : Optional[Any] = jieba UpperCAmelCase__ : Optional[int] = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.__dict__.copy() UpperCAmelCase__ : Any = None return state def __setstate__( self : Union[str, Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase__ : int = {} UpperCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Optional[int] , _A : Tuple ): '''simple docstring''' if self.remove_space: UpperCAmelCase__ : Tuple = ''' '''.join(inputs.strip().split() ) else: UpperCAmelCase__ : Union[str, Any] = inputs UpperCAmelCase__ : List[Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: UpperCAmelCase__ : Dict = unicodedata.normalize('''NFKD''' , _A ) UpperCAmelCase__ : Dict = ''''''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: UpperCAmelCase__ : Optional[int] = outputs.lower() return outputs def lowercase_ ( self : int , _A : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.preprocess_text(_A ) UpperCAmelCase__ : Optional[int] = self.sp_model.encode(_A , out_type=_A ) UpperCAmelCase__ : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCAmelCase__ : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ : Optional[Any] = cur_pieces[1:] else: UpperCAmelCase__ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def lowercase_ ( self : List[str] , _A : str ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def lowercase_ ( self : Tuple , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def lowercase_ ( self : List[str] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def lowercase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Optional[Any] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: UpperCAmelCase__ : List[str] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def lowercase_ ( self : int , *_A : List[Any] , **_A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = super()._decode(*_A , **_A ) UpperCAmelCase__ : Optional[int] = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
181
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : str = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : int = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : List[Any] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : str = tempfile.mkdtemp() UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : List[Any] = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Tuple = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : Union[str, Any] , **_A : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Dict , **_A : str ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , **_A : int ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = floats_list((3, 1_000) ) UpperCAmelCase__ : str = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : Optional[Any] = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Union[str, Any] = processor(text=_A ) UpperCAmelCase__ : Dict = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : str , _A : int=(2, 10, 16) , _A : Optional[int]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Dict = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Tuple = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : Union[str, Any] = processor.decode(_A ) UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : List[Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : List[Any] = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = self._get_dummy_logits() UpperCAmelCase__ : Optional[Any] = 15 UpperCAmelCase__ : Union[str, Any] = -2_0.0 UpperCAmelCase__ : List[str] = -4.0 UpperCAmelCase__ : str = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[Any] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Any = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase__ : List[Any] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : Any = -2_0.0 UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Any = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[Any] = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Any = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Any = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : str = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Optional[Any] = os.listdir(_A ) UpperCAmelCase__ : int = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : Tuple = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : Union[str, Any] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : List[Any] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : List[Any] = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Tuple , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = self._get_dummy_logits()[0] UpperCAmelCase__ : int = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : str ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Optional[Any] = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : Any = iter(_A ) UpperCAmelCase__ : Dict = next(_A ) UpperCAmelCase__ : Optional[int] = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : List[Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : Union[str, Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : List[str] = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : List[str] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : Tuple = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : Dict = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : Any = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : Any = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
181
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCamelCase = logging.getLogger(__name__) class lowercase__ : '''simple docstring''' def __init__( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = False def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' if not self.initialized: UpperCAmelCase_ = RagRetriever( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) UpperCAmelCase_ = True def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' self.retriever.index.init_index() def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.retriever._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None ) -> List[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(_UpperCAmelCase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) UpperCAmelCase_ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for worker in self.retrieval_workers ] ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase_ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase_ , UpperCAmelCase_ = ray.get(random_worker.retrieve.remote(_UpperCAmelCase , _UpperCAmelCase ) ) else: UpperCAmelCase_ , UpperCAmelCase_ = self._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCAmelCase ) @classmethod def lowercase__ ( cls : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=None , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' return super(_UpperCAmelCase , cls ).get_tokenizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = kwargs.pop("config" , _UpperCAmelCase ) or RagConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = RagTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) UpperCAmelCase_ = rag_tokenizer.question_encoder UpperCAmelCase_ = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase_ = "custom" UpperCAmelCase_ = CustomHFIndex(config.retrieval_vector_size , _UpperCAmelCase ) else: UpperCAmelCase_ = cls._build_index(_UpperCAmelCase ) return cls( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , retrieval_workers=_UpperCAmelCase , index=_UpperCAmelCase , )
241
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A red cat sitting on a park bench" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
241
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) a__ = ['''accelerate''', '''launch'''] a__ = Path.home() / '''.cache/huggingface/accelerate''' a__ = '''default_config.yaml''' a__ = config_folder / config_file a__ = config_folder / '''_default_config.yaml''' a__ = Path("""tests/test_configs""" ) @classmethod def _lowercase ( cls : Optional[Any] ) -> Optional[Any]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowercase ( cls : Dict ) -> List[str]: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowercase ( self : int ) -> List[Any]: """simple docstring""" __magic_name__ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=UpperCamelCase__ ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(UpperCamelCase__ ), self.test_file_path] , env=os.environ.copy() ) def _lowercase ( self : int ) -> str: """simple docstring""" execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = '''test-tpu''' a__ = '''us-central1-a''' a__ = '''ls''' a__ = ['''accelerate''', '''tpu-config'''] a__ = '''cd /usr/share''' a__ = '''tests/test_samples/test_command_file.sh''' a__ = '''Running gcloud compute tpus tpu-vm ssh''' def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" __magic_name__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" __magic_name__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=UpperCamelCase__ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : List[str] ) -> List[str]: """simple docstring""" __magic_name__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : List[str] ) -> Tuple: """simple docstring""" __magic_name__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __magic_name__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all''' , UpperCamelCase__ , ) def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all''' , UpperCamelCase__ , )
88
'''simple docstring''' def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [int(__UpperCamelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(__UpperCamelCase ) == 4 and all(0 <= int(__UpperCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCamelCase_ = input().strip() UpperCamelCase_ = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
251
0
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'nielsr/canine-s': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” UpperCamelCase__ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCamelCase__ = 0 UpperCamelCase__ = 0Xe0_00 UpperCamelCase__ = 0Xe0_01 UpperCamelCase__ = 0Xe0_02 UpperCamelCase__ = 0Xe0_03 UpperCamelCase__ = 0Xe0_04 # Maps special codepoints to human-readable names. UpperCamelCase__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '[CLS]', SEP: '[SEP]', BOS: '[BOS]', MASK: '[MASK]', PAD: '[PAD]', RESERVED: '[RESERVED]', } # Maps special codepoint human-readable names to their codepoint values. UpperCamelCase__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : List[str] , __UpperCAmelCase : int=chr(__UpperCAmelCase ) , __UpperCAmelCase : int=chr(__UpperCAmelCase ) , __UpperCAmelCase : Dict=chr(__UpperCAmelCase ) , __UpperCAmelCase : int=chr(__UpperCAmelCase ) , __UpperCAmelCase : Optional[int]=chr(__UpperCAmelCase ) , __UpperCAmelCase : Any=chr(__UpperCAmelCase ) , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[Any]=2_0_4_8 , **__UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , model_max_length=__UpperCAmelCase , **__UpperCAmelCase , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase__ = UNICODE_VOCAB_SIZE UpperCAmelCase__ = len(self._special_codepoints ) @property def lowercase_ (self : Dict ) -> int: """simple docstring""" return self._unicode_vocab_size def lowercase_ (self : Optional[Any] , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return list(__UpperCAmelCase ) def lowercase_ (self : List[Any] , __UpperCAmelCase : str ) -> int: """simple docstring""" try: return ord(__UpperCAmelCase ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def lowercase_ (self : int , __UpperCAmelCase : int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCAmelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def lowercase_ (self : List[str] , __UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" return "".join(__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowercase_ (self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = [1] + ([0] * len(__UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCAmelCase )) + [1] return result def lowercase_ (self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowercase_ (self : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Any: """simple docstring""" return ()
363
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
143
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , **_a ) -> None: warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _a , ) super().__init__(*_a , **_a )
26
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Tuple = LDMTextToImagePipeline UpperCamelCase__ : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } UpperCamelCase__ : Dict = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ : Any = False def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(_A ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def _A ( self , _A , _A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE = pipe(**_A ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __SCREAMING_SNAKE_CASE = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self , _A , _A=torch.floataa , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.manual_seed(_A ) __SCREAMING_SNAKE_CASE = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) __SCREAMING_SNAKE_CASE = torch.from_numpy(_A ).to(device=_A , dtype=_A ) __SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE = self.get_inputs(_A ) __SCREAMING_SNAKE_CASE = pipe(**_A ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) __SCREAMING_SNAKE_CASE = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self , _A , _A=torch.floataa , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.manual_seed(_A ) __SCREAMING_SNAKE_CASE = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) __SCREAMING_SNAKE_CASE = torch.from_numpy(_A ).to(device=_A , dtype=_A ) __SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE = self.get_inputs(_A ) __SCREAMING_SNAKE_CASE = pipe(**_A ).images[0] __SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) __SCREAMING_SNAKE_CASE = np.abs(expected_image - image ).max() assert max_diff < 1e-3
362
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase__ : Optional[int] =True from torch.cuda.amp import autocast lowerCAmelCase__ : List[Any] =logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __lowercase ( a__ , a__ ) -> Dict: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: __SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(a__ ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( default=UpperCamelCase_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase__ : Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase__ : Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase__ : bool = field( default=UpperCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase__ : Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase__ : Optional[int] = field( default=UpperCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : WavaVecaForPreTraining UpperCamelCase__ : WavaVecaFeatureExtractor UpperCamelCase__ : Union[bool, str] = "longest" UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extractor.pad( _A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) __SCREAMING_SNAKE_CASE = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) __SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_A , min_masks=2 , ) return batch class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , *_A , _A=1 , _A=0 , _A=1.0 , **_A ): '''simple docstring''' super().__init__(*_A , **_A ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = max_gumbel_temp __SCREAMING_SNAKE_CASE = min_gumbel_temp __SCREAMING_SNAKE_CASE = gumbel_temp_decay def _A ( self , _A , _A ): '''simple docstring''' model.train() __SCREAMING_SNAKE_CASE = self._prepare_inputs(_A ) if self.use_amp: with autocast(): __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) else: __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __SCREAMING_SNAKE_CASE = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowercase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(a__ , a__ ) # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__ ) def prepare_dataset(a__ ): # check that all files have the correct sampling rate __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __SCREAMING_SNAKE_CASE = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda a__ : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a__ ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __SCREAMING_SNAKE_CASE = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(a__ ) __SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__ ) __SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
118
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = tmp_path / "file.csv" snake_case_ = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(snake_case , "w" ) as f: f.write(snake_case ) return str(snake_case ) @pytest.fixture def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = tmp_path / "malformed_file.csv" snake_case_ = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(snake_case , "w" ) as f: f.write(snake_case ) return str(snake_case ) @pytest.fixture def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Tuple ): '''simple docstring''' snake_case_ = tmp_path / "csv_with_image.csv" snake_case_ = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(snake_case , "w" ) as f: f.write(snake_case ) return str(snake_case ) @pytest.fixture def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = tmp_path / "csv_with_label.csv" snake_case_ = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(snake_case , "w" ) as f: f.write(snake_case ) return str(snake_case ) @pytest.fixture def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = tmp_path / "csv_with_int_list.csv" snake_case_ = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(snake_case , "w" ) as f: f.write(snake_case ) return str(snake_case ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = Csv() snake_case_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(snake_case ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase_( snake_case : int ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as f: snake_case_ = f.read().splitlines()[1] snake_case_ = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) snake_case_ = csv._generate_tables([[csv_file_with_image]] ) snake_case_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() snake_case_ = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase_( snake_case : str ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as f: snake_case_ = f.read().splitlines()[1:] snake_case_ = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) snake_case_ = csv._generate_tables([[csv_file_with_label]] ) snake_case_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() snake_case_ = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(snake_case ) for label in labels] def UpperCamelCase_( snake_case : Any ): '''simple docstring''' snake_case_ = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda snake_case : [int(snake_case ) for i in x.split()]} ) snake_case_ = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) snake_case_ = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
85
"""simple docstring""" import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
289
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=True ) -> Union[str, Any]: if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __a = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __a = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models ) __a = config_class.from_json_file(SCREAMING_SNAKE_CASE__ ) __a = True __a = True print(f'''Building TensorFlow model from configuration: {config}''' ) __a = model_class(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __a = cached_file( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __a = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if compare_with_pt_model: __a = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE__ ) # build the network __a = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) __a = pt_model_class.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): __a = pt_model(**pt_model.dummy_inputs ) __a = pto[0].numpy() __a = tfo[0].numpy() __a = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(SCREAMING_SNAKE_CASE__ , save_format='''h5''' ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=False , ) -> List[str]: if args_model_type is None: __a = list(MODEL_CLASSES.keys() ) else: __a = [args_model_type] for j, model_type in enumerate(SCREAMING_SNAKE_CASE__ , start=1 ): print('''=''' * 100 ) print(f''' Converting model type {j}/{len(SCREAMING_SNAKE_CASE__ )}: {model_type}''' ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __a = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __a = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __a = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __a = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE__ )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: __a = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models ) else: __a = config_shortcut_name if model_shortcut_name in aws_model_maps: __a = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , force_download=not use_cached_models ) else: __a = model_shortcut_name if os.path.isfile(SCREAMING_SNAKE_CASE__ ): __a = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=SCREAMING_SNAKE_CASE__ , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE__ , config_file=SCREAMING_SNAKE_CASE__ , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE__ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=SCREAMING_SNAKE_CASE__ , ) if remove_cached_files: os.remove(SCREAMING_SNAKE_CASE__ ) os.remove(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowercase_ = """scheduler_config.json""" class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 5 UpperCamelCase = 6 UpperCamelCase = 7 UpperCamelCase = 8 UpperCamelCase = 9 UpperCamelCase = 10 UpperCamelCase = 11 UpperCamelCase = 12 UpperCamelCase = 13 UpperCamelCase = 14 @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 class a_ : '''simple docstring''' UpperCamelCase = SCHEDULER_CONFIG_NAME UpperCamelCase = [] UpperCamelCase = True @classmethod def snake_case_( cls , A = None , A = None , A=False , **A , ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.load_config( pretrained_model_name_or_path=A , subfolder=A , return_unused_kwargs=A , return_commit_hash=A , **A , ) return cls.from_config(A , return_unused_kwargs=A , **A ) def snake_case_( self , A , A = False , **A ) -> List[Any]: self.save_config(save_directory=A , push_to_hub=A , **A ) @property def snake_case_( self ) -> List[str]: return self._get_compatibles() @classmethod def snake_case_( cls ) -> Dict: _SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) ) _SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split(""".""" )[0] ) _SCREAMING_SNAKE_CASE = [ getattr(A , A ) for c in compatible_classes_str if hasattr(A , A ) ] return compatible_classes
58
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Any = '''xmod''' def __init__( self ,SCREAMING_SNAKE_CASE__=3_05_22 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__="absolute" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=("en_XX",) ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = vocab_size __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE :str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE :str = initializer_range __SCREAMING_SNAKE_CASE :List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[Any] = position_embedding_type __SCREAMING_SNAKE_CASE :Any = use_cache __SCREAMING_SNAKE_CASE :List[str] = classifier_dropout __SCREAMING_SNAKE_CASE :Any = pre_norm __SCREAMING_SNAKE_CASE :Dict = adapter_reduction_factor __SCREAMING_SNAKE_CASE :Dict = adapter_layer_norm __SCREAMING_SNAKE_CASE :Dict = adapter_reuse_layer_norm __SCREAMING_SNAKE_CASE :Tuple = ln_before_adapter __SCREAMING_SNAKE_CASE :Any = list(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = default_language class _SCREAMING_SNAKE_CASE( A ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE :Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
191
0
'''simple docstring''' import math import random def a_ ( lowerCamelCase : float , lowerCamelCase : bool = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __snake_case =0.0_2 def a_ ( lowerCamelCase : int , lowerCamelCase : int ): lowerCAmelCase = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowerCamelCase ): # Forward propagation lowerCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCAmelCase = (expected / 100) - layer_a # Error delta lowerCAmelCase = layer_1_error * sigmoid_function(lowerCamelCase , lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __snake_case =int(input("""Expected value: """)) __snake_case =int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
55
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __snake_case =TypeVar("""T""") class UpperCAmelCase_ ( Generic[T] ): def __init__( self : int , UpperCAmelCase__ : T ) -> List[str]: lowerCAmelCase = data lowerCAmelCase = None def __str__( self : Optional[int] ) -> str: return F'''{self.data}''' class UpperCAmelCase_ ( Generic[T] ): def __init__( self : Optional[Any] ) -> None: lowerCAmelCase = None def __iter__( self : Any ) -> Iterator[T]: lowerCAmelCase = self.top while node: yield node.data lowerCAmelCase = node.next def __str__( self : str ) -> str: return "->".join([str(UpperCAmelCase__ ) for item in self] ) def __len__( self : Optional[int] ) -> int: return len(tuple(iter(self ) ) ) def __UpperCAmelCase ( self : Optional[Any] ) -> bool: return self.top is None def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : T ) -> None: lowerCAmelCase = Node(UpperCAmelCase__ ) if not self.is_empty(): lowerCAmelCase = self.top lowerCAmelCase = node def __UpperCAmelCase ( self : str ) -> T: if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCAmelCase__ ) lowerCAmelCase = self.top lowerCAmelCase = self.top.next return pop_node.data def __UpperCAmelCase ( self : List[Any] ) -> T: if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __UpperCAmelCase ( self : str ) -> None: lowerCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
55
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase_ ( a): def __init__( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = params _lowerCAmelCase : List[str] = np.array(__a) _lowerCAmelCase : Optional[Any] = np.array([len(__a) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self, __a): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self): '''simple docstring''' return len(self.lengths) def snake_case__ ( self): '''simple docstring''' assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.params.max_model_input_size _lowerCAmelCase : List[str] = self.lengths > max_len logger.info(f"Splitting {sum(__a)} too long sequences.") def divide_chunks(__a, __a): return [l[i : i + n] for i in range(0, len(__a), __a)] _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[int] = [] if self.params.mlm: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids, self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: _lowerCAmelCase : int = [] for sub_s in divide_chunks(seq_, max_len - 2): if sub_s[0] != cls_id: _lowerCAmelCase : Union[str, Any] = np.insert(__a, 0, __a) if sub_s[-1] != sep_id: _lowerCAmelCase : Any = np.insert(__a, len(__a), __a) assert len(__a) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__a) new_tok_ids.extend(__a) new_lengths.extend([len(__a) for l in sub_seqs]) _lowerCAmelCase : Any = np.array(__a) _lowerCAmelCase : Optional[Any] = np.array(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = len(self) _lowerCAmelCase : str = self.lengths > 11 _lowerCAmelCase : Tuple = self.token_ids[indices] _lowerCAmelCase : Optional[Any] = self.lengths[indices] _lowerCAmelCase : List[Any] = len(self) logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences.") def snake_case__ ( self): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: _lowerCAmelCase : Any = self.params.special_tok_ids["unk_token"] _lowerCAmelCase : int = len(self) _lowerCAmelCase : Any = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) _lowerCAmelCase : int = (unk_occs / self.lengths) < 0.5 _lowerCAmelCase : List[str] = self.token_ids[indices] _lowerCAmelCase : List[Any] = self.lengths[indices] _lowerCAmelCase : Optional[int] = len(self) logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).") def snake_case__ ( self): '''simple docstring''' if not self.params.is_master: return logger.info(f"{len(self)} sequences") # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [t[0] for t in batch] _lowerCAmelCase : Any = [t[1] for t in batch] assert len(__a) == len(__a) # Max for paddings _lowerCAmelCase : List[Any] = max(__a) # Pad token ids if self.params.mlm: _lowerCAmelCase : Any = self.params.special_tok_ids["pad_token"] else: _lowerCAmelCase : int = self.params.special_tok_ids["unk_token"] _lowerCAmelCase : int = [list(t.astype(__a)) + [pad_idx] * (max_seq_len_ - len(__a)) for t in token_ids] assert len(tk_) == len(__a) assert all(len(__a) == max_seq_len_ for t in tk_) _lowerCAmelCase : Union[str, Any] = torch.tensor(tk_) # (bs, max_seq_len_) _lowerCAmelCase : Optional[Any] = torch.tensor(__a) # (bs) return tk_t, lg_t
36
def A ( _lowerCamelCase ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _lowerCAmelCase : List[str] = gray_code_sequence_string(_lowerCamelCase ) # # convert them to integers for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = int(sequence[i] , 2 ) return sequence def A ( _lowerCamelCase ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCAmelCase : List[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCAmelCase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) _lowerCAmelCase : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCAmelCase : Dict = "0" + smaller_sequence[i] sequence.append(_lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCAmelCase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
36
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ : str = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "albert" def __init__( self : Union[str, Any] , _lowerCAmelCase : str=30_000 , _lowerCAmelCase : Optional[Any]=128 , _lowerCAmelCase : Any=4_096 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Dict=16_384 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Any="gelu_new" , _lowerCAmelCase : int=0 , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Union[str, Any]=1E-12 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Union[str, Any]="absolute" , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Tuple=3 , **_lowerCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = embedding_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_hidden_groups SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = inner_group_num SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = classifier_dropout_prob SCREAMING_SNAKE_CASE_ = position_embedding_type class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[int] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
210
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self : Dict ): raise NotImplementedError()
210
1
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase_ : List[str] = logging.get_logger(__name__) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , **snake_case_ ): """simple docstring""" requires_backends(self , ['bs4'] ) super().__init__(**snake_case_ ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Tuple = [] A_ : List[str] = [] A_ : int = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag A_ : int = parent.find_all(child.name , recursive=snake_case_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(snake_case_ ) else next(i for i, s in enumerate(snake_case_ , 1 ) if s is child ) ) A_ : Union[str, Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Optional[Any] = BeautifulSoup(snake_case_ , 'html.parser' ) A_ : Dict = [] A_ : Dict = [] A_ : Tuple = [] for element in html_code.descendants: if type(snake_case_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue A_ : Union[str, Any] = html.unescape(snake_case_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(snake_case_ ) A_ , A_ : Optional[Any] = self.xpath_soup(snake_case_ ) stringaxtag_seq.append(snake_case_ ) stringaxsubs_seq.append(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = '' for tagname, subs in zip(snake_case_ , snake_case_ ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , snake_case_ ): """simple docstring""" A_ : Optional[int] = False # Check that strings has a valid type if isinstance(snake_case_ , snake_case_ ): A_ : List[str] = True elif isinstance(snake_case_ , (list, tuple) ): if len(snake_case_ ) == 0 or isinstance(html_strings[0] , snake_case_ ): A_ : str = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F"""but is of type {type(snake_case_ )}.""" ) A_ : str = bool(isinstance(snake_case_ , (list, tuple) ) and (isinstance(html_strings[0] , snake_case_ )) ) if not is_batched: A_ : Optional[Any] = [html_strings] # Get nodes + xpaths A_ : str = [] A_ : Tuple = [] for html_string in html_strings: A_ , A_ , A_ : Optional[Any] = self.get_three_from_single(snake_case_ ) nodes.append(snake_case_ ) A_ : List[Any] = [] for node, tag_list, sub_list in zip(snake_case_ , snake_case_ , snake_case_ ): A_ : int = self.construct_xpath(snake_case_ , snake_case_ ) xpath_strings.append(snake_case_ ) xpaths.append(snake_case_ ) # return as Dict A_ : Tuple = {'nodes': nodes, 'xpaths': xpaths} A_ : List[Any] = BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) return encoded_inputs
286
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCamelCase_ : Dict = get_logger(__name__) lowerCamelCase_ : List[str] = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): """simple docstring""" for processor in self: A_ : Tuple = inspect.signature(processor.__call__ ).parameters if len(snake_case_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) A_ : Tuple = processor(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) else: A_ : Optional[Any] = processor(snake_case_ , snake_case_ , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) A_ : Optional[int] = temperature def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = scores / self.temperature return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = -float('Inf' ) , snake_case_ = 1 ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(snake_case_ , snake_case_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) A_ : str = top_p A_ : Union[str, Any] = filter_value A_ : int = min_tokens_to_keep def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ , A_ : Tuple = lax.top_k(snake_case_ , scores.shape[-1] ) A_ : List[Any] = jnp.full_like(snake_case_ , self.filter_value ) A_ : List[str] = jax.nn.softmax(snake_case_ , axis=-1 ).cumsum(axis=-1 ) A_ : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well A_ : Union[str, Any] = jnp.roll(snake_case_ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case_ ) # min tokens to keep A_ : int = score_mask.at[:, : self.min_tokens_to_keep].set(snake_case_ ) A_ : Optional[Any] = jnp.where(snake_case_ , snake_case_ , snake_case_ ) A_ : List[Any] = jax.lax.sort_key_val(snake_case_ , snake_case_ )[-1] return next_scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = -float('Inf' ) , snake_case_ = 1 ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) A_ : str = max(snake_case_ , snake_case_ ) A_ : Union[str, Any] = filter_value def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ , A_ : int = scores.shape A_ : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) A_ : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check A_ , A_ : Dict = lax.top_k(snake_case_ , snake_case_ ) A_ : Optional[int] = jnp.broadcast_to((jnp.arange(snake_case_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A_ : int = topk_scores.flatten() A_ : Any = topk_indices.flatten() + shift A_ : List[str] = next_scores_flat.at[topk_indices_flat].set(snake_case_ ) A_ : Union[str, Any] = next_scores_flat.reshape(snake_case_ , snake_case_ ) return next_scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = bos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) A_ : Union[str, Any] = 1 - jnp.bool_(cur_len - 1 ) A_ : str = jnp.where(snake_case_ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = max_length A_ : Optional[int] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = jnp.full(scores.shape , -float('inf' ) ) A_ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A_ : Dict = jnp.where(snake_case_ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(snake_case_ , snake_case_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) A_ : Any = min_length A_ : List[Any] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A_ : Optional[Any] = jnp.where(snake_case_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[Any] = list(snake_case_ ) A_ : Tuple = begin_index def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = 1 - jnp.bool_(cur_len - self.begin_index ) A_ : int = jnp.where(snake_case_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : List[Any] = list(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : Any = dict(snake_case_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A_ : Tuple = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A_ : Tuple = force_token_array.at[index].set(snake_case_ ) A_ : Any = jnp.intaa(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" def _force_token(snake_case_ ): A_ : List[Any] = scores.shape[0] A_ : Any = self.force_token_array[generation_idx] A_ : Tuple = jnp.ones_like(snake_case_ , dtype=scores.dtype ) * -float('inf' ) A_ : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A_ : int = lax.dynamic_update_slice(snake_case_ , snake_case_ , (0, current_token) ) return new_scores A_ : int = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case_ ) , lambda: scores , ) , ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = generate_config.eos_token_id A_ : Optional[int] = generate_config.no_timestamps_token_id A_ : List[str] = generate_config.no_timestamps_token_id + 1 A_ : Any = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case_ , 'max_initial_timestamp_index' ): A_ : List[Any] = generate_config.max_initial_timestamp_index else: A_ : Any = model_config.vocab_size if self.max_initial_timestamp_index is None: A_ : Optional[Any] = model_config.vocab_size def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(snake_case_ , snake_case_ ): A_ : Any = jnp.where((cur_len - self.begin_index) >= 1 , snake_case_ , snake_case_ ) A_ : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case_ , ) A_ : Tuple = jnp.where((cur_len - self.begin_index) < 2 , snake_case_ , snake_case_ ) A_ : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case_ , snake_case_ , ) return jnp.where( snake_case_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , snake_case_ , ) A_ : Tuple = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) A_ : Optional[Any] = jnp.where(cur_len == self.begin_index , snake_case_ , snake_case_ ) A_ : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case_ , ) A_ : int = self.timestamp_begin + self.max_initial_timestamp_index A_ : List[Any] = jnp.where( snake_case_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , snake_case_ , ) # if sum of probability over timestamps is above any other token, sample timestamp A_ : Any = jax.nn.log_softmax(snake_case_ , axis=-1 ) def handle_cumulative_probs(snake_case_ , snake_case_ ): A_ : Dict = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A_ : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , snake_case_ , ) A_ : Union[str, Any] = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) return scores
286
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[int] , UpperCamelCase_: pyspark.sql.DataFrame , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = "arrow" , **UpperCamelCase_: Union[str, Any] , ): super().__init__( split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , **_A , ) __lowerCamelCase = load_from_cache_file __lowerCamelCase = file_format __lowerCamelCase = Spark( df=_A , features=_A , cache_dir=_A , working_dir=_A , **_A , ) def lowerCAmelCase__ ( self: Optional[Any] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowerCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_A , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
356
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCamelCase ( _UpperCamelCase=32 , _UpperCamelCase=10 , _UpperCamelCase=100 , _UpperCamelCase=1026 , _UpperCamelCase=True , _UpperCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _UpperCamelCase="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set __lowerCAmelCase = generate_datasets( A_ , A_ , number=A_ , min_len=1026 , trim=A_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowerCAmelCase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model __lowerCAmelCase = load_gpta("gpt2" ).to(A_ ) print("computing perplexity on objective set" ) __lowerCAmelCase = compute_perplexity(A_ , A_ , A_ ).item() print("perplexity on objective set:" , A_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=15 , _UpperCamelCase=128 , _UpperCamelCase=100 , _UpperCamelCase="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model __lowerCAmelCase = SecondaryLearner(A_ ) # Train secondary learner __lowerCAmelCase = train_secondary_learner( A_ , A_ , max_epochs=A_ , batch_size=A_ , eval_freq=100 , igf_model_path=A_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=32 , _UpperCamelCase=1000 , _UpperCamelCase=16 , _UpperCamelCase=1.0 , _UpperCamelCase=recopy_gpta , _UpperCamelCase=None , _UpperCamelCase=10 , _UpperCamelCase="gpt2_finetuned.pt" , ): '''simple docstring''' __lowerCAmelCase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) __lowerCAmelCase = RandomSampler(A_ ) __lowerCAmelCase = DataLoader(A_ , sampler=A_ ) __lowerCAmelCase = max_steps // (len(A_ )) + 1 __lowerCAmelCase = 0 __lowerCAmelCase = torch.zeros((1, context_len) , dtype=torch.long , device=A_ ) __lowerCAmelCase = recopy_model(A_ , A_ , A_ ) model.train() if secondary_learner is not None: secondary_learner.to(A_ ) secondary_learner.eval() __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] # Compute the performance of the transformer model at the beginning __lowerCAmelCase = compute_perplexity(A_ , A_ , A_ ) test_perps.append(A_ ) print("Test perplexity, step" , A_ , ":" , A_ ) for epoch in range(int(A_ ) ): for step, example in enumerate(A_ ): torch.cuda.empty_cache() __lowerCAmelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) __lowerCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowerCAmelCase = model(A_ , labels=A_ ) __lowerCAmelCase = True if secondary_learner is not None: __lowerCAmelCase = secondary_learner.forward( torch.tensor(A_ , dtype=torch.long , device=A_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(A_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowerCAmelCase = -1 if predicted_q < threshold: __lowerCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowerCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowerCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowerCAmelCase = compute_perplexity(A_ , A_ , A_ ) test_perps.append(A_ ) print("Test perplexity, step" , A_ , ":" , A_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=A_ , type=A_ , required=A_ , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=A_ , type=A_ , required=A_ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=A_ , default=A_ , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=A_ , default=A_ , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=A_ , type=A_ , required=A_ , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=A_ , type=A_ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=A_ , default=A_ , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=A_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=A_ , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=A_ , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=A_ , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=A_ , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=A_ , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=A_ , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=A_ , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=A_ , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=A_ , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=A_ , type=A_ , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=A_ , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=A_ , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=A_ , type=A_ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=A_ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __lowerCAmelCase = joblib.load("data/IGF_values.jbl" ) # Train secondary learner __lowerCAmelCase = training_secondary_learner( A_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowerCAmelCase = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=A_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A_ , A_ , A_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=A_ , secondary_learner=A_ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
57
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A_ ) * abs(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
40
0
'''simple docstring''' import logging import os from .state import PartialState class lowerCAmelCase__ ( logging.LoggerAdapter ): @staticmethod def _snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) lowercase_ : Tuple = kwargs.pop('''main_process_only''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = kwargs.pop('''in_order''' , __SCREAMING_SNAKE_CASE ) if self.isEnabledFor(__SCREAMING_SNAKE_CASE ): if self._should_log(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : Optional[Any] = self.process(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.logger.log(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif in_order: lowercase_ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowercase_ , lowercase_ : Optional[int] = self.process(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.logger.log(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str = None ): """simple docstring""" if log_level is None: lowercase_ : Any = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = logging.getLogger(__SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__SCREAMING_SNAKE_CASE , {} )
264
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
264
1
'''simple docstring''' from math import sqrt def a_ ( lowerCamelCase : int ): assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase = False for divisor in range(2 , int(round(sqrt(lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'status' must been from type bool" return status def a_ ( lowerCamelCase : Tuple ): assert isinstance(lowerCamelCase , lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase = list(range(2 , n + 1 ) ) lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase ) ): for j in range(i + 1 , len(lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase = 0 # filters actual prime numbers. lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def a_ ( lowerCamelCase : Optional[Any] ): assert isinstance(lowerCamelCase , lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase ): ans.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def a_ ( lowerCamelCase : Dict ): assert isinstance(lowerCamelCase , lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase = 2 lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase ): while quotient != 1: if is_prime(lowerCamelCase ) and (quotient % factor == 0): ans.append(lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def a_ ( lowerCamelCase : List[str] ): assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase = 0 # prime factorization of 'number' lowerCAmelCase = prime_factorization(lowerCamelCase ) lowerCAmelCase = max(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type int" return ans def a_ ( lowerCamelCase : Optional[int] ): assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase = 0 # prime factorization of 'number' lowerCAmelCase = prime_factorization(lowerCamelCase ) lowerCAmelCase = min(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type int" return ans def a_ ( lowerCamelCase : Any ): assert isinstance(lowerCamelCase , lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def a_ ( lowerCamelCase : Any ): assert isinstance(lowerCamelCase , lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def a_ ( lowerCamelCase : Union[str, Any] ): assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (number > 2) and is_even(lowerCamelCase ) ), "'number' must been an int, even and > 2" lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase = get_prime_numbers(lowerCamelCase ) lowerCAmelCase = len(lowerCamelCase ) # run variable for while-loops. lowerCAmelCase = 0 lowerCAmelCase = None # exit variable. for break up the loops lowerCAmelCase = True while i < len_pn and loop: lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (len(lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a_ ( lowerCamelCase : Dict , lowerCamelCase : int ): assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase = 0 while numbera != 0: lowerCAmelCase = numbera % numbera lowerCAmelCase = numbera lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a_ ( lowerCamelCase : str , lowerCamelCase : str ): assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase = prime_factorization(lowerCamelCase ) lowerCAmelCase = prime_factorization(lowerCamelCase ) elif numbera == 1 or numbera == 1: lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = max(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase = prime_fac_a.count(lowerCamelCase ) lowerCAmelCase = prime_fac_a.count(lowerCamelCase ) for _ in range(max(lowerCamelCase , lowerCamelCase ) ): ans *= n else: lowerCAmelCase = prime_fac_a.count(lowerCamelCase ) for _ in range(lowerCamelCase ): ans *= n done.append(lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase = prime_fac_a.count(lowerCamelCase ) for _ in range(lowerCamelCase ): ans *= n done.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a_ ( lowerCamelCase : int ): assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase = 0 lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase ): ans += 1 # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and is_prime( lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] ): assert ( is_prime(lowerCamelCase ) and is_prime(lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase = p_number_a + 1 # jump to the next number lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase ): number += 1 while number < p_number_a: ans.append(lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase ): number += 1 # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and ans[0] != p_number_a and ans[len(lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a_ ( lowerCamelCase : Optional[Any] ): assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def a_ ( lowerCamelCase : List[Any] ): assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase = get_divisors(lowerCamelCase ) # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase = gcd(abs(lowerCamelCase ) , abs(lowerCamelCase ) ) # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a_ ( lowerCamelCase : str ): assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a_ ( lowerCamelCase : List[str] ): assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase = ans ans += fiba lowerCAmelCase = tmp return ans
4
from __future__ import annotations UpperCAmelCase__ = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _a ( a :Matrix , a :int , a :int , a :int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _a ( a :Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _a ( a :Matrix ) -> Matrix | None: if location := find_empty_location(a ): a , a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): a = digit if sudoku(a ) is not None: return grid a = 0 return None def _a ( a :Matrix ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCAmelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
0
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=128 , lowerCAmelCase__=32 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = parent lowercase__: str = batch_size lowercase__: Dict = seq_length lowercase__: str = is_training lowercase__: List[str] = use_input_mask lowercase__: str = use_token_type_ids lowercase__: Tuple = use_labels lowercase__: int = vocab_size lowercase__: Dict = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[str] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Dict = max_position_embeddings lowercase__: Optional[Any] = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Optional[int] = num_labels lowercase__: Union[str, Any] = num_choices lowercase__: int = scope def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[str] = None if self.use_input_mask: lowercase__: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[int] = None if self.use_token_type_ids: lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Tuple = None lowercase__: Optional[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): Tuple = self.prepare_config_and_inputs() lowercase__: Optional[int] = True lowercase__: Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[Any] = NezhaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' lowercase__: Dict = True lowercase__: Optional[Any] = NezhaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) lowercase__: str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = NezhaForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Any = NezhaForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Union[str, Any] = NezhaForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = NezhaForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.num_labels lowercase__: List[Any] = NezhaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = self.num_labels lowercase__: Dict = NezhaForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: List[str] = self.num_choices lowercase__: str = NezhaForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): str = config_and_inputs lowercase__: Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : List[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowercase : Any = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' lowercase__: Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): lowercase__: int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[Any] = NezhaModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__: str = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[str] = NezhaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase__: Optional[int] = True lowercase__: Optional[int] = model_class(config=lowerCAmelCase__ ) lowercase__: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'bert.pt' ) ) lowercase__: List[str] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'bert.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Dict = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: Optional[Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Union[str, Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
288
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase = '''base_with_context''' def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: List[str] = weights[f'layers_{lyr_num}'] lowercase__: List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: Any = ly_weight['attention'] lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> List[str]: lowercase__: str = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: str = weights[f'layers_{lyr_num}'] lowercase__: Optional[Any] = ly_weight['attention'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: int = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__: Optional[Any] = weights[f'layers_{lyr_num}'] lowercase__: Any = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = ly_weight['self_attention'] lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = ly_weight['MultiHeadDotProductAttention_0'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def snake_case_ ( snake_case ) -> Any: lowercase__: int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__: Tuple = jnp.tree_util.tree_map(onp.array , snake_case ) lowercase__: List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowercase__: List[Any] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowercase__: Optional[Any] = inference.parse_training_gin_file(snake_case , snake_case ) lowercase__: str = inference.InferenceModel(args.checkpoint_path , snake_case ) lowercase__: Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowercase__: List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Optional[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__: Dict = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , snake_case ) lowercase__: int = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , snake_case ) lowercase__: Optional[int] = load_decoder(ta_checkpoint['target']['decoder'] , snake_case ) lowercase__: int = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowercase__: List[Any] = SpectrogramDiffusionPipeline( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __lowerCAmelCase = parser.parse_args() main(args)
288
1
'''simple docstring''' __a = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602176634E-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355818, } def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case__ : Optional[int] = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(_lowerCAmelCase )}" ) raise ValueError(_lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : List[str] ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
35
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = ['pixel_values'] def __init__(self : List[str] , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 2_5_5 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Optional[int] , ) -> None: """simple docstring""" super().__init__(**__UpperCAmelCase ) UpperCAmelCase__ = size if size is not None else {"shortest_edge": 2_2_4} UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) UpperCAmelCase__ = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_flip_channel_order def lowercase_ (self : str , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : PILImageResampling = PIL.Image.BILINEAR , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase__ = get_resize_output_image_size(__UpperCAmelCase , size=size["shortest_edge"] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size["height"], size["width"]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Tuple , ) -> Any: """simple docstring""" return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(__UpperCAmelCase , data_format=__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : List[Any] , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase__ = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase__ = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase__ = [self.flip_channel_order(image=__UpperCAmelCase ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] UpperCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[Tuple] = None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__UpperCAmelCase ): UpperCAmelCase__ = target_sizes.numpy() UpperCAmelCase__ = [] for idx in range(len(__UpperCAmelCase ) ): UpperCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__UpperCAmelCase ) UpperCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: UpperCAmelCase__ = logits.argmax(dim=1 ) UpperCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
143
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = '▁' UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = BigBirdTokenizer __UpperCAmelCase : Optional[int] = BigBirdTokenizerFast __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[Any] = True def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" super().setUp() UpperCAmelCase__ = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "<s>" UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ (self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_4 ) def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = "I was born in 92000, and this is falsé." UpperCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = "Hello World!" UpperCAmelCase__ = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase__ = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def lowercase_ (self : List[str] ) -> int: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] UpperCAmelCase__ = " ".join(__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = BigBirdConfig(attention_type="original_full" ) UpperCAmelCase__ = BigBirdModel(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) UpperCAmelCase__ = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
143
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __lowerCAmelCase : Optional[Any] =getLogger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :int = 8 , lowerCAmelCase__ :int = 1_0_2_4 , lowerCAmelCase__ :Any="val" , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=False , lowerCAmelCase__ :Optional[Any]="summarization" , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Union[str, Any]=1 , lowerCAmelCase__ :Dict = None , lowerCAmelCase__ :str="" , **lowerCAmelCase__ :int , ) -> Dict: '''simple docstring''' lowercase = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=lowerCAmelCase__ ) lowercase = Path(lowerCAmelCase__ ) lowercase = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(lowerCAmelCase__ ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: lowercase = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params lowercase = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowercase = num_return_sequences lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: lowercase = tokenizer.model_max_length if prefix is None: lowercase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" lowercase = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1_0_2_4 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowercase = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) lowercase = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) lowercase = [] for batch in tqdm(lowerCAmelCase__ ): lowercase = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) lowercase = batch["""ids"""] if num_return_sequences > 1: lowercase = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=lowerCAmelCase__ , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=lowerCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=lowerCAmelCase__ , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( """--type_path""" , type=lowerCAmelCase__ , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=lowerCAmelCase__ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=lowerCAmelCase__ , default=6_0_0 , required=lowerCAmelCase__ , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( """--prefix""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) lowercase = time.time() lowercase , lowercase = parser.parse_known_args() lowercase = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) lowercase = Path(args.save_dir + """_tmp""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. lowercase = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowercase = {} if args.src_lang is not None: lowercase = args.src_lang if args.tgt_lang is not None: lowercase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) lowercase , lowercase = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: lowercase = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) lowercase = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) lowercase = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: lowercase = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return lowercase = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(lowerCAmelCase__ ) as f: lowercase = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt lowercase = """translation""" in args.task lowercase = calculate_bleu if calc_bleu else calculate_rouge lowercase = """bleu""" if calc_bleu else """rouge""" lowercase = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = len(lowerCAmelCase__ ) lowercase = time.time() - start_time lowercase = round(runtime / metrics["""n_obs"""] , 4 ) lowercase = num_replicas # TODO(@stas00): add whatever metadata to metrics lowercase = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> List: '''simple docstring''' lowercase = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) lowercase = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) lowercase = [x["""pred"""] for x in records] return preds def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] ) -> List[Dict[str, List]]: '''simple docstring''' lowercase = time.time() logger.info("""waiting for all nodes to finish""" ) lowercase = None while (time.time() - start_wait) < timeout: lowercase = list(save_dir.glob("""rank_*.json""" ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved lowercase = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
197
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : Optional[int] = ['torch', 'torchsde'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] )
197
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __A: def __init__( self , _snake_case , ) -> Tuple: '''simple docstring''' __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = 99 __a = 32 __a = 2 __a = 4 __a = 37 __a = '''gelu''' __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = None def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TFEsmModel(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __a = model(_snake_case ) __a = [input_ids, input_mask] __a = model(_snake_case ) __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Optional[Any]: '''simple docstring''' __a = True __a = TFEsmModel(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } __a = model(_snake_case ) __a = [input_ids, input_mask] __a = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed __a = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = TFEsmForMaskedLM(config=_snake_case ) __a = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = self.num_labels __a = TFEsmForTokenClassification(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = TFEsmModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __a = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: __a = model.get_output_embeddings() assert x is None __a = model.get_bias() assert name is None @require_tf class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_snake_case )[0] __a = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. __a = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __a = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __a = model(_snake_case )[0] # compare the actual values for a slice. __a = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _SCREAMING_SNAKE_CASE : int = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _SCREAMING_SNAKE_CASE : List[Any] = json.load(f) @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self , a__ ) -> Dict: '''simple docstring''' return FSMTTokenizer.from_pretrained(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' snake_case_ = FSMTForConditionalGeneration.from_pretrained(a__ ).to(a__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 2_6.0], ["ru-en", 2_2.0], ["en-de", 2_2.0], ["de-en", 2_9.0], ] ) @slow def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = F'facebook/wmt19-{pair}' snake_case_ = self.get_tokenizer(a__ ) snake_case_ = self.get_model(a__ ) snake_case_ = bleu_data[pair]["src"] snake_case_ = bleu_data[pair]["tgt"] snake_case_ = tokenizer(a__ , return_tensors="pt" , truncation=a__ , padding="longest" ).to(a__ ) snake_case_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case_ = tokenizer.batch_decode( a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ ) snake_case_ = calculate_bleu(a__ , a__ ) print(a__ ) self.assertGreaterEqual(scores["bleu"] , a__ )
85
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Optional[Any] = {"UserAgent": UserAgent().random} def snake_case ( UpperCAmelCase )-> dict: """simple docstring""" __A = script.contents[0] __A = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase__ : def __init__( self :Optional[Any] , _A :Optional[Any] ) -> Optional[Any]: '''simple docstring''' __A = F'https://www.instagram.com/{username}/' __A = self.get_json() def lowercase_ ( self :Union[str, Any] ) -> dict: '''simple docstring''' __A = requests.get(self.url , headers=_A ).text __A = BeautifulSoup(_A , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self :Union[str, Any] ) -> str: '''simple docstring''' return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self :List[Any] ) -> str: '''simple docstring''' return F'{self.fullname} ({self.username}) is {self.biography}' @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["biography"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def lowercase_ ( self :int ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowercase_ ( self :Tuple ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowercase_ ( self :Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowercase_ ( self :Union[str, Any] ) -> bool: '''simple docstring''' return self.user_data["is_private"] def snake_case ( UpperCAmelCase = "github" )-> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __A = InstagramUser(UpperCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
161
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vq_model _UpperCAmelCase = LDMPipeline(unet=_SCREAMING_SNAKE_CASE , vqvae=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) ldm.to(_SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='numpy' ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='numpy' , return_dict=_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _UpperCAmelCase = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type='numpy' ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCAmelCase = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) _UpperCAmelCase = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
185
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ :Tuple = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[Any] = ['''BeitFeatureExtractor'''] lowerCAmelCase__ :Optional[Any] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :int = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Tuple = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCAmelCase__ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
185
1
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : int ) ->List[Any]: """simple docstring""" if openai_config_file == "": __snake_case : Dict = OpenAIGPTConfig() else: __snake_case : int = OpenAIGPTConfig.from_json_file(_snake_case ) __snake_case : Tuple = OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __snake_case : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __snake_case : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
102
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int | str ) ->bool: """simple docstring""" __snake_case : List[str] = str(_snake_case ) return n == n[::-1] def lowercase ( _snake_case : int = 1_000_000 ) ->str: """simple docstring""" __snake_case : Union[str, Any] = 0 for i in range(1 , _snake_case ): if is_palindrome(_snake_case ) and is_palindrome(bin(_snake_case ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
102
1
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowercase ( snake_case_ : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(snake_case_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( ) ->Iterator[int]: '''simple docstring''' __A : int = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def __lowercase ( snake_case_ : int = 2000000 ) ->int: '''simple docstring''' return sum(takewhile(lambda snake_case_ : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
291
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a_ = pytest.mark.integration a_ = {"""comet"""} a_ = importlib.util.find_spec("""fairseq""") is not None a_ = {"""code_eval"""} a_ = os.name == """nt""" a_ = {"""bertscore""", """frugalscore""", """perplexity"""} a_ = importlib.util.find_spec("""transformers""") is not None def __lowercase ( snake_case_ : str ) ->Any: '''simple docstring''' @wraps(snake_case_ ) def wrapper(self : List[Any] ,snake_case_ : int ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self ,snake_case_ ) return wrapper def __lowercase ( snake_case_ : int ) ->str: '''simple docstring''' @wraps(snake_case_ ) def wrapper(self : List[Any] ,snake_case_ : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self ,snake_case_ ) return wrapper def __lowercase ( snake_case_ : Union[str, Any] ) ->Tuple: '''simple docstring''' @wraps(snake_case_ ) def wrapper(self : int ,snake_case_ : Dict ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self ,snake_case_ ) return wrapper def __lowercase ( ) ->Tuple: '''simple docstring''' __A : int = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class __snake_case ( parameterized.TestCase ): """simple docstring""" _lowerCamelCase = {} _lowerCamelCase = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : int = '''[...]''' __A : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCamelCase ) ).module_path ) __A : str = datasets.load.import_main_class(metric_module.__name__ , dataset=__lowerCamelCase ) # check parameters __A : Optional[int] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: __A : Tuple = doctest.testmod(__lowerCamelCase , verbose=__lowerCamelCase , raise_on_error=__lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = '''[...]''' __A : Union[str, Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): __A : Union[str, Any] = doctest.testmod(__lowerCamelCase , verbose=__lowerCamelCase , raise_on_error=__lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__lowerCamelCase ): yield else: yield @contextmanager def UpperCamelCase__( self ): '''simple docstring''' def load_local_metric(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ): return load_metric(os.path.join('''metrics''' , __lowerCamelCase ) , *__lowerCamelCase , **__lowerCamelCase ) with patch('''datasets.load_metric''' ) as mock_load_metric: __A : List[Any] = load_local_metric yield @classmethod def UpperCamelCase__( cls , __lowerCamelCase ): '''simple docstring''' def wrapper(__lowerCamelCase ): __A : Any = contextmanager(__lowerCamelCase ) __A : Optional[Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def __lowercase ( snake_case_ : Tuple ) ->int: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' ,'''''' ,'''''' ) # handle pytest cli flags class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __A : List[str] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def __lowercase ( snake_case_ : List[str] ) ->Dict: '''simple docstring''' import torch def bert_cos_score_idf(snake_case_ : Union[str, Any] ,snake_case_ : List[str] ,*snake_case_ : List[str] ,**snake_case_ : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __A : str = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def __lowercase ( snake_case_ : Optional[int] ) ->List[Any]: '''simple docstring''' def load_from_checkpoint(snake_case_ : str ): class __snake_case : """simple docstring""" def UpperCamelCase__( self , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' assert len(__lowerCamelCase ) == 2 __A : str = [0.1_9, 0.9_2] return scores, sum(__lowerCamelCase ) / len(__lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __A : int = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __A : Dict = load_from_checkpoint yield def __lowercase ( ) ->str: '''simple docstring''' __A : Optional[Any] = load_metric(os.path.join('''metrics''' ,'''seqeval''' ) ) __A : Optional[int] = '''ERROR''' __A : str = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(snake_case_ ,match=re.escape(snake_case_ ) ): metric.compute(predictions=[] ,references=[] ,scheme=snake_case_ )
291
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''LayoutLMv3FeatureExtractor'''] A__ = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
import math import sys def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = '''''' try: with open(__lowerCAmelCase , '''rb''' ) as binary_file: snake_case__ : int = binary_file.read() for dat in data: snake_case__ : Any = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : List[str] = {'''0''': '''0''', '''1''': '''1'''} snake_case__ , snake_case__ : List[Any] = '''''', '''''' snake_case__ : Tuple = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case__ : Tuple = lexicon[curr_string] result += last_match_id snake_case__ : Any = last_match_id + '''0''' if math.loga(__lowerCAmelCase ).is_integer(): snake_case__ : Tuple = {} for curr_key in list(__lowerCAmelCase ): snake_case__ : Union[str, Any] = lexicon.pop(__lowerCAmelCase ) snake_case__ : Optional[Any] = new_lex snake_case__ : Tuple = last_match_id + '''1''' index += 1 snake_case__ : Dict = '''''' return result def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Dict = 8 try: with open(__lowerCAmelCase , '''wb''' ) as opened_file: snake_case__ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 snake_case__ : Optional[int] = data_bits[counter:] snake_case__ : int = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Union[str, Any] = read_file_binary(__lowerCAmelCase ) snake_case__ : List[str] = remove_prefix(__lowerCAmelCase ) snake_case__ : Any = decompress_data(__lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
230
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Tuple = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCamelCase ) return parser.parse_args() def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : int = parse_args() # Import training_script as a module. __lowerCamelCase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCamelCase : Any = script_fpath.stem __lowerCamelCase : str = importlib.import_module(_lowerCamelCase ) # Patch sys.argv __lowerCamelCase : str = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
64
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "deta" snake_case__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Any , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=900 , UpperCAmelCase : str=2048 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : int=1024 , UpperCAmelCase : str=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]="relu" , UpperCAmelCase : List[str]=256 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : Optional[Any]=1.0 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=False , UpperCAmelCase : Optional[int]="sine" , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=300 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : str=5 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=1 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.2_5 , **UpperCAmelCase : List[str] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowerCamelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : List[Any] = backbone_config.pop("model_type" ) __lowerCamelCase : Any = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : List[Any] = config_class.from_dict(UpperCAmelCase ) __lowerCamelCase : List[str] = backbone_config __lowerCamelCase : Any = num_queries __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Dict = d_model __lowerCamelCase : List[str] = encoder_ffn_dim __lowerCamelCase : int = encoder_layers __lowerCamelCase : str = encoder_attention_heads __lowerCamelCase : Dict = decoder_ffn_dim __lowerCamelCase : Tuple = decoder_layers __lowerCamelCase : str = decoder_attention_heads __lowerCamelCase : Dict = dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : int = activation_dropout __lowerCamelCase : int = activation_function __lowerCamelCase : Any = init_std __lowerCamelCase : Optional[Any] = init_xavier_std __lowerCamelCase : int = encoder_layerdrop __lowerCamelCase : Dict = auxiliary_loss __lowerCamelCase : Optional[int] = position_embedding_type # deformable attributes __lowerCamelCase : Tuple = num_feature_levels __lowerCamelCase : str = encoder_n_points __lowerCamelCase : List[str] = decoder_n_points __lowerCamelCase : List[str] = two_stage __lowerCamelCase : Dict = two_stage_num_proposals __lowerCamelCase : int = with_box_refine __lowerCamelCase : Union[str, Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __lowerCamelCase : str = class_cost __lowerCamelCase : Optional[Any] = bbox_cost __lowerCamelCase : Tuple = giou_cost # Loss coefficients __lowerCamelCase : List[Any] = mask_loss_coefficient __lowerCamelCase : Dict = dice_loss_coefficient __lowerCamelCase : Any = bbox_loss_coefficient __lowerCamelCase : Dict = giou_loss_coefficient __lowerCamelCase : Optional[Any] = eos_coefficient __lowerCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def lowerCamelCase__ ( self : Dict ): return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.d_model def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Dict = self.backbone_config.to_dict() __lowerCamelCase : str = self.__class__.model_type return output
64
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _snake_case = get_tests_dir("fixtures") _snake_case = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _snake_case = get_tests_dir("fixtures/dummy-config.json") class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = 0 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsInstance(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(__a) self.assertIsInstance(__a, __a) def snake_case__ ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Dict = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained(__a).to_dict() config_dict.pop("feature_extractor_type") _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor(**__a) # save in new folder model_config.save_pretrained(__a) config.save_pretrained(__a) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(__a) # make sure private variable is not incorrectly saved _lowerCAmelCase : Any = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained(__a) self.assertIsInstance(__a, __a) def snake_case__ ( self): '''simple docstring''' with self.assertRaisesRegex( __a, "bert-base is not a local folder and is not a valid model identifier"): _lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained("bert-base") def snake_case__ ( self): '''simple docstring''' with self.assertRaisesRegex( __a, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(__a, revision="aaaaaa") def snake_case__ ( self): '''simple docstring''' with self.assertRaisesRegex( __a, "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", ): _lowerCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model") def snake_case__ ( self): '''simple docstring''' with self.assertRaises(__a): _lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor") # If remote code is disabled, we can't load this config. with self.assertRaises(__a): _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=__a) _lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=__a) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a) _lowerCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(__a, trust_remote_code=__a) self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor") def snake_case__ ( self): '''simple docstring''' try: AutoConfig.register("custom", __a) AutoFeatureExtractor.register(__a, __a) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a): AutoFeatureExtractor.register(__a, __a) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase : List[Any] = CustomFeatureExtractor.from_pretrained(__a) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(__a) self.assertIsInstance(__a, __a) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self): '''simple docstring''' class UpperCAmelCase_ ( a): lowerCamelCase__ = True try: AutoConfig.register("custom", __a) AutoFeatureExtractor.register(__a, __a) # If remote code is not set, the default is to use local _lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor") self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. _lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=__a) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub _lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=__a) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(not hasattr(__a, "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
36
import os import pytest from attr import dataclass _UpperCAmelCase : List[str] = "us-east-1" # defaults region @dataclass class __lowerCAmelCase : _a = 42 _a = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _a = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5500, } _a = {**hyperparameters, '''max_steps''': 1000} @property def SCREAMING_SNAKE_CASE ( self: str ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def SCREAMING_SNAKE_CASE ( self: Dict ): return F"{self.framework}-transfromers-test" @property def SCREAMING_SNAKE_CASE ( self: Any ): return F"./tests/sagemaker/scripts/{self.framework}" @property def SCREAMING_SNAKE_CASE ( self: Optional[int] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
236
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''BeitFeatureExtractor'''] lowerCamelCase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
211
from collections.abc import Iterable from typing import Any class _a : def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : int | None = None )-> Tuple: lowerCAmelCase__ : Union[str, Any] = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : List[Any] )-> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class _a : def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Node | None = None )-> int: lowerCAmelCase__ : Dict = root def __str__( self : Tuple )-> str: return str(self.root ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node , _SCREAMING_SNAKE_CASE : Node | None )-> None: if new_children is not None: # reset its kids lowerCAmelCase__ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_SCREAMING_SNAKE_CASE ): # If it is the right children lowerCAmelCase__ : List[str] = new_children else: lowerCAmelCase__ : Any = new_children else: lowerCAmelCase__ : Optional[Any] = new_children def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Node )-> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__( self : int )-> bool: return self.root is None def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] )-> None: lowerCAmelCase__ : Any = Node(_SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : Optional[Any] = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Tuple = new_node break else: lowerCAmelCase__ : Union[str, Any] = parent_node.right lowerCAmelCase__ : Dict = parent_node def UpperCAmelCase__( self : str , *_SCREAMING_SNAKE_CASE : List[Any] )-> None: for value in values: self.__insert(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : str = node.right return node def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: lowerCAmelCase__ : Any = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : Dict = self.root while node.left is not None: lowerCAmelCase__ : Tuple = node.left return node def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : int )-> None: lowerCAmelCase__ : Optional[Any] = self.search(_SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.left ) else: lowerCAmelCase__ : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Node | None )-> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=None )-> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Node | None )-> None: if node: self.inorder(_SCREAMING_SNAKE_CASE , node.left ) arr.append(node.value ) self.inorder(_SCREAMING_SNAKE_CASE , node.right ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Node )-> int: lowerCAmelCase__ : list[int] = [] self.inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[str] = [] if curr_node is not None: lowerCAmelCase__ : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(_a ) # Prints all the elements of the list in order traversal print(_a ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(_a ) print(_a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
211
1
def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) if n == 0: return 0 lowercase_ = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase_ = max( snake_case__ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case__ ) ) return max_revue def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) lowercase_ = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case__ , snake_case__ , snake_case__ ) def a ( snake_case__: int , snake_case__: list , snake_case__: list ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase_ = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase_ = max( snake_case__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case__ , snake_case__ ) , ) lowercase_ = max_revenue return max_rev[n] def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase_ = [float('''-inf''' ) for _ in range(n + 1 )] lowercase_ = 0 for i in range(1 , n + 1 ): lowercase_ = max_rev[i] for j in range(1 , i + 1 ): lowercase_ = max(snake_case__ , prices[j - 1] + max_rev[i - j] ) lowercase_ = max_revenue_i return max_rev[n] def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' if n < 0: lowercase_ = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case__ ) if n > len(snake_case__ ): lowercase_ = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(snake_case__ )}''' ) raise ValueError(snake_case__ ) def a ( ): '''simple docstring''' lowercase_ = [6, 10, 12, 15, 20, 23] lowercase_ = len(snake_case__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase_ = 36 lowercase_ = top_down_cut_rod(snake_case__ , snake_case__ ) lowercase_ = bottom_up_cut_rod(snake_case__ , snake_case__ ) lowercase_ = naive_cut_rod_recursive(snake_case__ , snake_case__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
30
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : Tuple = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) __UpperCAmelCase : Union[str, Any] = DetaConfig( backbone_config=__lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__lowerCamelCase , with_box_refine=__lowerCamelCase , two_stage=__lowerCamelCase , ) # set labels __UpperCAmelCase : List[str] = """huggingface/label-files""" if "o365" in model_name: __UpperCAmelCase : Any = 366 __UpperCAmelCase : Union[str, Any] = """object365-id2label.json""" else: __UpperCAmelCase : Tuple = 91 __UpperCAmelCase : str = """coco-detection-id2label.json""" __UpperCAmelCase : Any = num_labels __UpperCAmelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : Optional[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : List[str] = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Dict = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Union[str, Any] = dct.pop(__lowerCamelCase ) __UpperCAmelCase : List[Any] = val def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : int = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __UpperCAmelCase : str = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : str = in_proj_weight[:dim, :] __UpperCAmelCase : Union[str, Any] = in_proj_bias[: dim] __UpperCAmelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Dict = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : List[str] = in_proj_weight[ -dim :, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Any ): # transformer decoder self-attention layers __UpperCAmelCase : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : int = in_proj_weight[:hidden_size, :] __UpperCAmelCase : Any = in_proj_bias[:hidden_size] __UpperCAmelCase : Dict = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : List[Any] = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : int = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): __UpperCAmelCase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Any = get_deta_config(__lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : Optional[Any] = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Any = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f"""Model name {model_name} not supported""" ) __UpperCAmelCase : int = torch.load(__lowerCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(__lowerCamelCase , param.shape ) # rename keys __UpperCAmelCase : Dict = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : str = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = val if "input_proj" in key: __UpperCAmelCase : Any = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Dict = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Optional[Any] = DetaForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(__lowerCamelCase ) # load image processor __UpperCAmelCase : int = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : Tuple = processor(images=__lowerCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[int] = encoding["""pixel_values"""] __UpperCAmelCase : List[str] = model(pixel_values.to(__lowerCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : List[Any] = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) __UpperCAmelCase : int = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[int] = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
114
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=24 , UpperCamelCase__=2 , UpperCamelCase__=6 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=1000 , ) -> int: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = scope A_ = range_bbox def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = t A_ = None if self.use_input_mask: A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Any: '''simple docstring''' A_ = LiltModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> List[str]: '''simple docstring''' A_ = self.num_labels A_ = LiltForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' A_ = LiltForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( A_ ) = config_and_inputs A_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return True def snake_case_ ( self ) -> str: '''simple docstring''' A_ = LiltModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LiltModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch @slow class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> str: '''simple docstring''' A_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor([[1, 2]] , device=_SCREAMING_SNAKE_CASE ) A_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE ) A_ = torch.Size([1, 2, 768] ) A_ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(outputs.last_hidden_state.shape , _SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
364
'''simple docstring''' import sys __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase__ ( UpperCAmelCase__ = N ) -> int: A_ = -sys.maxsize - 1 for i in range(len(UpperCAmelCase__ ) - 12 ): A_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A_ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
101
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _UpperCamelCase ( UpperCamelCase__ ): return x + 2 class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : List[str] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) UpperCAmelCase__ : Optional[int] = """x = y""" UpperCAmelCase__ : Optional[Any] = {"""y""": 5} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 5, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Any = """y = add_two(x)""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result is None assert "tried to execute add_two" in out.out def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_dict = {'x': x, 'y': add_two(x)}""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = """x = 3\ny = 5""" UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Dict = """text = f'This is x: {x}.'""" UpperCAmelCase__ : str = {"""x""": 3} UpperCAmelCase__ : Optional[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """text""": """This is x: 3."""}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 2}) UpperCAmelCase__ : Optional[int] = {"""x""": 8} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 8, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_list = [x, add_two(x)]""" UpperCAmelCase__ : int = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [3, 5]) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) def snake_case__ ( self): UpperCAmelCase__ : Tuple = """y = x""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 3}) def snake_case__ ( self): UpperCAmelCase__ : List[str] = """test_list = [x, add_two(x)]\ntest_list[1]""" UpperCAmelCase__ : Union[str, Any] = {"""x""": 3} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) UpperCAmelCase__ : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """x = 0\nfor i in range(3):\n x = i""" UpperCAmelCase__ : str = {} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""range""": range} , state=_lowerCamelCase) assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 2, """i""": 2})
163
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( a__ ): lowerCAmelCase :Dict = ['''image_processor''', '''tokenizer'''] lowerCAmelCase :Union[str, Any] = '''BlipImageProcessor''' lowerCAmelCase :Any = '''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__(_lowerCamelCase , _lowerCamelCase) # add QFormer tokenizer UpperCAmelCase__ : List[str] = qformer_tokenizer def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""") UpperCAmelCase__ : List[str] = BatchFeature() if text is not None: UpperCAmelCase__ : Any = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) encoding.update(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.qformer_tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : Dict = qformer_text_encoding.pop("""input_ids""") UpperCAmelCase__ : Tuple = qformer_text_encoding.pop("""attention_mask""") if images is not None: UpperCAmelCase__ : List[str] = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase) encoding.update(_lowerCamelCase) return encoding def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.tokenizer.model_input_names UpperCAmelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def snake_case__ ( self , _lowerCamelCase , **_lowerCamelCase): if os.path.isfile(_lowerCamelCase): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''') os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) UpperCAmelCase__ : Dict = os.path.join(_lowerCamelCase , """qformer_tokenizer""") self.qformer_tokenizer.save_pretrained(_lowerCamelCase) return super().save_pretrained(_lowerCamelCase , **_lowerCamelCase) @classmethod def snake_case__ ( cls , _lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_lowerCamelCase , subfolder="""qformer_tokenizer""") UpperCAmelCase__ : List[Any] = cls._get_arguments_from_pretrained(_lowerCamelCase , **_lowerCamelCase) args.append(_lowerCamelCase) return cls(*_lowerCamelCase)
163
1
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase :int = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """beit""" def __init__( self : Optional[Any] , _A : Any=8192 , _A : int=768 , _A : Tuple=12 , _A : Tuple=12 , _A : str=3072 , _A : List[Any]="gelu" , _A : int=0.0 , _A : Dict=0.0 , _A : int=0.02 , _A : str=1E-12 , _A : int=224 , _A : Union[str, Any]=16 , _A : Dict=3 , _A : Optional[Any]=False , _A : int=False , _A : int=False , _A : List[Any]=False , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : List[Any]=True , _A : int=[3, 5, 7, 11] , _A : Tuple=[1, 2, 3, 6] , _A : Union[str, Any]=True , _A : Optional[int]=0.4 , _A : Union[str, Any]=256 , _A : Tuple=1 , _A : Dict=False , _A : int=255 , **_A : Any , ) -> Dict: super().__init__(**_A ) __magic_name__ : Optional[int] = vocab_size __magic_name__ : int = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Any = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : int = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Any = initializer_range __magic_name__ : List[str] = layer_norm_eps __magic_name__ : Optional[int] = image_size __magic_name__ : Union[str, Any] = patch_size __magic_name__ : Dict = num_channels __magic_name__ : Dict = use_mask_token __magic_name__ : List[str] = use_absolute_position_embeddings __magic_name__ : str = use_relative_position_bias __magic_name__ : Optional[Any] = use_shared_relative_position_bias __magic_name__ : Dict = layer_scale_init_value __magic_name__ : Any = drop_path_rate __magic_name__ : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) __magic_name__ : Dict = out_indices __magic_name__ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) __magic_name__ : Optional[Any] = use_auxiliary_head __magic_name__ : Optional[Any] = auxiliary_loss_weight __magic_name__ : Any = auxiliary_channels __magic_name__ : str = auxiliary_num_convs __magic_name__ : Optional[Any] = auxiliary_concat_input __magic_name__ : str = semantic_loss_ignore_index class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCAmelCase ( self : Tuple ) -> float: return 1E-4
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _snake_case ( unittest.TestCase): def A__ ( self : Tuple ): lowercase__ = tempfile.mkdtemp() lowercase__ = BlipImageProcessor() lowercase__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowercase__ = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) lowercase__ = InstructBlipProcessor(__lowercase, __lowercase, __lowercase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self : List[str], **__lowercase : int ): return AutoProcessor.from_pretrained(self.tmpdirname, **__lowercase ).tokenizer def A__ ( self : Any, **__lowercase : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname, **__lowercase ).image_processor def A__ ( self : Any, **__lowercase : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname, **__lowercase ).qformer_tokenizer def A__ ( self : str ): shutil.rmtree(self.tmpdirname ) def A__ ( self : int ): lowercase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(__lowercase, 0, -1 ) ) for x in image_inputs] return image_inputs def A__ ( self : List[Any] ): lowercase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)" ) lowercase__ = self.get_image_processor(do_normalize=__lowercase, padding_value=1.0 ) lowercase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__lowercase, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, __lowercase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowercase ) self.assertIsInstance(processor.qformer_tokenizer, __lowercase ) def A__ ( self : Dict ): lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=__lowercase, image_processor=__lowercase, qformer_tokenizer=__lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(__lowercase, return_tensors="np" ) lowercase__ = processor(images=__lowercase, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def A__ ( self : Dict ): lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=__lowercase, image_processor=__lowercase, qformer_tokenizer=__lowercase ) lowercase__ = "lower newer" lowercase__ = processor(text=__lowercase ) lowercase__ = tokenizer(__lowercase, return_token_type_ids=__lowercase ) lowercase__ = qformer_tokenizer(__lowercase, return_token_type_ids=__lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor["qformer_" + key] ) def A__ ( self : Tuple ): lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=__lowercase, image_processor=__lowercase, qformer_tokenizer=__lowercase ) lowercase__ = "lower newer" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=__lowercase, images=__lowercase ) self.assertListEqual( list(inputs.keys() ), ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"], ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def A__ ( self : List[str] ): lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=__lowercase, image_processor=__lowercase, qformer_tokenizer=__lowercase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(__lowercase ) lowercase__ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase, __lowercase ) def A__ ( self : str ): lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=__lowercase, image_processor=__lowercase, qformer_tokenizer=__lowercase ) lowercase__ = "lower newer" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=__lowercase, images=__lowercase ) self.assertListEqual( list(inputs.keys() ), ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"], )
224
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
224
1
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = 8.988e9 # units = N * m^s * C^-2 def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> dict[str, float]: _a : Tuple = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: _a : Dict = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _a : Dict = abs(lowerCAmelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _a : int = abs(lowerCAmelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _a : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCAmelCase_ )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowerCAmelCase = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : str ,_UpperCAmelCase : Path ,_UpperCAmelCase : Union[str, None] = None ,_UpperCAmelCase : Union[List[str], None] = None ,_UpperCAmelCase : Union[str, List[str], None] = None ,_UpperCAmelCase : bool = True ,): _a : Dict = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) )] if identifier is not None: _a : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for n_ in n_identifier: _a : int = [file for file in files if n_ not in file] else: _a : Optional[Any] = [file for file in files if n_identifier not in file] _a : Dict = ignore_files or [] ignore_files.append('__init__.py' ) _a : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,_UpperCAmelCase ) if only_modules: _a : Any = file.split('.' )[0] try: _a : Optional[int] = getattr(_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict = doctest.DocTestSuite(_UpperCAmelCase ) _a : Optional[int] = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: _a : str = doctest.testfile(str('..' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def __lowercase ( self : Union[str, Any] ): _a : Optional[Any] = Path('src/transformers' ) _a : Optional[Any] = 'modeling' _a : Union[str, Any] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(_UpperCAmelCase ,identifier=_UpperCAmelCase ,ignore_files=_UpperCAmelCase ) def __lowercase ( self : int ): _a : str = Path('src/transformers' ) _a : List[str] = 'tokenization' self.analyze_directory(_UpperCAmelCase ,identifier=_UpperCAmelCase ) def __lowercase ( self : int ): _a : Any = Path('src/transformers' ) _a : str = 'configuration' self.analyze_directory(_UpperCAmelCase ,identifier=_UpperCAmelCase ) def __lowercase ( self : Dict ): _a : Tuple = Path('src/transformers' ) _a : Optional[int] = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(_UpperCAmelCase ,n_identifier=_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): _a : Union[str, Any] = Path('docs/source' ) _a : List[str] = ['favicon.ico'] self.analyze_directory(_UpperCAmelCase ,ignore_files=_UpperCAmelCase ,only_modules=_UpperCAmelCase )
89
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase ( _a , _a , _a = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' lowercase_ :Dict = tau * frequency / samplerate lowercase_ :Any = sin(_a ) lowercase_ :Union[str, Any] = cos(_a ) lowercase_ :Dict = _sin / (2 * q_factor) lowercase_ :int = (1 - _cos) / 2 lowercase_ :Any = 1 - _cos lowercase_ :Dict = 1 + alpha lowercase_ :str = -2 * _cos lowercase_ :List[Any] = 1 - alpha lowercase_ :str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _a , _a , _a = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' lowercase_ :str = tau * frequency / samplerate lowercase_ :Optional[Any] = sin(_a ) lowercase_ :Optional[int] = cos(_a ) lowercase_ :Optional[Any] = _sin / (2 * q_factor) lowercase_ :Union[str, Any] = (1 + _cos) / 2 lowercase_ :Optional[int] = -1 - _cos lowercase_ :str = 1 + alpha lowercase_ :Any = -2 * _cos lowercase_ :Dict = 1 - alpha lowercase_ :Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _a , _a , _a = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' lowercase_ :Optional[Any] = tau * frequency / samplerate lowercase_ :Union[str, Any] = sin(_a ) lowercase_ :List[str] = cos(_a ) lowercase_ :Tuple = _sin / (2 * q_factor) lowercase_ :List[str] = _sin / 2 lowercase_ :Union[str, Any] = 0 lowercase_ :List[Any] = -ba lowercase_ :Union[str, Any] = 1 + alpha lowercase_ :Tuple = -2 * _cos lowercase_ :List[str] = 1 - alpha lowercase_ :List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _a , _a , _a = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' lowercase_ :Dict = tau * frequency / samplerate lowercase_ :List[str] = sin(_a ) lowercase_ :Dict = cos(_a ) lowercase_ :List[Any] = _sin / (2 * q_factor) lowercase_ :Dict = 1 - alpha lowercase_ :Tuple = -2 * _cos lowercase_ :List[str] = 1 + alpha lowercase_ :List[str] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase ( _a , _a , _a , _a = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' lowercase_ :Optional[int] = tau * frequency / samplerate lowercase_ :Dict = sin(_a ) lowercase_ :int = cos(_a ) lowercase_ :List[Any] = _sin / (2 * q_factor) lowercase_ :Optional[int] = 1_0 ** (gain_db / 4_0) lowercase_ :int = 1 + alpha * big_a lowercase_ :Union[str, Any] = -2 * _cos lowercase_ :int = 1 - alpha * big_a lowercase_ :Optional[int] = 1 + alpha / big_a lowercase_ :Any = -2 * _cos lowercase_ :Any = 1 - alpha / big_a lowercase_ :Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _a , _a , _a , _a = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' lowercase_ :Union[str, Any] = tau * frequency / samplerate lowercase_ :List[Any] = sin(_a ) lowercase_ :Any = cos(_a ) lowercase_ :Any = _sin / (2 * q_factor) lowercase_ :int = 1_0 ** (gain_db / 4_0) lowercase_ :Tuple = (big_a + 1) - (big_a - 1) * _cos lowercase_ :Optional[Any] = (big_a + 1) + (big_a - 1) * _cos lowercase_ :Any = (big_a - 1) - (big_a + 1) * _cos lowercase_ :Tuple = (big_a - 1) + (big_a + 1) * _cos lowercase_ :Any = 2 * sqrt(_a ) * alpha lowercase_ :Tuple = big_a * (pmc + aaa) lowercase_ :Dict = 2 * big_a * mpc lowercase_ :List[Any] = big_a * (pmc - aaa) lowercase_ :Union[str, Any] = ppmc + aaa lowercase_ :int = -2 * pmpc lowercase_ :Tuple = ppmc - aaa lowercase_ :Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _a , _a , _a , _a = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' lowercase_ :str = tau * frequency / samplerate lowercase_ :Union[str, Any] = sin(_a ) lowercase_ :Any = cos(_a ) lowercase_ :Optional[int] = _sin / (2 * q_factor) lowercase_ :Any = 1_0 ** (gain_db / 4_0) lowercase_ :str = (big_a + 1) - (big_a - 1) * _cos lowercase_ :Optional[int] = (big_a + 1) + (big_a - 1) * _cos lowercase_ :List[Any] = (big_a - 1) - (big_a + 1) * _cos lowercase_ :Optional[int] = (big_a - 1) + (big_a + 1) * _cos lowercase_ :List[Any] = 2 * sqrt(_a ) * alpha lowercase_ :List[str] = big_a * (ppmc + aaa) lowercase_ :str = -2 * big_a * pmpc lowercase_ :List[Any] = big_a * (ppmc - aaa) lowercase_ :List[str] = pmc + aaa lowercase_ :Dict = 2 * mpc lowercase_ :int = pmc - aaa lowercase_ :List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
252
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""decision_transformer""" lowercase : Dict =["""past_key_values"""] lowercase : Any ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Any = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :int = max_ep_len lowercase_ :List[str] = action_tanh lowercase_ :Any = vocab_size lowercase_ :List[Any] = n_positions lowercase_ :List[str] = n_layer lowercase_ :Optional[Any] = n_head lowercase_ :int = n_inner lowercase_ :List[str] = activation_function lowercase_ :List[str] = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :List[Any] = attn_pdrop lowercase_ :Union[str, Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Any = scale_attn_weights lowercase_ :Union[str, Any] = use_cache lowercase_ :Any = scale_attn_by_inverse_layer_idx lowercase_ :Tuple = reorder_and_upcast_attn lowercase_ :int = bos_token_id lowercase_ :List[str] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.model'''} lowerCamelCase__ : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } lowerCamelCase__ : Optional[Any] = { '''google/rembert''': 2_56, } class _UpperCAmelCase ( __a): __a : Tuple = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _A , _A=False , _A=True , _A=True , _A="[CLS]" , _A="[SEP]" , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , **_A , ) -> Union[str, Any]: '''simple docstring''' super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , **_A , ) _UpperCAmelCase : List[str] = do_lower_case _UpperCAmelCase : str = remove_space _UpperCAmelCase : str = keep_accents _UpperCAmelCase : List[Any] = vocab_file _UpperCAmelCase : int = spm.SentencePieceProcessor() self.sp_model.Load(_A ) @property def __snake_case ( self ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' _UpperCAmelCase : Any = self.__dict__.copy() _UpperCAmelCase : List[str] = None return state def __setstate__( self , _A ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = d _UpperCAmelCase : str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __snake_case ( self , _A , _A=False ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.sp_model.EncodeAsPieces(_A ) return pieces def __snake_case ( self , _A ) -> Optional[int]: '''simple docstring''' return self.sp_model.PieceToId(_A ) def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __snake_case ( self , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.sp_model.decode_pieces(_A ) return out_string def __snake_case ( self , _A , _A = None ) -> List[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self , _A , _A = None , _A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def __snake_case ( self , _A , _A = None ) -> List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self , _A , _A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_A ): logger.error("""Vocabulary path ({}) should be a directory""".format(_A ) ) return _UpperCAmelCase : Union[str, Any] = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
246
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : int ) -> int: _UpperCAmelCase : str = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _UpperCAmelCase : Dict = n - k # Calculate C(n,k) for i in range(_lowerCAmelCase ): result *= n - i result //= i + 1 return result def UpperCamelCase ( _lowerCAmelCase : int ) -> int: return binomial_coefficient(2 * node_count, _lowerCAmelCase ) // (node_count + 1) def UpperCamelCase ( _lowerCAmelCase : int ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) _UpperCAmelCase : str = 1 for i in range(1, n + 1 ): result *= i return result def UpperCamelCase ( _lowerCAmelCase : int ) -> int: return catalan_number(_lowerCAmelCase ) * factorial(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
246
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Dict = BioGptTokenizer lowerCamelCase_ : Optional[Any] = False def lowerCamelCase (self ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case_ : str = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) snake_case_ : Dict = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] snake_case_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = '''lower newer''' snake_case_ : Union[str, Any] = '''lower newer''' return input_text, output_text def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : int = BioGptTokenizer(self.vocab_file , self.merges_file ) snake_case_ : str = '''lower''' snake_case_ : List[str] = ['''low''', '''er</w>'''] snake_case_ : Optional[int] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) snake_case_ : str = tokens + ['''<unk>'''] snake_case_ : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=__magic_name__ ) snake_case_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__magic_name__ ) snake_case_ : Dict = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) snake_case_ : int = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
279
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> int: """simple docstring""" try: snake_case_ : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ : Tuple = default else: # KEY is set, convert it to True or False. try: snake_case_ : Union[str, Any] = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value lowerCAmelCase_ = parse_flag_from_env('''RUN_SLOW''', default=False) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skip('''Test was skipped''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase=None , _UpperCamelCase=None ) -> Tuple: """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , _UpperCamelCase ) , f'''test requires torch version >= {version}''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_UpperCamelCase ) lowerCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_UpperCamelCase ) class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : str = True @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' snake_case_ : Any = tempfile.mkdtemp() @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__magic_name__ ) class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> int: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : str = mocks if isinstance(__magic_name__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = AcceleratorState() snake_case_ : List[str] = tensor[None].clone().to(state.device ) snake_case_ : Optional[Any] = gather(_UpperCamelCase ).cpu() snake_case_ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = returncode snake_case_ : List[Any] = stdout snake_case_ : Tuple = stderr async def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" while True: snake_case_ : Tuple = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(_UpperCamelCase ) ) snake_case_ : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ : List[Any] = [] snake_case_ : List[Any] = [] def tee(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="" ): snake_case_ : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=180 , _UpperCamelCase=False , _UpperCamelCase=True ) -> _RunOutput: """simple docstring""" snake_case_ : List[str] = asyncio.get_event_loop() snake_case_ : List[Any] = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) snake_case_ : Optional[int] = ''' '''.join(_UpperCamelCase ) if result.returncode > 0: snake_case_ : Union[str, Any] = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class __lowerCAmelCase ( _a ): pass def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" try: snake_case_ : List[str] = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , '''decode''' ): snake_case_ : Tuple = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
279
1
import inspect import unittest class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> int: try: import diffusers # noqa: F401 except ImportError: assert False def __A ( self : Union[str, Any] ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE_ = inspect.getmembers(__magic_name__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE_ = "k-diffusion" elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE_ = "invisible-watermark" assert backend in deps, F'''{backend} is not in the deps table!'''
118
from ....configuration_utils import PretrainedConfig from ....utils import logging A : str = logging.get_logger(__name__) # TODO: upload to AWS A : Dict = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''retribert''' def __init__( self : Optional[int] , __magic_name__ : Optional[Any]=30_522 , __magic_name__ : int=768 , __magic_name__ : Dict=8 , __magic_name__ : List[Any]=12 , __magic_name__ : Tuple=3_072 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Tuple=512 , __magic_name__ : Dict=2 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=1e-12 , __magic_name__ : List[str]=True , __magic_name__ : Dict=128 , __magic_name__ : Union[str, Any]=0 , **__magic_name__ : List[Any] , ) -> Dict: super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = share_encoders SCREAMING_SNAKE_CASE_ = projection_dim
118
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters snake_case__ = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Any=None ) -> Dict: if "." in tensor_name: A_ : Union[str, Any] = tensor_name.split('''.''' ) for split in splits[:-1]: A_ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) A_ : int = new_module A_ : List[str] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) A_ : Union[str, Any] = tensor_name in module._buffers A_ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) A_ : Union[str, Any] = False A_ : str = False if is_buffer or not is_bitsandbytes_available(): A_ : Optional[Any] = False A_ : Optional[int] = False else: A_ : Optional[int] = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) A_ : Tuple = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: A_ : Any = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A_ : List[str] = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): A_ : int = value.to('''cpu''' ) if value.dtype == torch.inta: A_ : Optional[int] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: A_ : Dict = torch.tensor(__lowerCAmelCase , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: A_ : Dict = new_value.T A_ : List[Any] = old_value.__dict__ if is_abit: A_ : List[str] = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: A_ : Optional[int] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) A_ : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: A_ : List[str] = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): A_ : Tuple = value.to(__lowerCAmelCase ) else: A_ : Dict = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: A_ : Union[str, Any] = new_value else: A_ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) A_ : int = new_value def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : str=False ) -> Optional[int]: for name, module in model.named_children(): if current_key_name is None: A_ : str = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A_ : Tuple = module.weight.shape else: A_ : Tuple = module.in_features A_ : List[Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": A_ : int = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) A_ : List[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A_ : Tuple = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) A_ : List[str] = True # Store the module class in case we need to transpose the weight later A_ : List[str] = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: A_ : List[str] = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : Optional[int]=None ) -> str: A_ : Any = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert A_ : str = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) -> Tuple: warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case__ ( *lowerCamelCase__ : Dict , **lowerCamelCase__ : Any ) -> Dict: warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case__ ( lowerCamelCase__ : List[str] ) -> List[str]: A_ : str = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A_ : Optional[int] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A_ : str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A_ : Optional[Any] = sum(__lowerCAmelCase , [] ) A_ : List[Any] = len(__lowerCAmelCase ) > 0 # Check if it is a base model A_ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A_ : str = list(model.named_children() ) A_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights A_ : int = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) A_ : List[Any] = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys A_ : List[Any] = ['''.weight''', '''.bias'''] A_ : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A_ : int = name.replace(__lowerCAmelCase , '''''' ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
361
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class _A ( UpperCamelCase_): SCREAMING_SNAKE_CASE : Any = """mgp-str""" def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = image_size SCREAMING_SNAKE_CASE_ : Dict = patch_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : Dict = max_token_length SCREAMING_SNAKE_CASE_ : int = num_character_labels SCREAMING_SNAKE_CASE_ : str = num_bpe_labels SCREAMING_SNAKE_CASE_ : Optional[int] = num_wordpiece_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = mlp_ratio SCREAMING_SNAKE_CASE_ : List[Any] = distilled SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = drop_rate SCREAMING_SNAKE_CASE_ : List[str] = qkv_bias SCREAMING_SNAKE_CASE_ : Dict = attn_drop_rate SCREAMING_SNAKE_CASE_ : Any = drop_path_rate SCREAMING_SNAKE_CASE_ : str = output_aa_attentions SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range
253
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase__ : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
338
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __snake_case = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class lowercase__ ( unittest.TestCase ): @classmethod def A_ ( cls : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def A_ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id='test-config' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A_ ( self : Tuple ): CustomConfig.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class lowercase__ ( unittest.TestCase ): def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated SCREAMING_SNAKE_CASE__ = c.n_embd + 1 # int SCREAMING_SNAKE_CASE__ = c.resid_pdrop + 1.0 # float SCREAMING_SNAKE_CASE__ = not c.scale_attn_weights # bool SCREAMING_SNAKE_CASE__ = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(UpperCAmelCase_ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase_ , c.summary_type , 'mismatch for key: summary_type' ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = PretrainedConfig() SCREAMING_SNAKE_CASE__ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) SCREAMING_SNAKE_CASE__ = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(UpperCAmelCase_ )}.' ) def A_ ( self : List[str] ): with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase_ ) def A_ ( self : str ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE__ = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 SCREAMING_SNAKE_CASE__ = ['config.42.0.0.json'] SCREAMING_SNAKE_CASE__ = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase_ , 'config.42.0.0.json' ) ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def A_ ( self : Tuple ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. SCREAMING_SNAKE_CASE__ = 'hf-internal-testing/test-two-configs' import transformers as new_transformers SCREAMING_SNAKE_CASE__ = 'v4.0.0' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers SCREAMING_SNAKE_CASE__ = 'v3.0.0' SCREAMING_SNAKE_CASE__ = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
169
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
169
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) < k or k < 0: raise ValueError('Invalid Input' ) lowercase : Dict = sum(array[:k] ) for i in range(len(_UpperCAmelCase ) - k ): lowercase : Union[str, Any] = current_sum - array[i] + array[i + k] lowercase : Optional[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCamelCase: Any = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] _UpperCamelCase: int = randint(0, 1_1_0) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
255
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : Any = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _UpperCAmelCase ).groups()[0] class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Tuple=None, lowerCAmelCase : List[Any]=None ) -> Optional[Any]: lowercase : str = file_names lowercase : Optional[Any] = image_transform lowercase : int = label_to_id def __len__( self : List[Any] ) -> Any: return len(self.file_names ) def __getitem__( self : str, lowerCAmelCase : Optional[int] ) -> Optional[Any]: lowercase : List[Any] = self.file_names[idx] lowercase : Tuple = PIL.Image.open(lowerCAmelCase ) lowercase : Tuple = raw_image.convert('RGB' ) if self.image_transform is not None: lowercase : Optional[Any] = self.image_transform(lowerCAmelCase ) lowercase : Any = extract_label(lowerCAmelCase ) if self.label_to_id is not None: lowercase : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' if args.with_tracking: lowercase : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Union[str, Any] = config['lr'] lowercase : Any = int(config['num_epochs'] ) lowercase : Union[str, Any] = int(config['seed'] ) lowercase : List[Any] = int(config['batch_size'] ) lowercase : str = config['image_size'] if not isinstance(_UpperCAmelCase , (list, tuple) ): lowercase : Dict = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowercase : Dict = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase : Dict = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowercase : Tuple = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase : Optional[int] = os.path.split(_UpperCAmelCase )[-1].split('.' )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Grab all the image filenames lowercase : Optional[Any] = [os.path.join(args.data_dir , _UpperCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowercase : str = [extract_label(_UpperCAmelCase ) for fname in file_names] lowercase : List[Any] = list(set(_UpperCAmelCase ) ) id_to_label.sort() lowercase : Optional[Any] = {lbl: i for i, lbl in enumerate(_UpperCAmelCase )} # Set the seed before splitting the data. np.random.seed(_UpperCAmelCase ) torch.manual_seed(_UpperCAmelCase ) torch.cuda.manual_seed_all(_UpperCAmelCase ) # Split our filenames between train and validation lowercase : List[Any] = np.random.permutation(len(_UpperCAmelCase ) ) lowercase : Optional[Any] = int(0.8 * len(_UpperCAmelCase ) ) lowercase : int = random_perm[:cut] lowercase : Any = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase : Dict = Compose([RandomResizedCrop(_UpperCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) lowercase : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # For evaluation, we use a deterministic Resize lowercase : List[Any] = Compose([Resize(_UpperCAmelCase ), ToTensor()] ) lowercase : List[str] = PetsDataset([file_names[i] for i in eval_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # Instantiate dataloaders. lowercase : Dict = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) lowercase : Any = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : List[Any] = create_model('resnet50d' , pretrained=_UpperCAmelCase , num_classes=len(_UpperCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : Union[str, Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase : Dict = False for param in model.get_classifier().parameters(): lowercase : Dict = True # We normalize the batches of images to be a bit faster. lowercase : int = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowercase : Dict = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowercase : List[Any] = OneCycleLR(optimizer=_UpperCAmelCase , max_lr=_UpperCAmelCase , epochs=_UpperCAmelCase , steps_per_epoch=len(_UpperCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase : Tuple = 0 # We also need to keep track of the starting epoch so files are named properly lowercase : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowercase : Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase : Dict = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase : Any = os.path.splitext(_UpperCAmelCase )[0] if "epoch" in training_difference: lowercase : List[Any] = int(training_difference.replace('epoch_' , '' ) ) + 1 lowercase : List[Any] = None else: lowercase : Optional[Any] = int(training_difference.replace('step_' , '' ) ) lowercase : int = resume_step // len(_UpperCAmelCase ) resume_step -= starting_epoch * len(_UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() if args.with_tracking: lowercase : str = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase : Any = accelerator.skip_first_batches(_UpperCAmelCase , _UpperCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase : Union[str, Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : List[str] = (batch['image'] - mean) / std lowercase : Union[str, Any] = model(_UpperCAmelCase ) lowercase : Optional[int] = torch.nn.functional.cross_entropy(_UpperCAmelCase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Union[str, Any] = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase : Optional[Any] = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) model.eval() lowercase : int = 0 lowercase : List[Any] = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : Optional[Any] = (batch['image'] - mean) / std with torch.no_grad(): lowercase : int = model(_UpperCAmelCase ) lowercase : Tuple = outputs.argmax(dim=-1 ) lowercase , lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) lowercase : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase : List[str] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_UpperCAmelCase ), 'epoch': epoch, } , step=_UpperCAmelCase , ) if checkpointing_steps == "epoch": lowercase : str = f'''epoch_{epoch}''' if args.output_dir is not None: lowercase : Any = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> Tuple: '''simple docstring''' lowercase : str = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_UpperCAmelCase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_UpperCAmelCase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase : int = parser.parse_args() lowercase : List[Any] = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
255
1
from math import pow, sqrt def lowerCAmelCase_ ( *UpperCamelCase_ ) -> bool: UpperCamelCase_ = len(UpperCamelCase_ ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
"""simple docstring""" import logging import os from .state import PartialState class lowerCamelCase__ ( logging.LoggerAdapter ): @staticmethod def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) snake_case : List[Any] = kwargs.pop("main_process_only" , SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = kwargs.pop("in_order" , SCREAMING_SNAKE_CASE ) if self.isEnabledFor(SCREAMING_SNAKE_CASE ): if self._should_log(SCREAMING_SNAKE_CASE ): snake_case , snake_case : Union[str, Any] = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif in_order: snake_case : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: snake_case , snake_case : str = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def UpperCamelCase__ ( lowercase__ : str , lowercase__ : str = None ): if log_level is None: snake_case : Optional[int] = os.environ.get("ACCELERATE_LOG_LEVEL" , lowercase__ ) snake_case : List[Any] = logging.getLogger(lowercase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowercase__ , {} )
148
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : str = """https://pypi.org/pypi/diffusers/json""" UpperCAmelCase_ : List[Any] = json.loads(request.urlopen(_a ).read() )["""releases"""].keys() return sorted(_a , key=lambda _a : version.Version(_a ) ) def lowerCamelCase_ ( ): '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_a ) os.makedirs(_a , exist_ok=_a ) UpperCAmelCase_ : Union[str, Any] = Path(_a ) / """__init__.py""" if not init_path.exists(): init_path.touch() def lowerCamelCase_ ( _a : Union[str, os.PathLike] ): '''simple docstring''' init_hf_modules() UpperCAmelCase_ : str = Path(_a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_a , exist_ok=_a ) UpperCAmelCase_ : Any = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def lowerCamelCase_ ( _a : Any ): '''simple docstring''' with open(_a , """r""" , encoding="""utf-8""" ) as f: UpperCAmelCase_ : Optional[Any] = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , _a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , _a , flags=re.MULTILINE ) # Unique-ify return list(set(_a ) ) def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = False UpperCAmelCase_ : Union[str, Any] = [module_file] UpperCAmelCase_ : str = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ : Any = [] for f in files_to_check: new_imports.extend(get_relative_imports(_a ) ) UpperCAmelCase_ : List[str] = Path(_a ).parent UpperCAmelCase_ : str = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ : Dict = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ : List[str] = [F'''{f}.py''' for f in new_import_files] UpperCAmelCase_ : Optional[Any] = len(_a ) == 0 all_relative_imports.extend(_a ) return all_relative_imports def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' with open(_a , """r""" , encoding="""utf-8""" ) as f: UpperCAmelCase_ : Optional[int] = f.read() # Imports of the form `import xxx` UpperCAmelCase_ : Union[str, Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , _a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , _a , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ : Dict = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all UpperCAmelCase_ : str = list(set(_a ) ) UpperCAmelCase_ : List[str] = [] for imp in imports: try: importlib.import_module(_a ) except ImportError: missing_packages.append(_a ) if len(_a ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{', '.join(_a )}. Run `pip install {' '.join(_a )}`''' ) return get_relative_imports(_a ) def lowerCamelCase_ ( _a : Dict , _a : Dict ): '''simple docstring''' UpperCAmelCase_ : str = module_path.replace(os.path.sep , """.""" ) UpperCAmelCase_ : Tuple = importlib.import_module(_a ) if class_name is None: return find_pipeline_class(_a ) return getattr(_a , _a ) def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' from ..pipelines import DiffusionPipeline UpperCAmelCase_ : Tuple = dict(inspect.getmembers(_a , inspect.isclass ) ) UpperCAmelCase_ : List[Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _a ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) UpperCAmelCase_ : Optional[int] = cls return pipeline_class def lowerCamelCase_ ( _a : Union[str, os.PathLike] , _a : str , _a : Optional[Union[str, os.PathLike]] = None , _a : bool = False , _a : bool = False , _a : Optional[Dict[str, str]] = None , _a : Optional[Union[bool, str]] = None , _a : Optional[str] = None , _a : bool = False , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(_a ) UpperCAmelCase_ : Tuple = os.path.join(_a , _a ) if os.path.isfile(_a ): UpperCAmelCase_ : List[Any] = module_file_or_url UpperCAmelCase_ : List[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: UpperCAmelCase_ : List[Any] = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ : Optional[Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ : List[str] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: UpperCAmelCase_ : Optional[Any] = F'''v{revision}''' elif revision == "main": UpperCAmelCase_ : Any = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub UpperCAmelCase_ : str = COMMUNITY_PIPELINES_URL.format(revision=_a , pipeline=_a ) try: UpperCAmelCase_ : Dict = cached_download( _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , ) UpperCAmelCase_ : Dict = """git""" UpperCAmelCase_ : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ : Tuple = hf_hub_download( _a , _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , ) UpperCAmelCase_ : Union[str, Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment UpperCAmelCase_ : str = check_imports(_a ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_a ) UpperCAmelCase_ : str = Path(_a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_a , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ : Dict = F'''{module_needed}.py''' shutil.copy(os.path.join(_a , _a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_a , _a ): UpperCAmelCase_ : List[str] = use_auth_token elif use_auth_token is True: UpperCAmelCase_ : Dict = HfFolder.get_token() else: UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = model_info(_a , revision=_a , token=_a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ : Any = submodule_path / commit_hash UpperCAmelCase_ : Dict = full_submodule + os.path.sep + commit_hash create_dynamic_module(_a ) if not (submodule_path / module_file).exists(): shutil.copy(_a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _a , F'''{module_needed}.py''' , cache_dir=_a , force_download=_a , resume_download=_a , proxies=_a , use_auth_token=_a , revision=_a , local_files_only=_a , ) return os.path.join(_a , _a ) def lowerCamelCase_ ( _a : Union[str, os.PathLike] , _a : str , _a : Optional[str] = None , _a : Optional[Union[str, os.PathLike]] = None , _a : bool = False , _a : bool = False , _a : Optional[Dict[str, str]] = None , _a : Optional[Union[bool, str]] = None , _a : Optional[str] = None , _a : bool = False , **_a : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase_ : Dict = get_cached_module_file( _a , _a , cache_dir=_a , force_download=_a , resume_download=_a , proxies=_a , use_auth_token=_a , revision=_a , local_files_only=_a , ) return get_class_in_module(_a , final_module.replace(""".py""" , """""" ) )
363
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def lowerCamelCase_ ( _a : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def lowerCamelCase_ ( _a : np.ndarray , _a : np.ndarray , _a : int ): '''simple docstring''' UpperCAmelCase_ : Dict = np.nan for i in range(_a ): UpperCAmelCase_ : str = features[:, labels == i] UpperCAmelCase_ : int = data.mean(1 ) # Centralize the data of class i UpperCAmelCase_ : int = data - column_reshape(_a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_a , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase_ : int = np.dot(_a , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase_ ( _a : np.ndarray , _a : np.ndarray , _a : int ): '''simple docstring''' UpperCAmelCase_ : int = features.mean(1 ) UpperCAmelCase_ : Union[str, Any] = np.nan for i in range(_a ): UpperCAmelCase_ : str = features[:, labels == i] UpperCAmelCase_ : Dict = data.shape[1] UpperCAmelCase_ : Any = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_a ) - column_reshape(_a ) , (column_reshape(_a ) - column_reshape(_a )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase_ : List[Any] = device_data * np.dot( column_reshape(_a ) - column_reshape(_a ) , (column_reshape(_a ) - column_reshape(_a )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase_ ( _a : np.ndarray , _a : int ): '''simple docstring''' if features.any(): UpperCAmelCase_ : Dict = features.mean(1 ) # Center the dataset UpperCAmelCase_ : Any = features - np.reshape(_a , (data_mean.size, 1) ) UpperCAmelCase_ : Tuple = np.dot(_a , centered_data.T ) / features.shape[1] UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = np.linalg.eigh(_a ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase_ : List[str] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase_ : Dict = np.dot(filtered_eigenvectors.T , _a ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_a ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase_ ( _a : np.ndarray , _a : np.ndarray , _a : int , _a : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = eigh( covariance_between_classes(_a , _a , _a ) , covariance_within_classes(_a , _a , _a ) , ) UpperCAmelCase_ : int = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = np.linalg.svd(_a ) UpperCAmelCase_ : Dict = svd_matrix[:, 0:dimensions] UpperCAmelCase_ : Optional[Any] = np.dot(filtered_svd_matrix.T , _a ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_a ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase_ : List[str] = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_a ) as error_info: UpperCAmelCase_ : Dict = linear_discriminant_analysis( _a , _a , _a , _a ) if isinstance(_a , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Any = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Tuple = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_a ) as error_info: UpperCAmelCase_ : Union[str, Any] = principal_component_analysis(_a , _a ) if not np.allclose(_a , _a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
59
0
"""simple docstring""" from __future__ import annotations def lowercase ( __snake_case : tuple[int, int] , __snake_case : int ): lowercase_ , lowercase_ : int = position lowercase_ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase_ : Union[str, Any] = [] for position in positions: lowercase_ , lowercase_ : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase ( __snake_case : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def lowercase ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): lowercase_ , lowercase_ : str = position if board[y][x] == 0: lowercase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True lowercase_ : Optional[int] = 0 return False def lowercase ( __snake_case : int ): lowercase_ : Optional[Any] = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): lowercase_ : Dict = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board lowercase_ : Optional[int] = 0 lowercase_ : int = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
0
'''simple docstring''' from PIL import Image def __a ( _UpperCamelCase: Image , _UpperCamelCase: int ) -> Image: """simple docstring""" _snake_case = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_UpperCamelCase: int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 UpperCamelCase_ : Tuple = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
359
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : Tuple = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = """vit_msn""" def __init__( self ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-06 ,_SCREAMING_SNAKE_CASE=224 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> int: super().__init__(**_SCREAMING_SNAKE_CASE ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
142
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class A__ ( A__ ): A__ = 'xglm' A__ = ['past_key_values'] A__ = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , _a : Tuple=25_6008 , _a : int=2048 , _a : List[str]=1024 , _a : Dict=4096 , _a : str=24 , _a : Optional[Any]=16 , _a : List[Any]="gelu" , _a : Optional[Any]=0.1 , _a : Any=0.1 , _a : str=0.0 , _a : Dict=0.0 , _a : List[Any]=0.02 , _a : int=True , _a : int=True , _a : List[Any]=2 , _a : Optional[Any]=1 , _a : Dict=0 , _a : List[Any]=2 , **_a : List[Any] , ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =ffn_dim _SCREAMING_SNAKE_CASE =num_layers _SCREAMING_SNAKE_CASE =attention_heads _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =layerdrop _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True _SCREAMING_SNAKE_CASE =use_cache super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
369
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =checkpoint _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_in.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_in.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.norm_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.norm_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_in.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_in.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.norm_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.norm_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['quant_conv.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['quant_conv.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['post_quant_conv.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only _SCREAMING_SNAKE_CASE =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) _SCREAMING_SNAKE_CASE ={ layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(_UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only _SCREAMING_SNAKE_CASE =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) _SCREAMING_SNAKE_CASE ={ layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(_UpperCamelCase ) } for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =[key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: _SCREAMING_SNAKE_CASE =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) _SCREAMING_SNAKE_CASE =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"down.{i}.block", 'new': f"down_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'encoder.mid.block' in key] _SCREAMING_SNAKE_CASE =2 for i in range(1 , num_mid_res_blocks + 1 ): _SCREAMING_SNAKE_CASE =[key for key in mid_resnets if f"encoder.mid.block_{i}" in key] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'encoder.mid.attn' in key] _SCREAMING_SNAKE_CASE =renew_vae_attention_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) conv_attn_to_linear(_UpperCamelCase ) for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =num_up_blocks - 1 - i _SCREAMING_SNAKE_CASE =[ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: _SCREAMING_SNAKE_CASE =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] _SCREAMING_SNAKE_CASE =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"up.{block_id}.block", 'new': f"up_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'decoder.mid.block' in key] _SCREAMING_SNAKE_CASE =2 for i in range(1 , num_mid_res_blocks + 1 ): _SCREAMING_SNAKE_CASE =[key for key in mid_resnets if f"decoder.mid.block_{i}" in key] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'decoder.mid.attn' in key] _SCREAMING_SNAKE_CASE =renew_vae_attention_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) conv_attn_to_linear(_UpperCamelCase ) return new_checkpoint def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) _SCREAMING_SNAKE_CASE =io.BytesIO(r.content ) _SCREAMING_SNAKE_CASE =OmegaConf.load(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =5_12 _SCREAMING_SNAKE_CASE ='cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open _SCREAMING_SNAKE_CASE ={} with safe_open(_UpperCamelCase , framework='pt' , device='cpu' ) as f: for key in f.keys(): _SCREAMING_SNAKE_CASE =f.get_tensor(_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location=_UpperCamelCase )['state_dict'] # Convert the VAE model. _SCREAMING_SNAKE_CASE =create_vae_diffusers_config(_UpperCamelCase , image_size=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =custom_convert_ldm_vae_checkpoint(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =AutoencoderKL(**_UpperCamelCase ) vae.load_state_dict(_UpperCamelCase ) vae.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") lowerCamelCase : List[str] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
114
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : int = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'blenderbot-small' SCREAMING_SNAKE_CASE__ = ['past_key_values'] SCREAMING_SNAKE_CASE__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=512 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=512 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=2 , **_lowerCamelCase , ): a :Dict = vocab_size a :Optional[Any] = max_position_embeddings a :str = d_model a :Any = encoder_ffn_dim a :Optional[int] = encoder_layers a :List[str] = encoder_attention_heads a :List[str] = decoder_ffn_dim a :Optional[int] = decoder_layers a :str = decoder_attention_heads a :List[str] = dropout a :Optional[int] = attention_dropout a :Dict = activation_dropout a :List[str] = activation_function a :List[Any] = init_std a :Optional[int] = encoder_layerdrop a :Tuple = decoder_layerdrop a :List[str] = use_cache a :int = encoder_layers a :Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class _snake_case ( _snake_case ): @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task in ["default", "seq2seq-lm"]: a :Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a :Union[str, Any] = {0: '''batch'''} a :Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: a :Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} a :str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. a :Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a , a :str = self.num_layers for i in range(_lowerCamelCase ): a :List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} a :List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: a :Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task in ["default", "seq2seq-lm"]: a :List[Any] = super().outputs else: a :Union[str, Any] = super(_lowerCamelCase , self ).outputs if self.use_past: a , a :int = self.num_layers for i in range(_lowerCamelCase ): a :int = {0: '''batch''', 2: '''past_sequence + sequence'''} a :Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs a :Dict = seq_length if not self.use_past else 1 a :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a :List[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} a :List[str] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a :Optional[Any] = common_inputs['''input_ids'''].shape a :Tuple = common_inputs['''decoder_input_ids'''].shape[1] a , a :List[Any] = self.num_attention_heads a :List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a :int = decoder_seq_length + 3 a :Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a :Union[str, Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) a :List[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a , a :Optional[int] = self.num_layers a :str = min(_lowerCamelCase , _lowerCamelCase ) a :str = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers a :Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. a :int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a :Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a :Optional[int] = seqlen + 2 a , a :Union[str, Any] = self.num_layers a , a :Optional[Any] = self.num_attention_heads a :str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a :Tuple = common_inputs['''attention_mask'''].dtype a :Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) a :Any = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a :Optional[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a :Optional[int] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) a :Tuple = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence a :List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size a :Dict = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): if self.task in ["default", "seq2seq-lm"]: a :Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": a :Dict = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: a :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if self.task in ["default", "seq2seq-lm"]: a :Optional[int] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: a :Any = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
94
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _UpperCAmelCase : Union[str, Any] = 8 def A ( lowercase , lowercase=BITS ) -> Any: '''simple docstring''' UpperCamelCase = x.device UpperCamelCase = (x * 255).int().clamp(0 , 255 ) UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase ) UpperCamelCase = rearrange(lowercase , 'd -> d 1 1' ) UpperCamelCase = rearrange(lowercase , 'b c h w -> b c 1 h w' ) UpperCamelCase = ((x & mask) != 0).float() UpperCamelCase = rearrange(lowercase , 'b c d h w -> b (c d) h w' ) UpperCamelCase = bits * 2 - 1 return bits def A ( lowercase , lowercase=BITS ) -> int: '''simple docstring''' UpperCamelCase = x.device UpperCamelCase = (x > 0).int() UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase , dtype=torch.intaa ) UpperCamelCase = rearrange(lowercase , 'd -> d 1 1' ) UpperCamelCase = rearrange(lowercase , 'b (c d) h w -> b c d h w' , d=8 ) UpperCamelCase = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def A ( self , lowercase , lowercase , lowercase , lowercase = 0.0 , lowercase = True , lowercase=None , lowercase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCamelCase = self.alphas_cumprod[timestep] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCamelCase = self.bit_scale if self.config.clip_sample: UpperCamelCase = torch.clamp(lowercase , -scale , lowercase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCamelCase = self._get_variance(lowercase , lowercase ) UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCamelCase = model_output.device if torch.is_tensor(lowercase ) else 'cpu' UpperCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase ).to(lowercase ) UpperCamelCase = self._get_variance(lowercase , lowercase ) ** 0.5 * eta * noise UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def A ( self , lowercase , lowercase , lowercase , lowercase="epsilon" , lowercase=None , lowercase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCamelCase , UpperCamelCase = torch.split(lowercase , sample.shape[1] , dim=1 ) else: UpperCamelCase = None # 1. compute alphas, betas UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCamelCase = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" UpperCamelCase = self.bit_scale if self.config.clip_sample: UpperCamelCase = torch.clamp(lowercase , -scale , lowercase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase = 0 if t > 0: UpperCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase ).to(model_output.device ) UpperCamelCase = (self._get_variance(lowercase , predicted_variance=lowercase ) ** 0.5) * noise UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ = 1.0 , ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase = bit_scale UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(A_ , A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 256 , A_ = 256 , A_ = 50 , A_ = None , A_ = 1 , A_ = "pil" , A_ = True , **A_ , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A_ , ) UpperCamelCase = decimal_to_bits(A_ ) * self.bit_scale UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCamelCase = self.unet(A_ , A_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , A_ , A_ ).prev_sample UpperCamelCase = bits_to_decimal(A_ ) if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
362
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[Any] = KandinskyVaaControlnetImgaImgPipeline __lowercase : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] __lowercase : Any = ["image_embeds", "negative_image_embeds", "image", "hint"] __lowercase : Union[str, Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowercase : Optional[int] = False @property def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return 32 @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return 32 @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return 100 @property def __UpperCamelCase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCamelCase = DDIMScheduler(**A_ ) UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __UpperCamelCase ( self , A_ , A_=0 ) -> List[Any]: """simple docstring""" UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create hint UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'cpu' UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**A_ ) UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCamelCase = init_image.resize((512, 512) ) UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) UpperCamelCase = torch.from_numpy(np.array(A_ ) ).float() / 255.0 UpperCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase = 'A robot, 4k photo' UpperCamelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( A_ , image=A_ , strength=0.85 , generator=A_ , negative_prompt='' , ).to_tuple() UpperCamelCase = pipeline( image=A_ , image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) UpperCamelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A_ , A_ )
110
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _a = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } _a = { '''google/fnet-base''': 5_1_2, '''google/fnet-large''': 5_1_2, } _a = '''▁''' class A_ ( snake_case__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Any = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = ['input_ids', 'token_type_ids'] _lowercase : int = FNetTokenizer def __init__( self : Dict , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=False , UpperCAmelCase : int=True , UpperCAmelCase : str=True , UpperCAmelCase : Tuple="<unk>" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[str]="[MASK]" , **UpperCAmelCase : Optional[Any] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCAmelCase: Optional[Any] = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase: str = do_lower_case __lowerCAmelCase: Union[str, Any] = remove_space __lowerCAmelCase: Union[str, Any] = keep_accents __lowerCAmelCase: Dict = vocab_file __lowerCAmelCase: Tuple = False if not self.vocab_file else True def UpperCAmelCase ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase: Dict = [self.sep_token_id] __lowerCAmelCase: List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase: int = [self.sep_token_id] __lowerCAmelCase: Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase: Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
322
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
1
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _lowerCAmelCase : Dict = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ _lowerCAmelCase : int = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ _lowerCAmelCase : Tuple = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def snake_case_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def snake_case_ ( self : List[Any] , A : Dict , A : int ): _UpperCAmelCase : List[str] = 0.0 for i, j in zip(a__ , a__ ): n_correct += 1.0 if math_equivalence.is_equiv(a__ , a__ ) else 0.0 _UpperCAmelCase : Any = n_correct / len(a__ ) return { "accuracy": accuracy, }
364
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = 'owlvit_text_model' def __init__( self : int , A : int=4_9_4_0_8 , A : Optional[Any]=5_1_2 , A : Optional[Any]=2_0_4_8 , A : str=1_2 , A : int=8 , A : Tuple=1_6 , A : List[Any]="quick_gelu" , A : Tuple=1e-5 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : str=1.0 , A : str=0 , A : List[str]=4_9_4_0_6 , A : str=4_9_4_0_7 , **A : Optional[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = initializer_factor @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : Dict ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'owlvit_vision_model' def __init__( self : Union[str, Any] , A : Optional[int]=7_6_8 , A : int=3_0_7_2 , A : List[str]=1_2 , A : List[str]=1_2 , A : Optional[int]=3 , A : Optional[int]=7_6_8 , A : str=3_2 , A : Tuple="quick_gelu" , A : Dict=1e-5 , A : Optional[int]=0.0 , A : List[Any]=0.02 , A : str=1.0 , **A : Tuple , ): super().__init__(**A ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = initializer_factor @classmethod def snake_case_ ( cls : Optional[int] , A : Union[str, os.PathLike] , **A : int ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = 'owlvit' __SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self : Optional[Any] , A : Dict=None , A : Tuple=None , A : Optional[Any]=5_1_2 , A : Optional[Any]=2.6_592 , A : int=True , **A : Tuple , ): super().__init__(**A ) if text_config is None: _UpperCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _UpperCAmelCase : str = OwlViTTextConfig(**A ) _UpperCAmelCase : int = OwlViTVisionConfig(**A ) _UpperCAmelCase : Optional[Any] = projection_dim _UpperCAmelCase : str = logit_scale_init_value _UpperCAmelCase : Optional[Any] = return_dict _UpperCAmelCase : str = 1.0 @classmethod def snake_case_ ( cls : Dict , A : Union[str, os.PathLike] , **A : Any ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def snake_case_ ( cls : Optional[int] , A : Dict , A : Dict , **A : Optional[Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = text_config _UpperCAmelCase : Dict = vision_config return cls.from_dict(A , **A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : List[str] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case_ ( self : Optional[int] ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case_ ( self : str ): return 1e-4 def snake_case_ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : Optional["TensorType"] = None , ): _UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _UpperCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : List[Any] ): return 1_4
202
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Tuple = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : Dict = 'owlvit_text_model' def __init__( self : List[str] , __lowercase : str=49408 , __lowercase : Any=512 , __lowercase : Dict=2048 , __lowercase : Optional[Any]=12 , __lowercase : Optional[Any]=8 , __lowercase : List[Any]=16 , __lowercase : Tuple="quick_gelu" , __lowercase : List[Any]=1e-5 , __lowercase : Tuple=0.0 , __lowercase : Union[str, Any]=0.02 , __lowercase : Union[str, Any]=1.0 , __lowercase : Union[str, Any]=0 , __lowercase : List[str]=49406 , __lowercase : Optional[int]=49407 , **__lowercase : int , ) -> List[str]: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : str = initializer_factor @classmethod def UpperCAmelCase ( cls : List[Any] , __lowercase : int , **__lowercase : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__a ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": __UpperCAmelCase : List[Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class a ( lowercase__ ): """simple docstring""" a : int = 'owlvit_vision_model' def __init__( self : List[Any] , __lowercase : Tuple=768 , __lowercase : Union[str, Any]=3072 , __lowercase : Optional[Any]=12 , __lowercase : Tuple=12 , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=768 , __lowercase : int=32 , __lowercase : Any="quick_gelu" , __lowercase : int=1e-5 , __lowercase : Tuple=0.0 , __lowercase : Union[str, Any]=0.02 , __lowercase : Any=1.0 , **__lowercase : Optional[Any] , ) -> Union[str, Any]: super().__init__(**__a ) __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Tuple = initializer_factor @classmethod def UpperCAmelCase ( cls : Union[str, Any] , __lowercase : Union[str, Any] , **__lowercase : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(__a ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": __UpperCAmelCase : Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class a ( lowercase__ ): """simple docstring""" a : Optional[Any] = 'owlvit' a : Optional[int] = True def __init__( self : str , __lowercase : str=None , __lowercase : Union[str, Any]=None , __lowercase : Tuple=512 , __lowercase : Tuple=2.6_592 , __lowercase : Any=True , **__lowercase : Dict , ) -> int: super().__init__(**__a ) if text_config is None: __UpperCAmelCase : Optional[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: __UpperCAmelCase : Optional[int] = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) __UpperCAmelCase : Any = OwlViTTextConfig(**__a ) __UpperCAmelCase : List[str] = OwlViTVisionConfig(**__a ) __UpperCAmelCase : Any = projection_dim __UpperCAmelCase : int = logit_scale_init_value __UpperCAmelCase : Dict = return_dict __UpperCAmelCase : List[str] = 1.0 @classmethod def UpperCAmelCase ( cls : Union[str, Any] , __lowercase : Optional[int] , **__lowercase : Tuple ) -> "PretrainedConfig": cls._set_token_in_kwargs(__a ) __UpperCAmelCase , __UpperCAmelCase : str = cls.get_config_dict(__a , **__a ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : str , __lowercase : Tuple , **__lowercase : Optional[int] ) -> Any: __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : int = text_config __UpperCAmelCase : Tuple = vision_config return cls.from_dict(__a , **__a ) def UpperCAmelCase ( self : Any ) -> Tuple: __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : str = self.text_config.to_dict() __UpperCAmelCase : Tuple = self.vision_config.to_dict() __UpperCAmelCase : Any = self.__class__.model_type return output class a ( lowercase__ ): """simple docstring""" @property def UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def UpperCAmelCase ( self : List[Any] ) -> float: return 1e-4 def UpperCAmelCase ( self : List[str] , __lowercase : Optional[int] , __lowercase : Any = -1 , __lowercase : Tuple = -1 , __lowercase : Optional[Any] = None , ) -> Mapping[str, Any]: __UpperCAmelCase : List[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=__a , seq_length=__a , framework=__a ) __UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=__a , framework=__a ) return {**text_input_dict, **image_input_dict} @property def UpperCAmelCase ( self : str ) -> int: return 14
114
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _UpperCamelCase = sorted(numsa + numsa ) _UpperCamelCase , _UpperCamelCase = divmod(len(__snake_case ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _a = [float(x) for x in input("""Enter the elements of first array: """).split()] _a = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
194
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) UpperCAmelCase : List[str] =Vector() def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[str] =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case__ ) , '''(0,0,0,0,0,1)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Union[str, Any] =Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case__ ) , 4 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2] ) UpperCAmelCase : Union[str, Any] =Vector([1, 2, 3, 4, 5] ) UpperCAmelCase : List[str] =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) UpperCAmelCase : Optional[int] =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Dict =Vector([1, 2, 3] ) UpperCAmelCase : List[Any] =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2, 3] ) UpperCAmelCase : int =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Dict =Vector([1, 2, 3] ) UpperCAmelCase : Dict =Vector([2, -1, 4] ) # for test of dot product UpperCAmelCase : Union[str, Any] =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2, 3] ) UpperCAmelCase : Any =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case__ , snake_case__ ) ) , '''(3,4,7)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] =Vector([1, 0, 0, 0, 0, 0] ) UpperCAmelCase : Union[str, Any] =x.copy() self.assertEqual(str(snake_case__ ) , str(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Any =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case__ ) , '''(0,1,0)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Union[str, Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : str =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case__ , snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[str] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : Union[str, Any] =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case__ , snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[str] =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) UpperCAmelCase : Any =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : Optional[Any] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : int =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
352
import sys def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) UpperCAmelCase : List[str] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] UpperCAmelCase : List[Any] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase : str =a + chain_length - 1 UpperCAmelCase : Union[str, Any] =sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : List[Any] =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase : Optional[Any] =cost UpperCAmelCase : Dict =c return matrix, sol def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if i == j: print('''A''' + str(__lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(''')''' , end=''' ''' ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Dict =[30, 35, 15, 5, 10, 20, 25] UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase , UpperCAmelCase : Optional[int] =matrix_chain_order(__lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
78
0
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = IFPipeline __UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} __UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} def _snake_case (self ): return self._get_dummy_components() def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case (self ): self._test_save_load_local() def _snake_case (self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self ): # if __lowerCAmelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) __lowerCAmelCase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=__lowercase , tokenizer=__lowercase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) __lowerCAmelCase , __lowerCAmelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowerCAmelCase = None __lowerCAmelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowercase , __lowercase , __lowercase , __lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowerCAmelCase = IFImgaImgPipeline(**pipe_a.components ) __lowerCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowercase , __lowercase , __lowercase , __lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowerCAmelCase = IFInpaintingPipeline(**pipe_a.components ) __lowerCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowercase , __lowercase , __lowercase , __lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ): # pipeline 1 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCAmelCase = pipe_a( prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , num_inference_steps=2 , generator=__lowercase , output_type='''np''' , ) __lowerCAmelCase = output.images[0] assert image.shape == (64, 64, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(__lowercase , __lowercase ) # pipeline 2 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = pipe_a( prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , image=__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''np''' , ) __lowerCAmelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowercase , __lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ): # pipeline 1 _start_torch_memory_measurement() __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCAmelCase = pipe_a( prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , image=__lowercase , num_inference_steps=2 , generator=__lowercase , output_type='''np''' , ) __lowerCAmelCase = output.images[0] assert image.shape == (64, 64, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(__lowercase , __lowercase ) # pipeline 2 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCAmelCase = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = pipe_a( prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , image=__lowercase , original_image=__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''np''' , ) __lowerCAmelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowercase , __lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ): # pipeline 1 _start_torch_memory_measurement() __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowercase ) __lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCAmelCase = pipe_a( prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , image=__lowercase , mask_image=__lowercase , num_inference_steps=2 , generator=__lowercase , output_type='''np''' , ) __lowerCAmelCase = output.images[0] assert image.shape == (64, 64, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(__lowercase , __lowercase ) # pipeline 2 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__lowercase ) __lowerCAmelCase = pipe_a( prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , image=__lowercase , mask_image=__lowercase , original_image=__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''np''' , ) __lowerCAmelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowercase , __lowercase ) def __magic_name__( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
174
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
174
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Any = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__lowerCAmelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__lowerCAmelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__lowerCAmelCase ) return parser.parse_args() def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : Any = parse_args() # Import training_script as a module. snake_case__ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case__ : str = script_fpath.stem snake_case__ : Dict = importlib.import_module(__lowerCAmelCase ) # Patch sys.argv snake_case__ : Any = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
359
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class a : def __init__( self :str ,__lowercase :Optional[Any] ,__lowercase :List[Any]=1_3 ,__lowercase :str=7 ,__lowercase :Dict=True ,__lowercase :Any=True ,__lowercase :str=True ,__lowercase :Any=True ,__lowercase :Tuple=9_9 ,__lowercase :List[str]=3_2 ,__lowercase :int=5 ,__lowercase :Union[str, Any]=4 ,__lowercase :List[str]=4 ,__lowercase :Any="gelu" ,__lowercase :Any=0.0 ,__lowercase :Tuple=0.1 ,__lowercase :str=True ,__lowercase :Tuple=5_1_2 ,__lowercase :Dict=1_6 ,__lowercase :Tuple=2 ,__lowercase :List[str]=0.02 ,__lowercase :Dict=3 ,__lowercase :Optional[int]=4 ,__lowercase :Tuple=None ,): snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : Tuple = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : List[Any] = use_token_type_ids snake_case__ : str = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = intermediate_multiple_size snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = hidden_dropout snake_case__ : str = attention_dropout snake_case__ : List[str] = weight_tying snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : str = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : int = num_labels snake_case__ : int = num_choices snake_case__ : int = scope def __lowerCamelCase ( self :List[str] ): snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCamelCase ( self :int ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_multiple_size=self.intermediate_multiple_size ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,weight_tying=self.weight_tying ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def __lowerCamelCase ( self :List[Any] ,__lowercase :Any ,__lowercase :Dict ,__lowercase :Optional[Any] ): snake_case__ : Union[str, Any] = GPTNeoXJapaneseModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Union[str, Any] = model(__lowercase ,attention_mask=__lowercase ) snake_case__ : Optional[Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :Tuple ,__lowercase :Union[str, Any] ): snake_case__ : Any = True snake_case__ : Tuple = GPTNeoXJapaneseModel(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : str = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ,__lowercase :Any ): snake_case__ : Any = GPTNeoXJapaneseForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Any ,__lowercase :int ,__lowercase :List[str] ): snake_case__ : Optional[int] = True snake_case__ : Optional[int] = GPTNeoXJapaneseForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass snake_case__ : List[Any] = model(__lowercase ,attention_mask=__lowercase ,use_cache=__lowercase ) snake_case__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case__ : int = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and snake_case__ : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] ,dim=-1 ) snake_case__ : Dict = model(__lowercase ,attention_mask=__lowercase ,output_hidden_states=__lowercase ) snake_case__ : Tuple = output_from_no_past['''hidden_states'''][0] snake_case__ : List[str] = model( __lowercase ,attention_mask=__lowercase ,past_key_values=__lowercase ,output_hidden_states=__lowercase ,)['''hidden_states'''][0] # select random slice snake_case__ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case__ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase ,__lowercase ,atol=1e-3 ) ) def __lowerCamelCase ( self :Dict ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = config_and_inputs snake_case__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __lowerCAmelCase : List[str] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __lowerCAmelCase : int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : str = False def __lowerCamelCase ( self :Any ): snake_case__ : int = GPTNeoXJapaneseModelTester(self ) snake_case__ : Any = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :Any ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): # This regression test was failing with PyTorch < 1.3 snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : List[str] = None self.model_tester.create_and_check_model_as_decoder(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowercase ) @slow def __lowerCamelCase ( self :Dict ): snake_case__ : str = '''abeja/gpt-neox-japanese-2.7b''' snake_case__ : int = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] snake_case__ : Optional[int] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] snake_case__ : Optional[int] = GPTNeoXJapaneseTokenizer.from_pretrained(__lowercase ) snake_case__ : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowercase ) snake_case__ : Optional[int] = [] for prompt in prompts: snake_case__ : Dict = tokenizer(__lowercase ,return_tensors='''pt''' ).input_ids snake_case__ : Union[str, Any] = model.generate(__lowercase ,max_length=5_0 ) snake_case__ : int = tokenizer.batch_decode(__lowercase ,skip_special_tokens=__lowercase ) predicted_outputs += generated_string self.assertListEqual(__lowercase ,__lowercase )
44
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> Optional[Any]: UpperCamelCase : str = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def UpperCamelCase ( snake_case__ : Dict , snake_case__ : List[Any] ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCamelCase : Any = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) UpperCamelCase : str = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCamelCase : Optional[int] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCamelCase : Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCamelCase ( snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> int: UpperCamelCase : List[str] = dct.pop(lowerCAmelCase__ ) UpperCamelCase : List[Any] = val def UpperCamelCase ( snake_case__ : List[Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: UpperCamelCase : List[str] = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase : str = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' UpperCamelCase : Any = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) return im @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[Any] ) -> Tuple: UpperCamelCase : Any = ViTConfig(image_size=384 , qkv_bias=lowerCAmelCase__ ) UpperCamelCase : List[str] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCamelCase : Optional[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCamelCase : Optional[int] = 1024 UpperCamelCase : List[Any] = 4096 UpperCamelCase : int = 24 UpperCamelCase : List[Any] = 16 UpperCamelCase : Tuple = 1024 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase : Tuple = False UpperCamelCase : Dict = 'relu' UpperCamelCase : Union[str, Any] = 1024 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False UpperCamelCase : Any = False # load HuggingFace model UpperCamelCase : List[str] = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) UpperCamelCase : str = TrOCRForCausalLM(lowerCAmelCase__ ) UpperCamelCase : Any = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys UpperCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' , check_hash=lowerCAmelCase__ )['model'] UpperCamelCase : Tuple = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCamelCase : List[Any] = state_dict.pop(lowerCAmelCase__ ) if key.startswith('decoder' ) and "output_projection" not in key: UpperCamelCase : Union[str, Any] = val else: UpperCamelCase : Optional[Any] = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image UpperCamelCase : Dict = ViTImageProcessor(size=encoder_config.image_size ) UpperCamelCase : Any = RobertaTokenizer.from_pretrained('roberta-large' ) UpperCamelCase : List[str] = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCamelCase : Tuple = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors='pt' ).pixel_values # verify logits UpperCamelCase : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCamelCase : str = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) UpperCamelCase : str = outputs.logits UpperCamelCase : List[Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCamelCase : Union[str, Any] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCamelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: UpperCamelCase : List[Any] = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: UpperCamelCase : List[str] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCAmelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
119
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = (KDPMaDiscreteScheduler,) _lowerCAmelCase = 1_0 def __UpperCAmelCase ( self , **__magic_name__ ) -> int: _a = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__magic_name__ ) return config def __UpperCAmelCase ( self ) -> Union[str, Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __UpperCAmelCase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='v_prediction' ) _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __UpperCAmelCase ( self ) -> Tuple: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __UpperCAmelCase ( self ) -> List[Any]: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(__magic_name__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if str(__magic_name__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
168
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _a ( lowerCamelCase: dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray ) -> np.ndarray: '''simple docstring''' __A = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase , lowerCamelCase ) # Predict target for test data __A = xgb.predict(lowerCamelCase ) __A = predictions.reshape(len(lowerCamelCase ) , 1 ) return predictions def _a ( ) -> None: '''simple docstring''' __A = fetch_california_housing() __A , __A = data_handling(lowerCamelCase ) __A , __A , __A , __A = train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.25 , random_state=1 ) __A = xgboost(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(lowerCamelCase , lowerCamelCase )}""" ) print(F"""Mean Square Error : {mean_squared_error(lowerCamelCase , lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
250
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Union[str, Any] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> bool: """simple docstring""" UpperCamelCase :Union[str, Any] = [int(__magic_name__ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(__magic_name__ ) == 4 and all(0 <= int(__magic_name__ ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase_ : int = input().strip() UpperCAmelCase_ : Any = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
38
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(__magic_name__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase :int = QuantumRegister(__magic_name__ , """qr""" ) UpperCamelCase :str = ClassicalRegister(__magic_name__ , """cr""" ) UpperCamelCase :str = QuantumCircuit(__magic_name__ , __magic_name__ ) UpperCamelCase :List[Any] = number_of_qubits for i in range(__magic_name__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__magic_name__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__magic_name__ , __magic_name__ ) # simulate with 10000 shots UpperCamelCase :str = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase :Dict = execute(__magic_name__ , __magic_name__ , shots=1_0000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
38
1
from __future__ import annotations def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : int | None = None , _lowerCAmelCase : int | None = None ): if start is None: __UpperCamelCase : List[str] = 0 if end is None: __UpperCamelCase : List[Any] = len(_lowerCAmelCase ) - 1 if start >= end: return __UpperCamelCase : Union[str, Any] = (start + end) // 2 slowsort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) slowsort(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) if sequence[end] < sequence[mid]: __UpperCamelCase , __UpperCamelCase : Tuple = sequence[mid], sequence[end] slowsort(_lowerCAmelCase , _lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
171
from math import sqrt def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00_00_00 ): __UpperCamelCase : int = 0 __UpperCamelCase : int = 0 __UpperCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
171
1
lowercase = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } lowercase = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def __UpperCAmelCase ( a_ , a_ , a_): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: snake_case_ = ( f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' f'''Valid values are: {", ".join(a_)}''' ) raise ValueError(a_) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3) if __name__ == "__main__": import doctest doctest.testmod()
178
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> int: snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): snake_case_ = model(**a ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , a ) snake_case_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1E-4 ) )
178
1
"""simple docstring""" import math def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen") if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _a = 'Enter the base and the power separated by a comma: ' _a , _a = map(int, input(prompt).split(',')) _a , _a = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _a = res(xa, ya) _a = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
144
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _a = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _a , _a = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _a = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _a = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _a = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
144
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : Dict , a__ : List[str] , a__ : List[str]=None , a__ : List[str]=None , a__ : Dict=None , a__ : Tuple=None , a__ : List[Any]=None , ) -> Optional[Any]: if attention_mask is None: UpperCamelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ ) if decoder_head_mask is None: UpperCamelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) if cross_attn_head_mask is None: UpperCamelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=9_9 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase="relu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=2_0 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = decoder_layerdrop UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.eos_token_id # Eos Token UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ = self.get_config() UpperCamelCase_ = prepare_mam_aaa_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = MaMaaaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() UpperCamelCase_ = inputs_dict["""input_ids"""] UpperCamelCase_ = inputs_dict["""attention_mask"""] UpperCamelCase_ = inputs_dict["""head_mask"""] # first forward pass UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )["""last_hidden_state"""] UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ """last_hidden_state""" ] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-2 ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = MaMaaaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() UpperCamelCase_ = model(**__UpperCamelCase ) UpperCamelCase_ = outputs.encoder_last_hidden_state UpperCamelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) UpperCamelCase_ = MaMaaaEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) UpperCamelCase_ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) UpperCamelCase_ = MaMaaaDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) UpperCamelCase_ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) A__ : Tuple = (MaMaaaForConditionalGeneration,) if is_torch_available() else () A__ : Union[str, Any] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) A__ : Union[str, Any] = True A__ : List[Any] = True A__ : Dict = False A__ : Optional[int] = False def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MaMaaaModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = copy.deepcopy(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if not self.is_encoder_decoder: UpperCamelCase_ = inputs["""input_ids"""] del inputs["input_ids"] else: UpperCamelCase_ = inputs["""input_ids"""] UpperCamelCase_ = inputs.get("""decoder_input_ids""" , __UpperCamelCase ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , __UpperCamelCase ) UpperCamelCase_ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase_ = wte(__UpperCamelCase ) else: UpperCamelCase_ = wte(__UpperCamelCase ) UpperCamelCase_ = wte(__UpperCamelCase ) with torch.no_grad(): model(**__UpperCamelCase )[0] def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = input_dict["""input_ids"""] UpperCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase_ = MaMaaaForConditionalGeneration(__UpperCamelCase ).eval().to(__UpperCamelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ) model.generate(num_beams=4 , do_sample=__UpperCamelCase , early_stopping=__UpperCamelCase , num_return_sequences=3 ) def lowerCamelCase__ ( a__ : Union[str, Any] ) -> Union[str, Any]: return torch.tensor(a__ , dtype=torch.long , device=a__ ) _A = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__UpperCamelCase ) UpperCamelCase_ = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): UpperCamelCase_ = model(**__UpperCamelCase )[0] UpperCamelCase_ = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here UpperCamelCase_ = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__UpperCamelCase ) # change to intended input UpperCamelCase_ = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): UpperCamelCase_ = model(**__UpperCamelCase )[0] UpperCamelCase_ = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here UpperCamelCase_ = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__UpperCamelCase ) UpperCamelCase_ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) UpperCamelCase_ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase_ = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = model.generate( input_ids=dct["""input_ids"""].to(__UpperCamelCase ) , attention_mask=dct["""attention_mask"""].to(__UpperCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) UpperCamelCase_ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] UpperCamelCase_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert generated == expected_en
122
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} _A = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } _A = {'''vinai/bartpho-syllable''': 1_024} class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = monolingual_vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCamelCase_ = {} UpperCamelCase_ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: UpperCamelCase_ = cnt cnt += 1 with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCamelCase_ = line.strip().split()[0] UpperCamelCase_ = len(self.fairseq_tokens_to_ids ) if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: UpperCamelCase_ = len(self.fairseq_tokens_to_ids ) UpperCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None UpperCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = """""".join(__UpperCamelCase ).replace(__UpperCamelCase , """ """ ).strip() return out_string def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
122
1
"""simple docstring""" def lowercase_ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__UpperCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
359
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: # Initialise PyTorch model lowerCAmelCase__ : int = TaConfig.from_json_file(__UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ : Optional[int] = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
212
0
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __lowercase: Any = logging.get_logger(__name__) __lowercase: Union[str, Any] = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 't5' _lowerCamelCase : Optional[int] = ['past_key_values'] _lowerCamelCase : List[Any] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : str, a_ : str=3_2128, a_ : List[Any]=512, a_ : str=64, a_ : Union[str, Any]=2048, a_ : Optional[int]=6, a_ : Optional[Any]=None, a_ : Tuple=8, a_ : Tuple=32, a_ : Dict=128, a_ : Tuple=0.1, a_ : Any=1e-6, a_ : List[str]=1.0, a_ : str="relu", a_ : str=True, a_ : Union[str, Any]=True, a_ : List[str]=0, a_ : Union[str, Any]=1, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_kv UpperCamelCase__ = d_ff UpperCamelCase__ = num_layers UpperCamelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase__ = num_heads UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_factor UpperCamelCase__ = feed_forward_proj UpperCamelCase__ = use_cache UpperCamelCase__ = self.feed_forward_proj.split("-" ) UpperCamelCase__ = act_info[-1] UpperCamelCase__ = act_info[0] == "gated" if len(a_ ) > 1 and act_info[0] != "gated" or len(a_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase__ = "gelu_new" super().__init__( pad_token_id=a_, eos_token_id=a_, is_encoder_decoder=a_, **a_, ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCamelCase__ = "past_encoder_sequence + sequence" UpperCamelCase__ = {0: "batch"} UpperCamelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase__ = {0: "batch", 1: "decoder_sequence"} UpperCamelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_, direction="inputs" ) return common_inputs @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 13
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : NestedDataStructureLike[PathLike] ,lowercase__ : Optional[NamedSplit] = None ,lowercase__ : Optional[Features] = None ,lowercase__ : str = None ,lowercase__ : bool = False ,lowercase__ : bool = False ,lowercase__ : Optional[int] = None ,**lowercase__ : Optional[int] ,): super().__init__( lowercase__ ,split=lowercase__ ,features=lowercase__ ,cache_dir=lowercase__ ,keep_in_memory=lowercase__ ,streaming=lowercase__ ,num_proc=lowercase__ ,**lowercase__ ,) __lowercase = path_or_paths if isinstance(lowercase__ ,lowercase__ ) else {self.split: path_or_paths} __lowercase = Text( cache_dir=lowercase__ ,data_files=lowercase__ ,features=lowercase__ ,**lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): # Build iterable dataset if self.streaming: __lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=lowercase__ ,download_mode=lowercase__ ,verification_mode=lowercase__ ,base_path=lowercase__ ,num_proc=self.num_proc ,) __lowercase = self.builder.as_dataset( split=self.split ,verification_mode=lowercase__ ,in_memory=self.keep_in_memory ) return dataset
104
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): """simple docstring""" output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def _A ( A__ , A__ , A__ , A__ = False ): """simple docstring""" __lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __lowercase = '''cpu''' __lowercase = Path(A__ ) # VAE DECODER __lowercase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __lowercase = vae_decoder.config.latent_channels # forward only through the decoder part __lowercase = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
104
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = DiTPipeline _a : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _a : Tuple = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _a : str = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _a : List[str] = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> str: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
185
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __a ( UpperCAmelCase ): _a : Optional[int] = 'MCTCTFeatureExtractor' _a : int = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _UpperCAmelCase = kwargs.pop('raw_speech' ) else: _UpperCAmelCase = kwargs.pop('audio' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('sampling_rate' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _UpperCAmelCase = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings['input_ids'] return inputs def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('input_features' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('labels' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels['input_ids'] return input_features def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
185
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCamelCase__: List[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) UpperCamelCase__: str = parser.parse_args() UpperCamelCase__: Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase_ ( a__): def __init__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : str ) -> Dict: warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
354
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowercase ( a__ : list[list[int]] ) -> list[list[int]]: _UpperCamelCase = [] for i in range(len(a__ ) ): _UpperCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a__ ) return next_generation def lowercase ( a__ : list[list[int]] , a__ : int ) -> list[Image.Image]: _UpperCamelCase = [] for _ in range(a__ ): # Create output image _UpperCamelCase = Image.new('''RGB''' , (len(cells[0] ), len(a__ )) ) _UpperCamelCase = img.load() # Save cells to image for x in range(len(a__ ) ): for y in range(len(cells[0] ) ): _UpperCamelCase = 255 - cells[y][x] * 255 _UpperCamelCase = (colour, colour, colour) # Save image images.append(a__ ) _UpperCamelCase = new_generation(a__ ) return images if __name__ == "__main__": UpperCAmelCase = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
54
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) # TODO Update this UpperCamelCase__ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = 'esm' def __init__(self : List[str] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=7_6_8 , __UpperCAmelCase : List[str]=1_2 , __UpperCAmelCase : Any=1_2 , __UpperCAmelCase : List[str]=3_0_7_2 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : int=1_0_2_6 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : int="absolute" , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : str=False , __UpperCAmelCase : Dict=False , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , mask_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = emb_layer_norm_before UpperCAmelCase__ = token_dropout UpperCAmelCase__ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) UpperCAmelCase__ = EsmFoldConfig() elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = EsmFoldConfig(**__UpperCAmelCase ) UpperCAmelCase__ = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) UpperCAmelCase__ = get_default_vocab_list() else: UpperCAmelCase__ = vocab_list else: UpperCAmelCase__ = None UpperCAmelCase__ = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __UpperCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase__ = super().to_dict() if isinstance(self.esmfold_config , __UpperCAmelCase ): UpperCAmelCase__ = self.esmfold_config.to_dict() return output @dataclass class A : __UpperCAmelCase : str = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : float = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : int = 1_28 __UpperCAmelCase : "TrunkConfig" = None def lowercase_ (self : Optional[Any] ) -> List[Any]: """simple docstring""" if self.trunk is None: UpperCAmelCase__ = TrunkConfig() elif isinstance(self.trunk , __UpperCAmelCase ): UpperCAmelCase__ = TrunkConfig(**self.trunk ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = asdict(self ) UpperCAmelCase__ = self.trunk.to_dict() return output @dataclass class A : __UpperCAmelCase : int = 48 __UpperCAmelCase : int = 10_24 __UpperCAmelCase : int = 1_28 __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 32 __UpperCAmelCase : float = 0 __UpperCAmelCase : float = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : int = 4 __UpperCAmelCase : Optional[int] = 1_28 __UpperCAmelCase : "StructureModuleConfig" = None def lowercase_ (self : Optional[int] ) -> Dict: """simple docstring""" if self.structure_module is None: UpperCAmelCase__ = StructureModuleConfig() elif isinstance(self.structure_module , __UpperCAmelCase ): UpperCAmelCase__ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase__ = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase__ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = asdict(self ) UpperCAmelCase__ = self.structure_module.to_dict() return output @dataclass class A : __UpperCAmelCase : int = 3_84 __UpperCAmelCase : int = 1_28 __UpperCAmelCase : int = 16 __UpperCAmelCase : int = 1_28 __UpperCAmelCase : int = 12 __UpperCAmelCase : int = 4 __UpperCAmelCase : int = 8 __UpperCAmelCase : float = 0.1 __UpperCAmelCase : int = 8 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 2 __UpperCAmelCase : int = 7 __UpperCAmelCase : int = 10 __UpperCAmelCase : float = 1E-8 __UpperCAmelCase : float = 1E5 def lowercase_ (self : Optional[Any] ) -> str: """simple docstring""" return asdict(self ) def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
65
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # Construct model if gpta_config_file == "": __lowerCAmelCase: Optional[int] = GPTaConfig() else: __lowerCAmelCase: List[str] = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
217
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} _lowercase : Union[str, Any] = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } _lowercase : Any = { "abeja/gpt-neox-japanese-2.7b": 2_0_4_8, } def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : List[str] = json.loads(f.read() ) lowercase_ : Tuple = collections.OrderedDict() lowercase_ : str = collections.OrderedDict() lowercase_ : int = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : Optional[int] = f.readlines() lowercase_ : List[Any] = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : str = b lowercase_ : Any = idx for wd in b: lowercase_ : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|startoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , do_clean_text=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if not os.path.isfile(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) lowercase_ : Union[str, Any] = do_clean_text lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = load_vocab_and_emoji(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _snake_case ( self ): """simple docstring""" return len(self.raw_vocab ) def _snake_case ( self ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.subword_tokenizer.tokenize(__SCREAMING_SNAKE_CASE , clean=self.do_clean_text ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = ''''''.join(__SCREAMING_SNAKE_CASE ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: lowercase_ : Dict = input_ids[-self.model_max_length :] return input_ids def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Dict = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): lowercase_ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: lowercase_ : List[str] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : List[str] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowercase_ : Union[str, Any] = token_index writer.write(''','''.join(__SCREAMING_SNAKE_CASE ) + '''\n''' ) index += 1 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , __SCREAMING_SNAKE_CASE ) return vocab_file, emoji_file class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = vocab # same as swe lowercase_ : List[str] = ids_to_tokens # same as bpe lowercase_ : List[str] = emoji lowercase_ : Tuple = np.max([len(__SCREAMING_SNAKE_CASE ) for w in self.vocab.keys()] ) lowercase_ : int = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) lowercase_ : Optional[Any] = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) lowercase_ : Optional[Any] = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) lowercase_ : Any = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowercase_ : Optional[int] = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowercase_ : Dict = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) lowercase_ : Any = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowercase_ : str = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowercase_ : Any = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ): """simple docstring""" return len(self.ids_to_tokens ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = self.content_repattera.sub('''<URL>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = self.content_repattera.sub('''<EMAIL>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = self.content_repattera.sub('''<TEL>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : str = self.content_repattera.sub('''<DATE>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : str = self.content_repattera.sub('''<DATE>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = self.content_repattera.sub('''<PRICE>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowercase_ : str = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase_ : Optional[int] = text.replace(''' ''' , '''<SP>''' ) lowercase_ : Union[str, Any] = text.replace(''' ''' , '''<SP>''' ) lowercase_ : List[str] = text.replace('''\r\n''' , '''<BR>''' ) lowercase_ : str = text.replace('''\n''' , '''<BR>''' ) lowercase_ : List[str] = text.replace('''\r''' , '''<BR>''' ) lowercase_ : List[str] = text.replace('''\t''' , '''<TAB>''' ) lowercase_ : Any = text.replace('''—''' , '''ー''' ) lowercase_ : Optional[int] = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: lowercase_ : str = text.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if clean: lowercase_ : List[str] = self.clean_text(__SCREAMING_SNAKE_CASE ) def check_simbol(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = x.encode() if len(__SCREAMING_SNAKE_CASE ) == 1 and len(__SCREAMING_SNAKE_CASE ) == 2: lowercase_ : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = x.encode() if len(__SCREAMING_SNAKE_CASE ) == 1 and len(__SCREAMING_SNAKE_CASE ) == 3: lowercase_ : Optional[int] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False lowercase_ : List[str] = 0 lowercase_ : Optional[int] = [] while pos < len(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = min(len(__SCREAMING_SNAKE_CASE ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowercase_ : Tuple = [] # (token_id, token, pos) for e in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ): lowercase_ : List[str] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__SCREAMING_SNAKE_CASE ) > 2: lowercase_ : int = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__SCREAMING_SNAKE_CASE ) > 0: # the smallest token_id is adopted lowercase_ , lowercase_ , lowercase_ : str = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x[0] )[0] result.append(__SCREAMING_SNAKE_CASE ) lowercase_ : str = e else: lowercase_ : Optional[Any] = pos + 1 lowercase_ : Union[str, Any] = text[pos:end] if check_simbol(__SCREAMING_SNAKE_CASE ): result.append('''<KIGOU>''' ) elif checkuae(__SCREAMING_SNAKE_CASE ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) lowercase_ : int = end return result def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="\n" ): """simple docstring""" lowercase_ : str = [] lowercase_ : Any = [] lowercase_ : str = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__SCREAMING_SNAKE_CASE ) > 0: words.append(bytearray(__SCREAMING_SNAKE_CASE ).decode('''utf-8''' , errors='''replace''' ) ) lowercase_ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__SCREAMING_SNAKE_CASE ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: words.append(bytearray(__SCREAMING_SNAKE_CASE ).decode('''utf-8''' , errors='''replace''' ) ) lowercase_ : List[Any] = ''''''.join(__SCREAMING_SNAKE_CASE ) return text
264
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Tuple = prime_factors(__SCREAMING_SNAKE_CASE ) if is_square_free(__SCREAMING_SNAKE_CASE ): return -1 if len(__SCREAMING_SNAKE_CASE ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
264
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __snake_case ( a ): UpperCAmelCase__ : torch.FloatTensor class __snake_case ( a , a ): @register_to_config def __init__( self : List[str] , _snake_case : int = 65536 , _snake_case : Optional[int] = None , _snake_case : int = 2 , _snake_case : int = 2 , _snake_case : int = 0 , _snake_case : str = "fourier" , _snake_case : bool = True , _snake_case : bool = False , _snake_case : float = 0.0 , _snake_case : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case : Tuple[str] = "UNetMidBlock1D" , _snake_case : str = None , _snake_case : Tuple[int] = (32, 32, 64) , _snake_case : str = None , _snake_case : int = 8 , _snake_case : int = 1 , _snake_case : bool = False , ): """simple docstring""" super().__init__() UpperCAmelCase_ = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ = block_out_channels[0] * 4 UpperCAmelCase_ = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ = nn.ModuleList([]) UpperCAmelCase_ = None UpperCAmelCase_ = nn.ModuleList([]) UpperCAmelCase_ = None # down UpperCAmelCase_ = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ = i == len(_snake_case) - 1 UpperCAmelCase_ = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ = list(reversed(_snake_case)) UpperCAmelCase_ = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ = out_channels else: UpperCAmelCase_ = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ = output_channel UpperCAmelCase_ = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ = i == len(_snake_case) - 1 UpperCAmelCase_ = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ = output_channel # out UpperCAmelCase_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase ( self : str , _snake_case : torch.FloatTensor , _snake_case : Union[torch.Tensor, float, int] , _snake_case : bool = True , ): """simple docstring""" UpperCAmelCase_ = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps[None].to(sample.device) UpperCAmelCase_ = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ = self.time_mlp(_snake_case) else: UpperCAmelCase_ = timestep_embed[..., None] UpperCAmelCase_ = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ = down_block_res_samples[-1:] UpperCAmelCase_ = down_block_res_samples[:-1] UpperCAmelCase_ = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
51
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ : int = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["input_features", "attention_mask"] def __init__( self , UpperCamelCase=80 , UpperCamelCase=1_6000 , UpperCamelCase=80 , UpperCamelCase=0.0 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__(feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = num_mel_bins lowerCamelCase_ = do_ceptral_normalize lowerCamelCase_ = normalize_means lowerCamelCase_ = normalize_vars lowerCamelCase_ = True def snake_case ( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase_ = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) lowerCamelCase_ = ta_kaldi.fbank(UpperCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 0.0 , ): """simple docstring""" # make sure we normalize float32 arrays if normalize_means: lowerCamelCase_ = x[:input_length].mean(axis=0 ) lowerCamelCase_ = np.subtract(UpperCamelCase , UpperCamelCase ) if normalize_vars: lowerCamelCase_ = x[:input_length].std(axis=0 ) lowerCamelCase_ = np.divide(UpperCamelCase , UpperCamelCase ) if input_length < x.shape[0]: lowerCamelCase_ = padding_value # make sure array is in float32 lowerCamelCase_ = x.astype(np.floataa ) return x def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase , UpperCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase , UpperCamelCase ) ] def __call__( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [raw_speech] # extract fbank features lowerCamelCase_ = [self._extract_fbank_features(UpperCamelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase_ = BatchFeature({"input_features": features} ) lowerCamelCase_ = self.pad( UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCamelCase ): lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase_ = ( np.array(UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase , max_length=UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCamelCase ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCamelCase ) return padded_inputs
55
0
from math import sqrt def _lowercase ( _UpperCAmelCase = 1_00_00_00 ) -> int: lowerCamelCase =0 lowerCamelCase =0 lowerCamelCase =42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_UpperCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
262
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) UpperCAmelCase__ : Any ={ '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): __A = """vit_msn""" def __init__( self , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-06 , UpperCAmelCase_=224 , UpperCAmelCase_=16 , UpperCAmelCase_=3 , UpperCAmelCase_=True , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ ) lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =image_size lowerCamelCase =patch_size lowerCamelCase =num_channels lowerCamelCase =qkv_bias
262
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=False ) -> Optional[int]: lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): lowerCAmelCase = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): lowerCAmelCase = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(UpperCamelCase_ )-1}" ) if "norm" in key: lowerCAmelCase = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] lowerCAmelCase = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(UpperCamelCase_ )-1}" ) if "layer_norm1" in key: lowerCAmelCase = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase = key.replace(f"block{idx}" , f"block.{int(UpperCamelCase_ )-1}" ) if "attn.q" in key: lowerCAmelCase = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase = key.replace(f"linear_c{idx}" , f"linear_c.{int(UpperCamelCase_ )-1}" ) if key.startswith('''head''' ): lowerCAmelCase = key.replace('''head''' , '''classifier''' ) lowerCAmelCase = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Dict: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCAmelCase = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[ config.hidden_sizes[i] : ] def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = SegformerConfig() lowerCAmelCase = False # set attributes based on model_name lowerCAmelCase = '''huggingface/label-files''' if "segformer" in model_name: lowerCAmelCase = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: lowerCAmelCase = 1_5_0 lowerCAmelCase = '''ade20k-id2label.json''' lowerCAmelCase = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: lowerCAmelCase = 1_9 lowerCAmelCase = '''cityscapes-id2label.json''' lowerCAmelCase = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(f"Model {model_name} not supported" ) elif "mit" in model_name: lowerCAmelCase = True lowerCAmelCase = model_name[4:6] lowerCAmelCase = 1_0_0_0 lowerCAmelCase = '''imagenet-1k-id2label.json''' lowerCAmelCase = (1, 1_0_0_0) else: raise ValueError(f"Model {model_name} not supported" ) # set config attributes lowerCAmelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 2_5_6 elif size == "b2": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 4, 1_8, 3] elif size == "b4": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 8, 2_7, 3] elif size == "b5": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 6, 4_0, 3] else: raise ValueError(f"Size {size} not supported" ) # load image processor (only resize + normalize) lowerCAmelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict if encoder_only: lowerCAmelCase = torch.load(UpperCamelCase_ , map_location=torch.device('''cpu''' ) ) else: lowerCAmelCase = torch.load(UpperCamelCase_ , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys lowerCAmelCase = rename_keys(UpperCamelCase_ , encoder_only=UpperCamelCase_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase_ , UpperCamelCase_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase = False lowerCAmelCase = SegformerForImageClassification(UpperCamelCase_ ) else: lowerCAmelCase = SegformerForSemanticSegmentation(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # forward pass lowerCAmelCase = model(UpperCamelCase_ ) lowerCAmelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: lowerCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1E-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
338
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''ibert''' def __init__( self , lowerCAmelCase_=3_0522 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=False , lowerCAmelCase_="none" , **lowerCAmelCase_ , ) -> Tuple: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = quant_mode _snake_case = force_dequant class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
360
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : List[Any] , snake_case__ : Union[str, Any]=False , snake_case__ : Union[str, Any]=False , snake_case__ : List[str]=False ): A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _snake_case ( snake_case__ : str , snake_case__ : List[str] ): for i in range(config.num_hidden_layers ): A = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' ) A = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[ : config.hidden_size, : ] A = in_proj_bias[: config.hidden_size] A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A = in_proj_weight[ -config.hidden_size :, : ] A = in_proj_bias[-config.hidden_size :] def _snake_case ( snake_case__ : Optional[int] ): A = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] ): A = dct.pop(snake_case__ ) A = val @torch.no_grad() def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : str ): A = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=snake_case__ ) A = False A = False A = False A = False if "vqa" in checkpoint_url: A = True A = 3129 A = 'huggingface/label-files' A = 'vqa2-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = ViltForQuestionAnswering(snake_case__ ) elif "nlvr" in checkpoint_url: A = True A = 2 A = {0: 'False', 1: 'True'} A = {v: k for k, v in config.idalabel.items()} A = 3 A = ViltForImagesAndTextClassification(snake_case__ ) elif "irtr" in checkpoint_url: A = True A = ViltForImageAndTextRetrieval(snake_case__ ) elif "mlm_itm" in checkpoint_url: A = True A = ViltForMaskedLM(snake_case__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys A = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )['state_dict'] A = create_rename_keys(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ ) if mlm_model or irtr_model: A = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(snake_case__ ) # Define processor A = ViltImageProcessor(size=384 ) A = BertTokenizer.from_pretrained('bert-base-uncased' ) A = ViltProcessor(snake_case__ , snake_case__ ) # Forward pass on example inputs (image + text) if nlvr_model: A = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=snake_case__ ).raw ) A = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=snake_case__ ).raw ) A = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) A = processor(snake_case__ , snake_case__ , return_tensors='pt' ) A = processor(snake_case__ , snake_case__ , return_tensors='pt' ) A = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=snake_case__ ).raw ) if mlm_model: A = 'a bunch of [MASK] laying on a [MASK].' else: A = 'How many cats are there?' A = processor(snake_case__ , snake_case__ , return_tensors='pt' ) A = model(**snake_case__ ) # Verify outputs if mlm_model: A = torch.Size([1, 11, 3_0522] ) A = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , snake_case__ , atol=1e-4 ) # verify masked token prediction equals "cats" A = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A = torch.Size([1, 3129] ) A = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , snake_case__ , atol=1e-4 ) # verify vqa prediction equals "2" A = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A = torch.Size([1, 2] ) A = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
74
"""simple docstring""" import math def a_ ( lowerCamelCase , lowerCamelCase ): if ( not isinstance(lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def a_ ( lowerCamelCase , lowerCamelCase ): if ( not isinstance(lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) __SCREAMING_SNAKE_CASE : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case_ = model_type_to_module_name(_SCREAMING_SNAKE_CASE ) snake_case_ = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_SCREAMING_SNAKE_CASE , """__name__""" , _SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case_ = importlib.import_module("""transformers""" ) if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return None def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: snake_case_ = get_file_from_repo( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as reader: return json.load(_SCREAMING_SNAKE_CASE ) class __A : '''simple docstring''' def __init__( self : str ) ->List[Any]: """simple docstring""" raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def lowerCAmelCase ( cls : Any , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" snake_case_ = kwargs.pop("""config""" , UpperCAmelCase_ ) snake_case_ = kwargs.pop("""trust_remote_code""" , UpperCAmelCase_ ) snake_case_ = True snake_case_ , snake_case_ = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = config_dict.get("""feature_extractor_type""" , UpperCAmelCase_ ) snake_case_ = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): snake_case_ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # It could be in `config.feature_extractor_type`` snake_case_ = getattr(UpperCAmelCase_ , """feature_extractor_type""" , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: snake_case_ = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: snake_case_ = feature_extractor_class_from_name(UpperCAmelCase_ ) snake_case_ = feature_extractor_auto_map is not None snake_case_ = feature_extractor_class is not None or type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING snake_case_ = resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if has_remote_code and trust_remote_code: snake_case_ = get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = kwargs.pop("""code_revision""" , UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING: snake_case_ = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase_ )] return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) ->List[Any]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_ )
233
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = CycleDiffusionPipeline __lowercase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __lowercase: str = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowercase: Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""}) __lowercase: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowercase: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ = CLIPTextModel(UpperCAmelCase_ ) snake_case_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]=0 ) ->str: """simple docstring""" snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = image / 2 + 0.5 if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = CycleDiffusionPipeline(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ ) snake_case_ = pipe(**UpperCAmelCase_ ) snake_case_ = output.images snake_case_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case_ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase_ , """half""" ): snake_case_ = module.half() snake_case_ = CycleDiffusionPipeline(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ ) snake_case_ = pipe(**UpperCAmelCase_ ) snake_case_ = output.images snake_case_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case_ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = """CompVis/stable-diffusion-v1-4""" snake_case_ = DDIMScheduler.from_pretrained(UpperCAmelCase_ , subfolder="""scheduler""" ) snake_case_ = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() snake_case_ = """A black colored car""" snake_case_ = """A blue colored car""" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , source_prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase_ , output_type="""np""" , ) snake_case_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = """CompVis/stable-diffusion-v1-4""" snake_case_ = DDIMScheduler.from_pretrained(UpperCAmelCase_ , subfolder="""scheduler""" ) snake_case_ = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() snake_case_ = """A black colored car""" snake_case_ = """A blue colored car""" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , source_prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase_ , output_type="""np""" , ) snake_case_ = output.images assert np.abs(image - expected_image ).max() < 2E-2
233
1
from ...processing_utils import ProcessorMixin class _lowerCamelCase( _a ): lowercase_ : List[Any] = """WhisperFeatureExtractor""" lowercase_ : List[str] = """WhisperTokenizer""" def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.feature_extractor _lowercase : int = False def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=True) -> List[str]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase, language=lowerCamelCase, no_timestamps=lowerCamelCase) def __call__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase, **lowerCamelCase) _lowercase : Any = kwargs.pop('audio', lowerCamelCase) _lowercase : Union[str, Any] = kwargs.pop('sampling_rate', lowerCamelCase) _lowercase : List[str] = kwargs.pop('text', lowerCamelCase) if len(lowerCamelCase) > 0: _lowercase : int = args[0] _lowercase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: _lowercase : Dict = self.feature_extractor(lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase) if text is not None: _lowercase : Dict = self.tokenizer(lowerCamelCase, **lowerCamelCase) if text is None: return inputs elif audio is None: return encodings else: _lowercase : Union[str, Any] = encodings['input_ids'] return inputs def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase="np") -> str: """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCamelCase, return_tensors=lowerCamelCase)
21
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[int] ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , ): SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase_ = (LlamaForCausalLM,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'single_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'multi_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self : int ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowerCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_lowerCAmelCase ) # greedy generation outputs SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
225
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = value_function UpperCAmelCase : Dict = unet UpperCAmelCase : Union[str, Any] = scheduler UpperCAmelCase : List[Any] = env UpperCAmelCase : int = env.get_dataset() UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: UpperCAmelCase : Dict = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : int = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[Any] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : Any = env.observation_space.shape[0] UpperCAmelCase : str = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if type(_SCREAMING_SNAKE_CASE ) is dict: return {k: self.to_torch(_SCREAMING_SNAKE_CASE ) for k, v in x_in.items()} elif torch.is_tensor(_SCREAMING_SNAKE_CASE ): return x_in.to(self.unet.device ) return torch.tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' for key, val in cond.items(): UpperCAmelCase : Optional[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = x.shape[0] UpperCAmelCase : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Tuple = torch.full((batch_size,) , _SCREAMING_SNAKE_CASE , device=self.unet.device , dtype=torch.long ) for _ in range(_SCREAMING_SNAKE_CASE ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Dict = self.value_function(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : List[Any] = self.scheduler._get_variance(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : str = 0 UpperCAmelCase : Any = x.detach() UpperCAmelCase : int = x + scale * grad UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predict_epsilon=_SCREAMING_SNAKE_CASE )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Dict = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : int = self.to_torch(_SCREAMING_SNAKE_CASE ) return x, y def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.normalize(_SCREAMING_SNAKE_CASE , """observations""" ) UpperCAmelCase : int = obs[None].repeat(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase : Dict = {0: self.to_torch(_SCREAMING_SNAKE_CASE )} UpperCAmelCase : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : str = randn_tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : str = self.to_torch(_SCREAMING_SNAKE_CASE ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Any = self.run_diffusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # sort output trajectories by value UpperCAmelCase : List[str] = y.argsort(0 , descending=_SCREAMING_SNAKE_CASE ).squeeze() UpperCAmelCase : Any = x[sorted_idx] UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] UpperCAmelCase : int = actions.detach().cpu().numpy() UpperCAmelCase : List[str] = self.de_normalize(_SCREAMING_SNAKE_CASE , key="""actions""" ) # select the action with the highest value if y is not None: UpperCAmelCase : Any = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Optional[int] = np.random.randint(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = denorm_actions[selected_index, 0] return denorm_actions
76
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=sys.maxsize ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = """bilinear""" UpperCAmelCase : Tuple = max_size UpperCAmelCase : Optional[Any] = short_edge_length def __call__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] = [] for img in imgs: UpperCAmelCase , UpperCAmelCase : List[Any] = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase : List[str] = size * 1.0 / min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if h < w: UpperCAmelCase , UpperCAmelCase : Dict = size, scale * w else: UpperCAmelCase , UpperCAmelCase : Optional[int] = scale * h, size if max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > self.max_size: UpperCAmelCase : List[str] = self.max_size * 1.0 / max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = newh * scale UpperCAmelCase : int = neww * scale UpperCAmelCase : Tuple = int(neww + 0.5 ) UpperCAmelCase : Optional[int] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase : str = Image.fromarray(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase : Union[str, Any] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=_SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(_SCREAMING_SNAKE_CASE ) return img_augs class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase : List[Any] = cfg.INPUT.FORMAT UpperCAmelCase : Dict = cfg.SIZE_DIVISIBILITY UpperCAmelCase : Dict = cfg.PAD_VALUE UpperCAmelCase : Tuple = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase : Any = cfg.MODEL.DEVICE UpperCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase : List[str] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase : Optional[Any] = lambda _SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] = tuple(max(_SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase : List[Any] = [im.shape[-2:] for im in images] UpperCAmelCase : Any = [ nn.functional.pad( _SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return torch.stack(_SCREAMING_SNAKE_CASE ), torch.tensor(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = [images] if single_image: assert len(_SCREAMING_SNAKE_CASE ) == 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_SCREAMING_SNAKE_CASE , images.pop(_SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(_SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase : str = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase : int = self.aug(_SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase : Any = [self.normalizer(_SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.pad(_SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase : int = torch.true_divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Dict ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Tuple[int, int] ): assert torch.isfinite(UpperCamelCase ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase , UpperCAmelCase : str = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase )
76
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ ( __snake_case ) -> List[Any]: """simple docstring""" _lowercase =FileLock(str(tmpdir / '''foo.lock''' ) ) _lowercase =FileLock(str(tmpdir / '''foo.lock''' ) ) _lowercase =0.01 with locka.acquire(): with pytest.raises(__snake_case ): _lowercase =time.time() locka.acquire(__snake_case ) assert time.time() - _start > timeout def UpperCAmelCase_ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase ='''a''' * 1000 + '''.lock''' _lowercase =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__snake_case ) assert len(os.path.basename(locka._lock_file ) ) <= 255 _lowercase =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__snake_case ): locka.acquire(0 )
5
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A__: Optional[int] = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } A__: int = logging.WARNING def lowerCAmelCase_ ( ): UpperCamelCase__: Optional[int] = os.getenv("DATASETS_VERBOSITY" ,A_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys()) }") return _default_log_level def lowerCAmelCase_ ( ): return __name__.split(".")[0] def lowerCAmelCase_ ( ): return logging.getLogger(_get_library_name()) def lowerCAmelCase_ ( ): # Apply our default configuration to the library root logger. UpperCamelCase__: Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def lowerCAmelCase_ ( ): UpperCamelCase__: Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def lowerCAmelCase_ ( A_ = None): if name is None: UpperCamelCase__: Optional[Any] = _get_library_name() return logging.getLogger(A_) def lowerCAmelCase_ ( ): return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( A_): _get_library_root_logger().setLevel(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): UpperCamelCase__: List[Any] = False def lowerCAmelCase_ ( ): UpperCamelCase__: List[str] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _a : """simple docstring""" def __init__( self: int , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ): # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase__: int = args[0] if args else None def __iter__( self: Optional[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self: Dict , __lowerCamelCase: Any ): '''simple docstring''' def empty_fn(*__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str ): '''simple docstring''' return self def __exit__( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' return A__: Tuple = True class _a : """simple docstring""" def __call__( self: Any , *__lowerCamelCase: List[str] , __lowerCamelCase: List[Any]=False , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] , *__lowerCamelCase: List[str] , **__lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__: Optional[Any] = _tqdm_cls() def lowerCAmelCase_ ( ): global _tqdm_active return bool(_tqdm_active) def lowerCAmelCase_ ( ): global _tqdm_active UpperCamelCase__: int = True def lowerCAmelCase_ ( ): global _tqdm_active UpperCamelCase__: str = False
149
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __magic_name__ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __magic_name__ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __magic_name__ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
'''simple docstring''' class _lowercase : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str = "" , SCREAMING_SNAKE_CASE__ : bool = False ) -> None: # Mapping from the first character of the prefix of the node __lowerCAmelCase = {} # A node will be a leaf if the tree contains its word __lowerCAmelCase = is_leaf __lowerCAmelCase = prefix def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> tuple[str, str, str]: __lowerCAmelCase = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : list[str] ) -> None: for word in words: self.insert(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __lowerCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowerCAmelCase = RadixNode(prefix=SCREAMING_SNAKE_CASE__ , is_leaf=SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = self.nodes[word[0]] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowerCAmelCase = remaining_prefix __lowerCAmelCase = self.nodes[matching_string[0]] __lowerCAmelCase = RadixNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = aux_node if remaining_word == "": __lowerCAmelCase = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> bool: __lowerCAmelCase = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> bool: __lowerCAmelCase = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __lowerCAmelCase = list(self.nodes.values() )[0] __lowerCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix __lowerCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __lowerCAmelCase = False # If there is 1 edge, we merge it with its child else: __lowerCAmelCase = list(incoming_node.nodes.values() )[0] __lowerCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowerCAmelCase = merging_node.nodes return True def a ( self : int , SCREAMING_SNAKE_CASE__ : int = 0 ) -> None: if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase_ ( ) -> bool: '''simple docstring''' __lowerCAmelCase = """banana bananas bandana band apple all beast""".split() __lowerCAmelCase = RadixNode() root.insert_many(snake_case_ ) assert all(root.find(snake_case_ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def UpperCamelCase_ ( ) -> None: '''simple docstring''' assert test_trie() def UpperCamelCase_ ( ) -> None: '''simple docstring''' __lowerCAmelCase = RadixNode() __lowerCAmelCase = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(snake_case_ ) print("""Words:""" , snake_case_ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
229
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class _lowercase ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = 32 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False _SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) _SCREAMING_SNAKE_CASE : int = 2 _SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 _SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None _SCREAMING_SNAKE_CASE : int = 1280 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = False def a ( self : Dict , SCREAMING_SNAKE_CASE__ : jax.random.KeyArray ) -> FrozenDict: # init input tensors __lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) __lowerCAmelCase = jnp.zeros(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) __lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) __lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )["params"] def a ( self : int ) -> List[str]: __lowerCAmelCase = self.block_out_channels __lowerCAmelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowerCAmelCase = self.num_attention_heads or self.attention_head_dim # input __lowerCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowerCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowerCAmelCase = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) __lowerCAmelCase = self.only_cross_attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down __lowerCAmelCase = [] __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowerCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowerCAmelCase = FlaxDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = down_blocks # mid __lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __lowerCAmelCase = [] __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = reversed_block_out_channels[min(i + 1 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] __lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": __lowerCAmelCase = FlaxCrossAttnUpBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowerCAmelCase = FlaxUpBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = output_channel __lowerCAmelCase = up_blocks # out __lowerCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __lowerCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ): __lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps.astype(dtype=jnp.floataa ) __lowerCAmelCase = jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCAmelCase = self.time_proj(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.time_embedding(SCREAMING_SNAKE_CASE__ ) # 2. pre-process __lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) __lowerCAmelCase = self.conv_in(SCREAMING_SNAKE_CASE__ ) # 3. down __lowerCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) else: __lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __lowerCAmelCase = () for down_block_res_sample, down_block_additional_residual in zip( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __lowerCAmelCase = new_down_block_res_samples # 4. mid __lowerCAmelCase = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __lowerCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :] __lowerCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = up_block( SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train , ) else: __lowerCAmelCase = up_block(SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train ) # 6. post-process __lowerCAmelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.silu(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.conv_out(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=SCREAMING_SNAKE_CASE__ )
229
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case_ ( __lowercase ): A_ = 'Speech2TextFeatureExtractor' A_ = 'Speech2TextTokenizer' def __init__( self : List[str] , _snake_case : Dict , _snake_case : Tuple )->Optional[Any]: '''simple docstring''' super().__init__(_snake_case , _snake_case ) __lowerCAmelCase : str = self.feature_extractor __lowerCAmelCase : Union[str, Any] = False def __call__( self : Dict , *_snake_case : List[Any] , **_snake_case : Any )->Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __lowerCAmelCase : Union[str, Any] = kwargs.pop("""raw_speech""" ) else: __lowerCAmelCase : int = kwargs.pop("""audio""" , _snake_case ) __lowerCAmelCase : List[Any] = kwargs.pop("""sampling_rate""" , _snake_case ) __lowerCAmelCase : Union[str, Any] = kwargs.pop("""text""" , _snake_case ) if len(_snake_case ) > 0: __lowerCAmelCase : Optional[Any] = args[0] __lowerCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __lowerCAmelCase : Dict = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if text is not None: __lowerCAmelCase : Union[str, Any] = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif audio is None: return encodings else: __lowerCAmelCase : Tuple = encodings["""input_ids"""] return inputs def UpperCAmelCase__ ( self : Union[str, Any] , *_snake_case : str , **_snake_case : str )->List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Tuple , *_snake_case : Tuple , **_snake_case : Union[str, Any] )->Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def UpperCAmelCase__ ( self : List[str] )->int: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __lowerCAmelCase : str = True __lowerCAmelCase : List[Any] = self.tokenizer yield __lowerCAmelCase : Any = self.feature_extractor __lowerCAmelCase : Tuple = False
232
_UpperCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _UpperCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :dict[int, list[int]] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[bool] ) -> list[int]: __lowerCAmelCase : str = True __lowerCAmelCase : str = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) order.append(SCREAMING_SNAKE_CASE ) return order def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :dict[int, list[int]] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[bool] ) -> list[int]: __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return component def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :dict[int, list[int]] ) -> list[list[int]]: __lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) * [False] __lowerCAmelCase : dict[int, list[int]] = {vert: [] for vert in range(len(SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = [] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE ) * [False] for i in range(len(SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : Optional[int] = order[len(SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: __lowerCAmelCase : Any = find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) components_list.append(SCREAMING_SNAKE_CASE ) return components_list
232
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''detr''' __lowercase : Any = ['''past_key_values'''] __lowercase : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=3 , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=8 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1.0 , lowerCAmelCase__=False , lowerCAmelCase__="sine" , lowerCAmelCase__="resnet50" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , **lowerCAmelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""") if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""") __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""]) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = backbone_config.get("""model_type""") __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCAmelCase__) # set timm attributes to None __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None, None, None __SCREAMING_SNAKE_CASE = use_timm_backbone __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = backbone __SCREAMING_SNAKE_CASE = use_pretrained_backbone __SCREAMING_SNAKE_CASE = dilation # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): return self.encoder_attention_heads @property def snake_case_ ( self): return self.d_model @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): return cls(backbone_config=lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : List[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ]) @property def snake_case_ ( self): return 1E-5 @property def snake_case_ ( self): return 1_2
100
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Tuple , a_ : str=None ) -> Union[str, Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __SCREAMING_SNAKE_CASE :Dict = nn.Parameter(a_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __SCREAMING_SNAKE_CASE :Optional[int] = nn.Parameter(a_ ) def __lowerCamelCase ( a_ : Dict , a_ : str , a_ : Optional[int] ) -> Any: # set torch weights for 1-to-1 comparison __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.output.dense , torch.tensor(a_ ).view(-1 , a_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( a_ : List[Any] , a_ : Dict , a_ : List[str] ) -> Union[str, Any]: # set torch weights for 1-to-1 comparison __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE :Any = np.asarray(weights[2] ) __SCREAMING_SNAKE_CASE :Dict = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.output.dense , torch.tensor(a_ ).view(-1 , a_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( a_ : Any , a_ : List[str] , a_ : Optional[int] ) -> Union[str, Any]: # layernorm 1 __SCREAMING_SNAKE_CASE :Any = weights[0][0][0] __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(layer_norm_a[0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # lsh weights + output __SCREAMING_SNAKE_CASE :List[Any] = weights[0][1] if len(a_ ) < 4: set_layer_weights_in_torch_lsh(a_ , torch_block.attention , a_ ) else: set_layer_weights_in_torch_local(a_ , torch_block.attention , a_ ) # intermediate weighs __SCREAMING_SNAKE_CASE :List[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(a_ ) == 4: __SCREAMING_SNAKE_CASE :List[str] = intermediate_weights[2] # layernorm 2 __SCREAMING_SNAKE_CASE :Tuple = np.asarray(intermediate_weights[0][0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # intermediate dense __SCREAMING_SNAKE_CASE :int = np.asarray(intermediate_weights[1][0] ) __SCREAMING_SNAKE_CASE :int = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) # intermediate out __SCREAMING_SNAKE_CASE :str = np.asarray(intermediate_weights[4][0] ) __SCREAMING_SNAKE_CASE :str = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) def __lowerCamelCase ( a_ : List[str] , a_ : str , a_ : List[Any] ) -> Optional[Any]: # reformer model __SCREAMING_SNAKE_CASE :Dict = torch_model.reformer # word embeds __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a_ ) , ) if isinstance(weights[3] , a_ ): __SCREAMING_SNAKE_CASE :List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __SCREAMING_SNAKE_CASE :List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __SCREAMING_SNAKE_CASE :str = nn.Parameter(torch.tensor(a_ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( a_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __SCREAMING_SNAKE_CASE :Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a_ , a_ , a_ ) # output layer norm __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[7][0] ) __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # output embeddings __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[9][0] ) __SCREAMING_SNAKE_CASE :str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) def __lowerCamelCase ( a_ : Any , a_ : Dict , a_ : Dict ) -> Tuple: # Initialise PyTorch model __SCREAMING_SNAKE_CASE :List[str] = ReformerConfig.from_json_file(a_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE :List[Any] = ReformerModelWithLMHead(a_ ) with open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Any = pickle.load(a_ )['''weights'''] set_model_weights_in_torch(a_ , a_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
191
0
from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : List[Any] , lowercase_ : List[Any]=None , lowercase_ : str=2048) -> Dict: """simple docstring""" _UpperCamelCase = config.__dict__ _UpperCamelCase = modal_hidden_size if num_labels: _UpperCamelCase = num_labels
63
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase__ = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase__ = {F"funnel-transformer/{name}": 512 for name in _model_names} lowerCamelCase__ = {F"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_INIT_CONFIGURATION __A = FunnelTokenizer __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = 2 def __init__( self : Tuple , lowercase_ : Any=None , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : List[str]="<unk>" , lowercase_ : List[Any]="<sep>" , lowercase_ : int="<pad>" , lowercase_ : Dict="<cls>" , lowercase_ : int="<mask>" , lowercase_ : Any="<s>" , lowercase_ : Tuple="</s>" , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : str=None , lowercase_ : Dict="##" , **lowercase_ : Optional[int] , ) -> Dict: """simple docstring""" super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , clean_text=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , wordpieces_prefix=lowercase_ , **lowercase_ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , lowercase_) != do_lower_case or normalizer_state.get("strip_accents" , lowercase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase_) != tokenize_chinese_chars ): _UpperCamelCase = getattr(lowercase_ , normalizer_state.pop("type")) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**lowercase_) _UpperCamelCase = do_lower_case def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=None) -> str: """simple docstring""" _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCamelCase = self._tokenizer.model.save(lowercase_ , name=lowercase_) return tuple(lowercase_)
63
1
def _a ( a :int , a :int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def _a ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
0
from __future__ import annotations import time import numpy as np UpperCAmelCase__ = [8, 5, 9, 7] UpperCAmelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None: """simple docstring""" a = claim_vector a = allocated_resources_table a = maximum_claim_table def __lowerCAmelCase ( self : Any ) ->list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCAmelCase ( self : Optional[int] ) ->list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]: """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None: """simple docstring""" a = self.__need() a = self.__allocated_resources_table a = self.__available_resources() a = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: a = False for each_need in need_list: a = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: a = False break if execution: a = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: a = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack a = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowerCAmelCase__ = False lowerCAmelCase__ = False def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return TrainCommand(lowerCamelCase__ ) class snake_case__(_UpperCamelCase ): """simple docstring""" @staticmethod def snake_case ( SCREAMING_SNAKE_CASE : ArgumentParser ): lowercase__ : Optional[int] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=SCREAMING_SNAKE_CASE , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=SCREAMING_SNAKE_CASE , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=SCREAMING_SNAKE_CASE , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=SCREAMING_SNAKE_CASE , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=SCREAMING_SNAKE_CASE , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=SCREAMING_SNAKE_CASE , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=SCREAMING_SNAKE_CASE , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=SCREAMING_SNAKE_CASE , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=SCREAMING_SNAKE_CASE , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=SCREAMING_SNAKE_CASE , default=1E-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE ) def __init__( self : int , SCREAMING_SNAKE_CASE : Namespace ): lowercase__ : int = logging.get_logger("transformers-cli/training" ) lowercase__ : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = args.output lowercase__ : Union[str, Any] = args.column_label lowercase__ : Optional[int] = args.column_text lowercase__ : Optional[int] = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": lowercase__ : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) lowercase__ : List[str] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase__ : Union[str, Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) lowercase__ : Optional[int] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase__ : Dict = args.validation_split lowercase__ : List[str] = args.train_batch_size lowercase__ : Any = args.valid_batch_size lowercase__ : Optional[int] = args.learning_rate lowercase__ : int = args.adam_epsilon def snake_case ( self : Dict ): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case ( self : Union[str, Any] ): raise NotImplementedError def snake_case ( self : Union[str, Any] ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
355
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase__ = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{j}.''' lowerCAmelCase__ = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : int = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = v lowercase__ : Union[str, Any] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase__ = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{i}.''' lowerCAmelCase__ = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[int] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = v lowercase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Optional[int] = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowercase__ : Dict = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = {} lowercase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowercase__ : int = k[: -len(".q_proj.weight" )] lowercase__ : Optional[Any] = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowercase__ : Dict = [None, None, None] lowercase__ : Any = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowercase__ : Optional[int] = k[: -len(".q_proj.bias" )] lowercase__ : Any = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowercase__ : str = [None, None, None] lowercase__ : str = v continue lowercase__ : Union[str, Any] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : List[Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : str = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Any = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : List[str] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Tuple = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
121
0
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( lowerCAmelCase_ = "https://www.worldometers.info/coronavirus" )-> dict: '''simple docstring''' _UpperCAmelCase : str = BeautifulSoup(requests.get(lowerCAmelCase_ ).text , """html.parser""" ) _UpperCAmelCase : List[str] = soup.findAll("""h1""" ) _UpperCAmelCase : List[Any] = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCAmelCase_ , lowerCAmelCase_ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
215
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = """laion/clap-htsat-unfused""" _UpperCAmelCase : int = tempfile.mkdtemp() def _snake_case ( self ,**a_ ) -> str: return RobertaTokenizer.from_pretrained(self.checkpoint ,**a_ ) def _snake_case ( self ,**a_ ) -> Tuple: return ClapFeatureExtractor.from_pretrained(self.checkpoint ,**a_ ) def _snake_case ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : int = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,a_ ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _UpperCAmelCase : List[Any] = self.get_feature_extractor(do_normalize=a_ ,padding_value=1.0 ) _UpperCAmelCase : Optional[Any] = ClapProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=a_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,a_ ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : str = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) _UpperCAmelCase : Tuple = floats_list((3, 1_000) ) _UpperCAmelCase : int = feature_extractor(a_ ,return_tensors="""np""" ) _UpperCAmelCase : Union[str, Any] = processor(audios=a_ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Optional[int] = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) _UpperCAmelCase : Union[str, Any] = """This is a test string""" _UpperCAmelCase : Optional[Any] = processor(text=a_ ) _UpperCAmelCase : Any = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Any = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) _UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : Dict = processor.batch_decode(a_ ) _UpperCAmelCase : Any = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[str] = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Dict = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) self.assertListEqual( processor.model_input_names[2:] ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,)
215
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def SCREAMING_SNAKE_CASE_ ( *lowercase_ : List[str] , **lowercase_ : List[Any] ): pass @is_pipeline_test @require_vision class __magic_name__ ( unittest.TestCase): @require_torch def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowercase_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : List[Any] = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase_ ) , [ [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}], [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """c"""}, {"""score""": 0.3_33, """label""": """b"""}], ] , ) lowercase_ : str = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowercase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Dict = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}] , ) lowercase_ : int = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : str = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowercase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Union[str, Any] = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) lowercase_ : int = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowercase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : List[Any] = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) lowercase_ : Tuple = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , )
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _A () -> int: '''simple docstring''' _a = torch.nn.Linear(2 , 4 ) _a = torch.optim.AdamW(model.parameters() , lr=1.0 ) _a = torch.optim.lr_scheduler.OneCycleLR(_lowercase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _a = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _a = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _A (lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _A (lowerCAmelCase__ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' _a = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowercase ) class a ( _a ): @require_cuda def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(A_ ): _a = Accelerator(cpu=A_ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = Accelerator() _a = GradientState() assert state.num_steps == 1 _a = 4 assert state.num_steps == 4 assert state.sync_gradients is True _a = False assert state.sync_gradients is False GradientState._reset_state() def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __UpperCAmelCase ( self ) -> Tuple: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __UpperCAmelCase ( self ) -> int: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__magic_name__ , **__magic_name__ ): pass with patch('torch.cuda.set_device' , A_ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): _a = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def __UpperCAmelCase ( self ) -> List[Any]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) _a = get_signature(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A_ ) # make sure random weights don't match load_random_weights(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) < 1e-3 ) def __UpperCAmelCase ( self ) -> Tuple: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) _a = get_signature(A_ ) # saving hook def save_config(__magic_name__ , __magic_name__ , __magic_name__ ): _a = {'class_name': models[0].__class__.__name__} with open(os.path.join(A_ , 'data.json' ) , 'w' ) as f: json.dump(A_ , A_ ) # loading hook def load_config(__magic_name__ , __magic_name__ ): with open(os.path.join(A_ , 'data.json' ) , 'r' ) as f: _a = json.load(A_ ) _a = config['class_name'] _a = accelerator.register_save_state_pre_hook(A_ ) _a = accelerator.register_load_state_pre_hook(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A_ ) # make sure random weights don't match with hooks load_random_weights(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) > 1e-3 ) # random class name to verify correct one is loaded _a = 'random' # make sure loaded weights match with hooks accelerator.load_state(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A_ ) # make sure random weights don't match with hooks removed load_random_weights(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) > 1e-3 ) # random class name to verify correct one is loaded _a = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() _a = None # This should work _a , _a , _a , _a , _a , _a = accelerator.prepare( A_ , A_ , A_ , A_ , A_ , A_ ) self.assertTrue(dummy_obj is None ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() _a = [1, 2, 3] # This should work _a , _a , _a , _a , _a , _a = accelerator.prepare( A_ , A_ , A_ , A_ , A_ , A_ ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Optional[int]: from transformers import AutoModelForCausalLM _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=A_ , device_map={'': 0} , ) _a = Accelerator() # This should work _a = accelerator.prepare(A_ ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM _a = Accelerator() with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() _a = infer_auto_device_map(A_ ) _a = 'cpu' _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=A_ , load_in_abit=A_ , llm_inta_enable_fpaa_cpu_offload=A_ ) # This should not work and get value error with self.assertRaises(A_ ): _a = accelerator.prepare(A_ ) @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM _a = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() _a = infer_auto_device_map(A_ ) _a = 1 _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=A_ , device_map=A_ , ) _a = Accelerator() # This should not work and get value error with self.assertRaises(A_ ): _a = accelerator.prepare(A_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Tuple: from transformers import AutoModelForCausalLM with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) _a = infer_auto_device_map(A_ ) _a = 1 _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=A_ , device_map=A_ , ) _a = Accelerator() # This should work _a = accelerator.prepare(A_ ) @require_cuda def __UpperCAmelCase ( self ) -> Optional[Any]: _a = torch.nn.Linear(10 , 10 ) _a = torch.optim.SGD(model.parameters() , lr=0.0_1 ) _a = Accelerator(cpu=A_ ) _a = accelerator.prepare(A_ )
168
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _A = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'albert' def __init__(self , _lowerCamelCase=30000 , _lowerCamelCase=128 , _lowerCamelCase=4096 , _lowerCamelCase=12 , _lowerCamelCase=1 , _lowerCamelCase=64 , _lowerCamelCase=16384 , _lowerCamelCase=1 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.1 , _lowerCamelCase="absolute" , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=3 , **_lowerCamelCase , ): """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_hidden_groups UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[str] = inner_group_num UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[str] = layer_norm_eps UpperCAmelCase__ : List[Any] = classifier_dropout_prob UpperCAmelCase__ : int = position_embedding_type class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def _a (self ): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
166
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE = (('eta', 0.0), ('num_inference_steps', 5_0)) def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config(**_lowerCamelCase ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = 10, 0.0 UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for t in scheduler.timesteps: UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def _a (self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCamelCase ) UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _a (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def _a (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _a (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _a (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def _a (self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCamelCase ) def _a (self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCamelCase ) def _a (self ): """simple docstring""" self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def _a (self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowerCamelCase , num_inference_steps=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCamelCase , eta=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = 10, 0.0 scheduler.set_timesteps(_lowerCamelCase ) UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase__ : str = self.dummy_sample_deter + 0.1 UpperCAmelCase__ : Any = self.dummy_sample_deter - 0.1 UpperCAmelCase__ : Tuple = samplea.shape[0] UpperCAmelCase__ : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase__ : int = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase__ : int = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.full_loop() UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
166
1
from collections.abc import Generator from math import sin def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) _lowerCAmelCase : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def A ( _lowerCamelCase ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) _lowerCAmelCase : Dict = format(_lowerCamelCase , "08x" )[-8:] _lowerCAmelCase : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = b"" for char in message: bit_string += format(_lowerCamelCase , "08b" ).encode("utf-8" ) _lowerCAmelCase : Tuple = format(len(_lowerCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(_lowerCamelCase ) , 512 ): _lowerCAmelCase : List[str] = bit_string[pos : pos + 512] _lowerCAmelCase : Optional[Any] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def A ( _lowerCamelCase ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) _lowerCAmelCase : str = format(_lowerCamelCase , "032b" ) _lowerCAmelCase : Optional[Any] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowerCamelCase , 2 ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (a + b) % 2**32 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = preprocess(_lowerCamelCase ) _lowerCAmelCase : Tuple = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _lowerCAmelCase : int = 0X67_45_23_01 _lowerCAmelCase : Optional[Any] = 0XEF_CD_AB_89 _lowerCAmelCase : Union[str, Any] = 0X98_BA_DC_FE _lowerCAmelCase : Dict = 0X10_32_54_76 _lowerCAmelCase : int = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowerCamelCase ): _lowerCAmelCase : Dict = aa _lowerCAmelCase : Union[str, Any] = ba _lowerCAmelCase : Dict = ca _lowerCAmelCase : Tuple = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _lowerCAmelCase : List[Any] = d ^ (b & (c ^ d)) _lowerCAmelCase : int = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _lowerCAmelCase : List[str] = c ^ (d & (b ^ c)) _lowerCAmelCase : Dict = (5 * i + 1) % 16 elif i <= 47: _lowerCAmelCase : Union[str, Any] = b ^ c ^ d _lowerCAmelCase : Optional[int] = (3 * i + 5) % 16 else: _lowerCAmelCase : List[str] = c ^ (b | not_aa(_lowerCamelCase )) _lowerCAmelCase : int = (7 * i) % 16 _lowerCAmelCase : int = (f + a + added_consts[i] + block_words[g]) % 2**32 _lowerCAmelCase : Optional[int] = d _lowerCAmelCase : Tuple = c _lowerCAmelCase : int = b _lowerCAmelCase : Tuple = sum_aa(_lowerCamelCase , left_rotate_aa(_lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _lowerCAmelCase : List[str] = sum_aa(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = sum_aa(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = sum_aa(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = sum_aa(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
36
def A ( _lowerCamelCase ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _lowerCAmelCase : List[str] = gray_code_sequence_string(_lowerCamelCase ) # # convert them to integers for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = int(sequence[i] , 2 ) return sequence def A ( _lowerCamelCase ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCAmelCase : List[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCAmelCase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) _lowerCAmelCase : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCAmelCase : Dict = "0" + smaller_sequence[i] sequence.append(_lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCAmelCase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
36
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } lowercase_ = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off lowercase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = ['input_ids', 'attention_mask'] __UpperCAmelCase : Any = NllbTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token __a = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''eng_Latn''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: __a = [] __a = [self.eos_token_id, self.cur_lang_code] else: __a = [self.cur_lang_code] __a = [self.eos_token_id] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: __a = [] __a = [self.eos_token_id, self.cur_lang_code] else: __a = [self.cur_lang_code] __a = [self.eos_token_id] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1