code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[[] for _ in range(__snake_case )] _lowercase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__snake_case ) <= key: return input_string for position, character in enumerate(__snake_case ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__snake_case ) _lowercase =[''''''.join(__snake_case ) for row in temp_grid] _lowercase =''''''.join(__snake_case ) return output_string def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[] _lowercase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string _lowercase =[[] for _ in range(__snake_case )] # generates template for position in range(len(__snake_case ) ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) _lowercase =0 for row in temp_grid: # fills in the characters _lowercase =input_string[counter : counter + len(__snake_case )] grid.append(list(__snake_case ) ) counter += len(__snake_case ) _lowercase ='''''' # reads as zigzag for position in range(len(__snake_case ) ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase_ ( __snake_case ) -> dict[int, str]: """simple docstring""" _lowercase ={} for key_guess in range(1 , len(__snake_case ) ): # tries every key _lowercase =decrypt(__snake_case , __snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
5
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return {}, {}, {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = (output * 2_55 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE__ : List[str] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Any = predicted_depth SCREAMING_SNAKE_CASE__ : Dict = depth return output_dict
25
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 lowercase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 lowercase__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
100
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
100
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = "roc_bert" def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=768 , __UpperCAmelCase=910 , __UpperCAmelCase=512 , __UpperCAmelCase=24_858 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : Optional[int] = enable_pronunciation __UpperCAmelCase : str = enable_shape __UpperCAmelCase : List[Any] = pronunciation_embed_dim __UpperCAmelCase : Union[str, Any] = pronunciation_vocab_size __UpperCAmelCase : Any = shape_embed_dim __UpperCAmelCase : Dict = shape_vocab_size __UpperCAmelCase : Optional[int] = concat_input __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
16
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Optional[Any] = """\ Text data. Second line of data.""" __snake_case : int = """file""" @pytest.fixture(scope="""session""") def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = tmp_path_factory.mktemp("""data""") / (FILE_PATH + """.zstd""") a_ : Optional[int] = bytes(a__ , """utf-8""") with zstd.open(a__ , """wb""") as f: f.write(a__) return path @pytest.fixture def _UpperCAmelCase ( a__): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , a__) , """w""") as f: f.write(a__) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""]) def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__): '''simple docstring''' a_ : str = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} a_ : int = input_paths[compression_format] a_ : List[str] = tmp_path / """cache""" a_ : List[str] = DownloadConfig(cache_dir=a__ , extract_compressed_file=a__) a_ : Union[str, Any] = cached_path(a__ , download_config=a__) with open(a__) as f: a_ : Dict = f.read() with open(a__) as f: a_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False]) @pytest.mark.parametrize("""default_cache_dir""" , [True, False]) def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' a_ : Tuple = """custom_cache""" a_ : str = """custom_extracted_dir""" a_ : List[str] = tmp_path / """custom_extracted_path""" if default_extracted: a_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a__) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a__)) a_ : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) a_ : str = xz_file a_ : str = ( DownloadConfig(extract_compressed_file=a__) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a__) ) a_ : List[str] = cached_path(a__ , download_config=a__) assert Path(a__).parent.parts[-2:] == expected def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Tuple = str(Path(a__).resolve()) assert cached_path(a__) == text_file # relative path a_ : Dict = str(Path(a__).resolve().relative_to(Path(os.getcwd()))) assert cached_path(a__) == text_file def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Optional[int] = str(tmp_path.resolve() / """__missing_file__.txt""") with pytest.raises(a__): cached_path(a__) # relative path a_ : str = """./__missing_file__.txt""" with pytest.raises(a__): cached_path(a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ : int = get_from_cache(f'''tmp://{tmpfs_file}''') with open(a__) as f: a_ : Optional[Any] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a__) def _UpperCAmelCase ( ): '''simple docstring''' with pytest.raises(a__): cached_path("""https://huggingface.co""") @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Union[str, Any] = tmp_path_factory.mktemp("""data""") / """file.html""" with pytest.raises(a__): http_get("""https://huggingface.co""" , temp_file=a__) with pytest.raises(a__): http_head("""https://huggingface.co""") @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Union[str, Any] = tmp_path_factory.mktemp("""data""") / """file.html""" with pytest.raises(a__): ftp_get("""ftp://huggingface.co""" , temp_file=a__) with pytest.raises(a__): ftp_head("""ftp://huggingface.co""") @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Optional[Any] = tmp_path_factory.mktemp("""data""") / """file.html""" with pytest.raises(a__): fsspec_get("""s3://huggingface.co""" , temp_file=a__) with pytest.raises(a__): fsspec_head("""s3://huggingface.co""")
248
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) a_ : Optional[int] = eval_examples a_ : Tuple = post_process_function def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = "eval" ) -> Union[str, Any]: a_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(_lowercase ) a_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : Optional[int] = self.compute_metrics a_ : List[str] = None a_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Any = time.time() try: a_ : Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Dict = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) a_ : Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: a_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase = "test" ) -> str: a_ : Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : int = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Union[str, Any] = time.time() try: a_ : List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Optional[Any] = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
248
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__snake_case, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a , default_to_square=__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size['''shortest_edge'''] , default_to_square=__a) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> int: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. _UpperCamelCase = to_numpy_array(__a) if do_resize: _UpperCamelCase = self.resize(image=__a , size=__a , resample=__a) if do_center_crop: _UpperCamelCase = self.center_crop(__a , size=__a) if do_rescale: _UpperCamelCase = self.rescale(image=__a , scale=__a) if do_normalize: _UpperCamelCase = self.normalize(image=__a , mean=__a , std=__a) _UpperCamelCase = to_channel_dimension_format(__a , __a) return image def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') _UpperCamelCase = make_batched(__a) _UpperCamelCase = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase = {'''pixel_values''': videos} return BatchFeature(data=__a , tensor_type=__a)
100
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=16 , __a=36 , __a=6 , __a=6 , __a=6 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = embedding_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_hidden_groups _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AlbertModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AlbertForPreTraining(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , sentence_order_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = AlbertForMaskedLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = AlbertForQuestionAnswering(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForTokenClassification(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = AlbertForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCAmelCase ( self , __a , __a , __a=False) -> Tuple: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AlbertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase = type self.model_tester.create_and_check_model(*__a) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = AlbertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = AlbertModel.from_pretrained('''albert-base-v2''') _UpperCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4))
100
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _UpperCamelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
77
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = {"vocab_file": "spiece.model"} _UpperCAmelCase : Dict = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } _UpperCAmelCase : int = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[Any] = ["input_ids", "attention_mask"] __lowercase : List[int] = [] def __init__( self , A_ , A_="<unk>" , A_="<s>" , A_="</s>" , A_="<pad>" , A_="[SEP]" , A_="[MASK]" , A_="[CLS]" , A_ = None , **A_ , ) -> None: """simple docstring""" UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sep_token=A_ , mask_token=A_ , cls_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(A_ ) def __UpperCamelCase ( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(A_ ) return token def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(A_ ) UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __UpperCamelCase ( self , A_ , A_ = False , A_ = None , A_ = True , **A_ , ) -> str: """simple docstring""" UpperCamelCase = kwargs.pop('use_source_tokenizer' , A_ ) UpperCamelCase = self.convert_ids_to_tokens(A_ , skip_special_tokens=A_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) UpperCamelCase = [] sub_texts.append(A_ ) else: current_sub_text.append(A_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCamelCase = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(A_ ) ) else: UpperCamelCase = ''.join(A_ ) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(A_ ) return clean_text else: return text def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
222
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _A ( lowerCamelCase__ ): snake_case__ : List[Any] = 'gpt_neox_japanese' def __init__( self , __lowerCAmelCase=3_2000 , __lowerCAmelCase=2560 , __lowerCAmelCase=32 , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1.0_0 , __lowerCAmelCase=1_0000 , __lowerCAmelCase=2048 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=True , __lowerCAmelCase=3_1996 , __lowerCAmelCase=3_1999 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_multiple_size lowercase = hidden_act lowercase = rotary_pct lowercase = rotary_emb_base lowercase = initializer_range lowercase = layer_norm_eps lowercase = use_cache lowercase = attention_dropout lowercase = hidden_dropout
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
def A__ ( SCREAMING_SNAKE_CASE__) -> str: __snake_case: Union[str, Any] = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A__ ( SCREAMING_SNAKE_CASE__) -> dict[str, str]: __snake_case: List[str] = [chr(i + 65) for i in range(26)] # Remove duplicate characters from key __snake_case: Any = remove_duplicates(key.upper()) __snake_case: Dict = len(_lowerCamelCase) # First fill cipher with key characters __snake_case: int = {alphabet[i]: char for i, char in enumerate(_lowerCamelCase)} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowerCamelCase) , 26): __snake_case: List[str] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __snake_case: str = alphabet[i - offset] __snake_case: List[str] = char return cipher_alphabet def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: return "".join(cipher_map.get(_lowerCamelCase , _lowerCamelCase) for ch in message.upper()) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: __snake_case: Optional[int] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowerCamelCase , _lowerCamelCase) for ch in message.upper()) def A__ ( ) -> None: __snake_case: int = input("""Enter message to encode or decode: """).strip() __snake_case: List[Any] = input("""Enter keyword: """).strip() __snake_case: int = input("""Encipher or decipher? E/D:""").strip()[0].lower() try: __snake_case: Optional[int] = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("""invalid input option""") __snake_case: Optional[Any] = create_cipher_map(_lowerCamelCase) print(func(_lowerCamelCase , _lowerCamelCase)) if __name__ == "__main__": import doctest doctest.testmod() main()
111
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( a__ , unittest.TestCase ): snake_case__ = CTRLTokenizer snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __lowerCamelCase : str = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __lowerCamelCase : Any = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __lowerCamelCase : Dict = {"unk_token": "<unk>"} __lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Dict ): __lowerCamelCase : Any = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt react readapt apt" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Dict = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __lowerCamelCase : List[str] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Any = tokens + [tokenizer.unk_token] __lowerCamelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
135
0
"""simple docstring""" from torch import nn def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self : Optional[Any], lowerCAmelCase : int, lowerCAmelCase : Any=13, lowerCAmelCase : Tuple=30, lowerCAmelCase : int=2, lowerCAmelCase : Optional[int]=3, lowerCAmelCase : Optional[Any]=True, lowerCAmelCase : Tuple=True, lowerCAmelCase : Tuple=32, lowerCAmelCase : int=2, lowerCAmelCase : int=4, lowerCAmelCase : str=37, lowerCAmelCase : Dict="gelu", lowerCAmelCase : List[Any]=0.1, lowerCAmelCase : Optional[int]=0.1, lowerCAmelCase : Optional[int]=10, lowerCAmelCase : List[Any]=0.02, lowerCAmelCase : str=3, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : int=2, ) -> Dict: lowercase : Optional[Any] = parent lowercase : Dict = batch_size lowercase : int = image_size lowercase : str = patch_size lowercase : List[Any] = num_channels lowercase : Optional[int] = is_training lowercase : Optional[Any] = use_labels lowercase : Optional[Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : List[Any] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : Dict = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : int = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : str = scope lowercase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase : Union[str, Any] = (image_size // patch_size) ** 2 lowercase : Optional[Any] = num_patches + 2 def lowercase ( self : Tuple ) -> List[Any]: lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Any = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase ( self : Union[str, Any] ) -> Any: return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def lowercase ( self : List[str], lowerCAmelCase : Dict, lowerCAmelCase : Optional[Any], lowerCAmelCase : Optional[Any] ) -> int: lowercase : Optional[Any] = TFDeiTModel(config=lowerCAmelCase ) lowercase : List[str] = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any], lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : Dict ) -> int: lowercase : List[str] = TFDeiTForMaskedImageModeling(config=lowerCAmelCase ) lowercase : Optional[Any] = model(lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase : Optional[Any] = 1 lowercase : Optional[int] = TFDeiTForMaskedImageModeling(lowerCAmelCase ) lowercase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : Optional[int] = model(lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase ( self : List[Any], lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : List[Any] ) -> Union[str, Any]: lowercase : Optional[Any] = self.type_sequence_label_size lowercase : Any = TFDeiTForImageClassification(lowerCAmelCase ) lowercase : Optional[int] = model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase : Any = 1 lowercase : int = TFDeiTForImageClassification(lowerCAmelCase ) lowercase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : List[str] = model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : Optional[int] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Any = config_and_inputs lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _lowerCamelCase = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowercase ( self : str ) -> Union[str, Any]: lowercase : Optional[Any] = TFDeiTModelTester(self ) lowercase : List[Any] = ConfigTester(self, config_class=lowerCAmelCase, has_text_modality=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowercase ( self : Optional[Any] ) -> int: pass def lowercase ( self : List[Any] ) -> int: lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Union[str, Any] = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase, tf.keras.layers.Dense ) ) def lowercase ( self : Tuple ) -> Tuple: lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(lowerCAmelCase ) lowercase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : int = [*signature.parameters.keys()] lowercase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase ) def lowercase ( self : int ) -> Union[str, Any]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase ( self : Any ) -> Optional[int]: lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase ) def lowercase ( self : List[str] ) -> int: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : Any=False ) -> int: lowercase : str = super()._prepare_for_class(lowerCAmelCase, lowerCAmelCase, return_labels=lowerCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase ( self : Tuple ) -> Optional[int]: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] = TFDeiTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( ) -> Optional[int]: '''simple docstring''' lowercase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def lowercase ( self : str ) -> Dict: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowercase ( self : Tuple ) -> Dict: lowercase : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowercase : str = self.default_image_processor lowercase : Tuple = prepare_img() lowercase : Dict = image_processor(images=lowerCAmelCase, return_tensors='tf' ) # forward pass lowercase : Any = model(**lowerCAmelCase ) # verify the logits lowercase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, lowerCAmelCase ) lowercase : Tuple = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCAmelCase, atol=1e-4 ) )
255
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = None ) -> list[list[str]]: '''simple docstring''' lowercase : str = word_bank or [] # create a table lowercase : int = len(_UpperCAmelCase ) + 1 lowercase : list[list[list[str]]] = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowercase : int = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
255
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = (DPMSolverSinglestepScheduler,) a__ : List[Any] = (("""num_inference_steps""", 2_5),) def UpperCamelCase__ ( self , **__lowercase) -> Dict: __UpperCamelCase :Optional[Any] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**__lowercase) return config def UpperCamelCase__ ( self , __lowercase=0 , **__lowercase) -> Tuple: __UpperCamelCase :str = dict(self.forward_default_kwargs) __UpperCamelCase :Dict = kwargs.pop('''num_inference_steps''' , __lowercase) __UpperCamelCase :str = self.dummy_sample __UpperCamelCase :Dict = 0.1 * sample __UpperCamelCase :Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase :List[Any] = self.get_scheduler_config(**__lowercase) __UpperCamelCase :Optional[int] = scheduler_class(**__lowercase) scheduler.set_timesteps(__lowercase) # copy over dummy past residuals __UpperCamelCase :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase) __UpperCamelCase :str = scheduler_class.from_pretrained(__lowercase) new_scheduler.set_timesteps(__lowercase) # copy over dummy past residuals __UpperCamelCase :str = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase :Tuple = sample, sample for t in range(__lowercase , time_step + scheduler.config.solver_order + 1): __UpperCamelCase :Any = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample __UpperCamelCase :Any = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self) -> Any: pass def UpperCamelCase__ ( self , __lowercase=0 , **__lowercase) -> int: __UpperCamelCase :Optional[Any] = dict(self.forward_default_kwargs) __UpperCamelCase :Dict = kwargs.pop('''num_inference_steps''' , __lowercase) __UpperCamelCase :List[Any] = self.dummy_sample __UpperCamelCase :str = 0.1 * sample __UpperCamelCase :Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase :Optional[Any] = self.get_scheduler_config() __UpperCamelCase :List[str] = scheduler_class(**__lowercase) scheduler.set_timesteps(__lowercase) # copy over dummy past residuals (must be after setting timesteps) __UpperCamelCase :Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase) __UpperCamelCase :str = scheduler_class.from_pretrained(__lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase) # copy over dummy past residual (must be after setting timesteps) __UpperCamelCase :str = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase :int = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample __UpperCamelCase :Dict = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , __lowercase=None , **__lowercase) -> List[str]: if scheduler is None: __UpperCamelCase :int = self.scheduler_classes[0] __UpperCamelCase :Dict = self.get_scheduler_config(**__lowercase) __UpperCamelCase :Dict = scheduler_class(**__lowercase) __UpperCamelCase :Optional[int] = self.scheduler_classes[0] __UpperCamelCase :str = self.get_scheduler_config(**__lowercase) __UpperCamelCase :Optional[int] = scheduler_class(**__lowercase) __UpperCamelCase :Tuple = 10 __UpperCamelCase :str = self.dummy_model() __UpperCamelCase :List[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowercase) for i, t in enumerate(scheduler.timesteps): __UpperCamelCase :Tuple = model(__lowercase , __lowercase) __UpperCamelCase :str = scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample return sample def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) __UpperCamelCase :Any = 50 __UpperCamelCase :Optional[Any] = self.dummy_model() __UpperCamelCase :Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): __UpperCamelCase :List[Any] = model(__lowercase , __lowercase) __UpperCamelCase :Optional[int] = scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample __UpperCamelCase :Tuple = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.25_74) < 1E-3 def UpperCamelCase__ ( self) -> List[Any]: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults __UpperCamelCase :Any = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) __UpperCamelCase :List[str] = self.full_loop(scheduler=__lowercase) __UpperCamelCase :Dict = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 __UpperCamelCase :Dict = DEISMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :int = UniPCMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config) __UpperCamelCase :int = self.full_loop(scheduler=__lowercase) __UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 def UpperCamelCase__ ( self) -> Tuple: self.check_over_configs(thresholding=__lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowercase , prediction_type=__lowercase , sample_max_value=__lowercase , algorithm_type='''dpmsolver++''' , solver_order=__lowercase , solver_type=__lowercase , ) def UpperCamelCase__ ( self) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase) def UpperCamelCase__ ( self) -> Tuple: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowercase , solver_type=__lowercase , prediction_type=__lowercase , algorithm_type=__lowercase , ) __UpperCamelCase :List[str] = self.full_loop( solver_order=__lowercase , solver_type=__lowercase , prediction_type=__lowercase , algorithm_type=__lowercase , ) assert not torch.isnan(__lowercase).any(), "Samples have nan numbers" def UpperCamelCase__ ( self) -> Dict: self.check_over_configs(lower_order_final=__lowercase) self.check_over_configs(lower_order_final=__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase__ ( self) -> Dict: self.check_over_configs(variance_type=__lowercase) self.check_over_configs(variance_type='''learned_range''') def UpperCamelCase__ ( self) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__lowercase , time_step=0) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :int = self.full_loop() __UpperCamelCase :Dict = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[str] = self.full_loop(use_karras_sigmas=__lowercase) __UpperCamelCase :int = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.22_48) < 1E-3 def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = self.full_loop(prediction_type='''v_prediction''') __UpperCamelCase :int = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.14_53) < 1E-3 def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Any = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=__lowercase) __UpperCamelCase :int = torch.mean(torch.abs(__lowercase)) assert abs(result_mean.item() - 0.06_49) < 1E-3 def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :int = self.scheduler_classes[0] __UpperCamelCase :Optional[int] = self.get_scheduler_config(thresholding=__lowercase , dynamic_thresholding_ratio=0) __UpperCamelCase :List[Any] = scheduler_class(**__lowercase) __UpperCamelCase :Dict = 10 __UpperCamelCase :Optional[Any] = self.dummy_model() __UpperCamelCase :Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowercase) for i, t in enumerate(scheduler.timesteps): __UpperCamelCase :str = model(__lowercase , __lowercase) __UpperCamelCase :Union[str, Any] = scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample assert sample.dtype == torch.floataa
361
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowercase = logging.getLogger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """token-classification""" def __init__( self , __lowercase) -> str: if type(__lowercase) == dict: __UpperCamelCase :List[Any] = Namespace(**__lowercase) __UpperCamelCase :Dict = import_module('''tasks''') try: __UpperCamelCase :str = getattr(__lowercase , hparams.task_type) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""") __UpperCamelCase :Tuple = self.token_classification_task.get_labels(hparams.labels) __UpperCamelCase :Tuple = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels) , self.mode) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return self.model(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Dict = self(**__lowercase) __UpperCamelCase :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.hparams for mode in ["train", "dev", "test"]: __UpperCamelCase :int = self._feature_file(__lowercase) if os.path.exists(__lowercase) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :Any = torch.load(__lowercase) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir) __UpperCamelCase :Any = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase) __UpperCamelCase :Union[str, Any] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet''']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ['''xlnet''']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowercase) torch.save(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = False) -> DataLoader: __UpperCamelCase :Tuple = self._feature_file(__lowercase) logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :str = torch.load(__lowercase) __UpperCamelCase :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __UpperCamelCase :Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __UpperCamelCase :str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __UpperCamelCase :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __UpperCamelCase :int = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase) , batch_size=__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: """Compute validation""" "" __UpperCamelCase :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Any = self(**__lowercase) __UpperCamelCase , __UpperCamelCase :Tuple = outputs[:2] __UpperCamelCase :List[str] = logits.detach().cpu().numpy() __UpperCamelCase :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Tuple = torch.stack([x['''val_loss'''] for x in outputs]).mean() __UpperCamelCase :str = np.concatenate([x['''pred'''] for x in outputs] , axis=0) __UpperCamelCase :Any = np.argmax(__lowercase , axis=2) __UpperCamelCase :str = np.concatenate([x['''target'''] for x in outputs] , axis=0) __UpperCamelCase :List[str] = dict(enumerate(self.labels)) __UpperCamelCase :Tuple = [[] for _ in range(out_label_ids.shape[0])] __UpperCamelCase :Any = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __UpperCamelCase :Any = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowercase , __lowercase), '''precision''': precision_score(__lowercase , __lowercase), '''recall''': recall_score(__lowercase , __lowercase), '''f1''': fa_score(__lowercase , __lowercase), } __UpperCamelCase :Dict = dict(results.items()) __UpperCamelCase :List[str] = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __lowercase) -> int: # when stable __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._eval_end(__lowercase) __UpperCamelCase :Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __lowercase) -> int: # updating to test_epoch_end instead of deprecated test_end __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = self._eval_end(__lowercase) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCamelCase :Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(__lowercase , __lowercase) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowercase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowercase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') return parser if __name__ == "__main__": __lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowercase = parser.parse_args() __lowercase = NERTransformer(args) __lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
0
'''simple docstring''' from string import ascii_uppercase __A : Union[str, Any] = {char: i for i, char in enumerate(ascii_uppercase)} __A : Optional[Any] = dict(enumerate(ascii_uppercase)) def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : str = len(A__ ) lowerCAmelCase_ : Tuple = 0 while True: if x == i: lowerCAmelCase_ : Any = 0 if len(A__ ) == len(A__ ): break key += key[i] i += 1 return key def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = """""" lowerCAmelCase_ : Union[str, Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCAmelCase_ : Any = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : int = """""" lowerCAmelCase_ : str = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCAmelCase_ : Dict = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Any = """THE GERMAN ATTACK""" lowerCAmelCase_ : Optional[Any] = """SECRET""" lowerCAmelCase_ : int = generate_key(A__ , A__ ) lowerCAmelCase_ : Tuple = cipher_text(A__ , A__ ) print(f'Encrypted Text = {s}' ) print(f'Original Text = {original_text(A__ , A__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
120
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __A : Optional[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __snake_case ( datasets.BuilderConfig): """simple docstring""" lowercase = None def UpperCamelCase_ ( A__ : "pyspark.sql.DataFrame" , A__ : List[int] , ): '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase_ : Union[str, Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: lowerCAmelCase_ : int = df_with_partition_id.select("""*""" ).where(f'part_id = {partition_id}' ).drop("""part_id""" ) lowerCAmelCase_ : Union[str, Any] = partition_df.collect() lowerCAmelCase_ : str = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class __snake_case ( _BaseExamplesIterable): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : "pyspark.sql.DataFrame" , lowerCamelCase : List[Any]=None , ) -> Optional[Any]: lowerCAmelCase_ : str = df lowerCAmelCase_ : List[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase_ : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Dict ) -> int: yield from self.generate_examples_fn() def __lowercase ( self : Any , lowerCamelCase : np.random.Generator ) -> "SparkExamplesIterable": lowerCAmelCase_ : Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> "SparkExamplesIterable": lowerCAmelCase_ : Tuple = self.split_shard_indices_by_worker(lowerCamelCase , lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase ) @property def __lowercase ( self : str ) -> int: return len(self.partition_order ) class __snake_case ( datasets.DatasetBuilder): """simple docstring""" lowercase = SparkConfig def __init__( self : Union[str, Any] , lowerCamelCase : "pyspark.sql.DataFrame" , lowerCamelCase : str = None , lowerCamelCase : str = None , **lowerCamelCase : int , ) -> Tuple: import pyspark lowerCAmelCase_ : Dict = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase_ : List[str] = df lowerCAmelCase_ : List[Any] = working_dir super().__init__( cache_dir=lowerCamelCase , config_name=str(self.df.semanticHash() ) , **lowerCamelCase , ) def __lowercase ( self : Tuple ) -> Union[str, Any]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCamelCase : int ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCamelCase ) lowerCAmelCase_ : List[str] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase_ : str = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __lowercase ( self : Any ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self : str , lowerCamelCase : datasets.download.download_manager.DownloadManager ) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowercase ( self : Any , lowerCamelCase : Tuple ) -> Optional[Any]: import pyspark def get_arrow_batch_size(lowerCamelCase : Any ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) lowerCAmelCase_ : str = self.df.count() lowerCAmelCase_ : Any = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase_ : str = ( self.df.limit(lowerCamelCase ) .repartition(1 ) .mapInArrow(lowerCamelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase_ : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase_ : Tuple = min(lowerCamelCase , int(approx_total_size / max_shard_size ) ) lowerCAmelCase_ : Dict = self.df.repartition(lowerCamelCase ) def __lowercase ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark lowerCAmelCase_ : List[str] = ParquetWriter if file_format == """parquet""" else ArrowWriter lowerCAmelCase_ : int = os.path.join(self._working_dir , os.path.basename(lowerCamelCase ) ) if self._working_dir else fpath lowerCAmelCase_ : Tuple = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase_ : str = self.config.features lowerCAmelCase_ : Tuple = self._writer_batch_size lowerCAmelCase_ : Any = self._fs.storage_options def write_arrow(lowerCamelCase : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase_ : Union[str, Any] = pyspark.TaskContext().taskAttemptId() lowerCAmelCase_ : Union[str, Any] = next(lowerCamelCase , lowerCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Dict = writer_class( features=lowerCamelCase , path=working_fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , writer_batch_size=lowerCamelCase , storage_options=lowerCamelCase , embed_local_files=lowerCamelCase , ) lowerCAmelCase_ : str = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase_, lowerCAmelCase_ : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 lowerCAmelCase_ : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , writer_batch_size=lowerCamelCase , storage_options=lowerCamelCase , embed_local_files=lowerCamelCase , ) lowerCAmelCase_ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase ) if writer._num_bytes > 0: lowerCAmelCase_, lowerCAmelCase_ : List[str] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase ) ): lowerCAmelCase_ : str = os.path.join(os.path.dirname(lowerCamelCase ) , os.path.basename(lowerCamelCase ) ) shutil.move(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Dict = ( self.df.mapInArrow(lowerCamelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowercase ( self : Any , lowerCamelCase : "datasets.SplitGenerator" , lowerCamelCase : str = "arrow" , lowerCamelCase : Optional[Union[str, int]] = None , lowerCamelCase : Optional[int] = None , **lowerCamelCase : List[str] , ) -> Optional[int]: self._validate_cache_dir() lowerCAmelCase_ : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = not is_remote_filesystem(self._fs ) lowerCAmelCase_ : Dict = os.path.join if is_local else posixpath.join lowerCAmelCase_ : int = """-TTTTT-SSSSS-of-NNNNN""" lowerCAmelCase_ : Any = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' lowerCAmelCase_ : List[str] = path_join(self._output_dir , lowerCamelCase ) lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Dict = [] for task_id, content in self._prepare_split_single(lowerCamelCase , lowerCamelCase , lowerCamelCase ): ( ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ) : str = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = total_num_examples lowerCAmelCase_ : int = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: lowerCAmelCase_ : Optional[int] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase_ : List[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , ): rename( lowerCamelCase , fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , fpath.replace("""TTTTT-SSSSS""" , F'{global_shard_id:05d}' ).replace("""NNNNN""" , F'{total_shards:05d}' ) , ) lowerCAmelCase_ : Any = [] lowerCAmelCase_ : str = 0 for i in range(len(lowerCamelCase ) ): lowerCAmelCase_, lowerCAmelCase_ : Tuple = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase , len(lowerCamelCase ) ).map(lambda lowerCamelCase : _rename_shard(*lowerCamelCase ) ).collect() else: # don't use any pattern lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : str = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , fpath.replace(lowerCamelCase , """""" ) , ) def __lowercase ( self : Dict , lowerCamelCase : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
120
1
"""simple docstring""" import torch from torch import nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False ): """simple docstring""" super().__init__() UpperCAmelCase__ : List[str] = n_token UpperCAmelCase__ : Union[str, Any] = d_embed UpperCAmelCase__ : Dict = d_proj UpperCAmelCase__ : List[str] = cutoffs + [n_token] UpperCAmelCase__ : List[Any] = [0] + self.cutoffs UpperCAmelCase__ : Tuple = div_val UpperCAmelCase__ : Union[str, Any] = self.cutoffs[0] UpperCAmelCase__ : str = len(self.cutoffs ) - 1 UpperCAmelCase__ : List[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ : Dict = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase__ : List[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase__ : Optional[int] = nn.ModuleList() UpperCAmelCase__ : List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase ) ) ) else: self.out_projs.append(_lowerCamelCase ) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase ) ) ) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx ) ) UpperCAmelCase__ : int = keep_order def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if proj is None: UpperCAmelCase__ : int = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ : List[str] = nn.functional.linear(_lowerCamelCase , proj.t().contiguous() ) UpperCAmelCase__ : Dict = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ : Optional[int] = hidden[..., :-1, :].contiguous() UpperCAmelCase__ : Union[str, Any] = labels[..., 1:].contiguous() UpperCAmelCase__ : int = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase__ : Dict = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: UpperCAmelCase__ : Any = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase__ : List[str] = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase__ : Union[str, Any] = labels != -100 UpperCAmelCase__ : Dict = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase__ : Dict = ( -nn.functional.log_softmax(_lowerCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase__ : int = nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : str = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : Union[str, Any] = self.out_layers[i].weight UpperCAmelCase__ : Dict = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase__ : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCamelCase ) biases.append(_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : Dict = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) if labels is None: UpperCAmelCase__ : str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase__ : Optional[int] = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(_lowerCamelCase ) - 1 ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ : List[Any] = labels.index_select(0 , _lowerCamelCase ) - l_idx UpperCAmelCase__ : int = head_logprob.index_select(0 , _lowerCamelCase ) UpperCAmelCase__ : Tuple = hidden.index_select(0 , _lowerCamelCase ) else: UpperCAmelCase__ : List[str] = hidden if i == 0: if labels is not None: UpperCAmelCase__ : Optional[int] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : Optional[Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) UpperCAmelCase__ : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase__ : Optional[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ : List[str] = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _a (self , _lowerCamelCase ): """simple docstring""" if self.n_clusters == 0: UpperCAmelCase__ : Optional[Any] = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : Any = self.out_layers[i].weight UpperCAmelCase__ : Tuple = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase__ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCamelCase ) biases.append(_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : str = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase__ : List[Any] = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) UpperCAmelCase__ : Optional[Any] = [0] + self.cutoffs for i in range(len(_lowerCamelCase ) - 1 ): UpperCAmelCase__ , UpperCAmelCase__ : Dict = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : Any = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) UpperCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ : Dict = logprob_i return out
166
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ): """simple docstring""" UpperCAmelCase__ : Dict = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase , _lowerCamelCase ) )] if identifier is not None: UpperCAmelCase__ : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ): for n_ in n_identifier: UpperCAmelCase__ : Optional[int] = [file for file in files if n_ not in file] else: UpperCAmelCase__ : List[Any] = [file for file in files if n_identifier not in file] UpperCAmelCase__ : str = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _lowerCamelCase ) if only_modules: UpperCAmelCase__ : List[str] = file.split(""".""" )[0] try: UpperCAmelCase__ : Any = getattr(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = doctest.DocTestSuite(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase__ : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : Union[str, Any] = """modeling""" UpperCAmelCase__ : int = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase , ignore_files=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = """tokenization""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = Path("""src/transformers""" ) UpperCAmelCase__ : Optional[int] = """configuration""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_lowerCamelCase , n_identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = Path("""docs/source""" ) UpperCAmelCase__ : str = ["""favicon.ico"""] self.analyze_directory(_lowerCamelCase , ignore_files=_lowerCamelCase , only_modules=_lowerCamelCase )
166
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class A__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int = 1_6 , lowerCAmelCase__ : int = 8_8 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "geglu" , lowerCAmelCase__ : Optional[int] = None , ) -> Tuple: """simple docstring""" super().__init__() _UpperCAmelCase : Union[str, Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCAmelCase__ , attention_head_dim=lowerCAmelCase__ , in_channels=lowerCAmelCase__ , num_layers=lowerCAmelCase__ , dropout=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , cross_attention_dim=lowerCAmelCase__ , attention_bias=lowerCAmelCase__ , sample_size=lowerCAmelCase__ , num_vector_embeds=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , num_embeds_ada_norm=lowerCAmelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase : Tuple = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase : Optional[Any] = [1, 0] def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , ) -> Dict: """simple docstring""" _UpperCAmelCase : str = hidden_states _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase : List[Any] = self.transformer_index_for_condition[i] _UpperCAmelCase : Union[str, Any] = self.transformers[transformer_index]( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , timestep=lowerCAmelCase__ , cross_attention_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase : Any = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCAmelCase__ )
145
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
1
"""simple docstring""" SCREAMING_SNAKE_CASE__ = {str(digit): digit**5 for digit in range(10)} def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_UpperCamelCase ) ) def lowerCAmelCase__ ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(_UpperCamelCase ) ) if __name__ == "__main__": print(solution())
149
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed SCREAMING_SNAKE_CASE__ = "true" def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=8_2 , _UpperCamelCase : int=1_6 ) -> str: """simple docstring""" set_seed(4_2 ) snake_case = RegressionModel() snake_case = deepcopy(_UpperCamelCase ) snake_case = RegressionDataset(length=_UpperCamelCase ) snake_case = DataLoader(_UpperCamelCase , batch_size=_UpperCamelCase ) model.to(accelerator.device ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return model, ddp_model, dataloader def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Optional[Any]=False ) -> List[str]: """simple docstring""" snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) snake_case = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs with accelerator.main_process_first(): snake_case = dataset.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCamelCase : Optional[Any] ): if use_longest: return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1_6 ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" snake_case = Accelerator(dispatch_batches=_UpperCamelCase , split_batches=_UpperCamelCase ) snake_case = get_dataloader(_UpperCamelCase , not dispatch_batches ) snake_case = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCamelCase ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" snake_case = [] for batch in dataloader: snake_case ,snake_case = batch.values() with torch.no_grad(): snake_case = model(_UpperCamelCase ) snake_case ,snake_case = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case ,snake_case = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCamelCase ) targs.append(_UpperCamelCase ) snake_case ,snake_case = torch.cat(_UpperCamelCase ), torch.cat(_UpperCamelCase ) return logits, targs def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Tuple=8_2 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : int=False , _UpperCamelCase : List[str]=1_6 ) -> Optional[Any]: """simple docstring""" snake_case ,snake_case ,snake_case = get_basic_setup(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case ,snake_case = generate_predictions(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert ( len(_UpperCamelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCamelCase )}""" def lowerCAmelCase__ ( _UpperCamelCase : bool = False , _UpperCamelCase : bool = False ) -> Tuple: """simple docstring""" snake_case = evaluate.load('glue' , 'mrpc' ) snake_case ,snake_case = get_mrpc_setup(_UpperCamelCase , _UpperCamelCase ) # First do baseline snake_case ,snake_case ,snake_case = setup['no'] model.to(_UpperCamelCase ) model.eval() for batch in dataloader: batch.to(_UpperCamelCase ) with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCamelCase , references=batch['labels'] ) snake_case = metric.compute() # Then do distributed snake_case ,snake_case ,snake_case = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case = batch['labels'] snake_case ,snake_case = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCamelCase , references=_UpperCamelCase ) snake_case = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_UpperCamelCase , _UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_UpperCamelCase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) snake_case = Accelerator() test_torch_metrics(_UpperCamelCase , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
149
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A : Optional[int] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
"""simple docstring""" def lowercase ( __snake_case : Optional[int] ): lowercase_ : int = 0 lowercase_ : Optional[Any] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase ( __snake_case : str ): if len(__snake_case ) <= 1: return arr, 0 lowercase_ : Optional[Any] = len(__snake_case ) // 2 lowercase_ : List[Any] = arr[0:mid] lowercase_ : Union[str, Any] = arr[mid:] lowercase_ , lowercase_ : Tuple = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = _count_cross_inversions(__snake_case , __snake_case ) lowercase_ : List[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase ( __snake_case : str , __snake_case : Optional[int] ): lowercase_ : Optional[Any] = [] lowercase_ : Any = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase ( ): lowercase_ : Union[str, Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase_ : int = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase_ : Dict = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) # an empty list should also have zero inversions lowercase_ : List[Any] = [] lowercase_ : Any = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : List[str] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) if __name__ == "__main__": main()
33
1
from maths.prime_check import is_prime def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[Any] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase__ ) if is_prime(lowerCamelCase__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
113
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : List[str]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : List[Any]): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Tuple): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Dict = TFAutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Optional[Any] = AutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : str): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[Any]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Any): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = AutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Union[str, Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : str = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0)
113
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] a :Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] a :List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): # pass variant but use the non-variant filenames a :List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] a :Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] a :List[str] = '''fp16''' self.assertFalse(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] a :Any = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): # pass variant but use the non-variant filenames a :Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] a :Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] a :Optional[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) )
94
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" while b: a , a :Optional[Any] = b, a % b return a def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(UpperCAmelCase_ , a % b ) def __lowerCamelCase ( ): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
94
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = BlipImageProcessor() __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""") __SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""") __SCREAMING_SNAKE_CASE = InstructBlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) def snake_case_ ( self , **lowerCAmelCase__): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__).tokenizer def snake_case_ ( self , **lowerCAmelCase__): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__).image_processor def snake_case_ ( self , **lowerCAmelCase__): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__).qformer_tokenizer def snake_case_ ( self): shutil.rmtree(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1)) for x in image_inputs] return image_inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0) __SCREAMING_SNAKE_CASE = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase__) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors="""np""") __SCREAMING_SNAKE_CASE = processor(images=lowerCAmelCase__ , return_tensors="""np""") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = qformer_tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__) self.assertListEqual( list(inputs.keys()) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__) self.assertListEqual( list(inputs.keys()) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
255
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _lowerCAmelCase ( *UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_=True , UpperCamelCase_=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE = take_from __SCREAMING_SNAKE_CASE = () if not isinstance(args[0] , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase_ ).base_version ) >= version.parse(UpperCamelCase_ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) __SCREAMING_SNAKE_CASE = None if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase_ ),) __SCREAMING_SNAKE_CASE = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCamelCase_ , UpperCamelCase_ ): values += (getattr(UpperCamelCase_ , UpperCamelCase_ ),) __SCREAMING_SNAKE_CASE = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: __SCREAMING_SNAKE_CASE = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , UpperCamelCase_ , stacklevel=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) > 0: __SCREAMING_SNAKE_CASE = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE = call_frame.filename __SCREAMING_SNAKE_CASE = call_frame.lineno __SCREAMING_SNAKE_CASE = call_frame.function __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCamelCase_ ) == 0: return elif len(UpperCamelCase_ ) == 1: return values[0] return values
255
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a__ : """simple docstring""" __lowerCamelCase = 42 # setable values __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = None @classmethod def UpperCamelCase ( cls , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' return cls(common=lowercase , init_noise_sigma=lowercase , timesteps=lowercase ) @dataclass class a__ ( _UpperCAmelCase ): """simple docstring""" __lowerCamelCase = 42 class a__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" __lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCamelCase = 42 @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return True @register_to_config def __init__( self , lowercase = 1000 , lowercase = 0.0001 , lowercase = 0.02 , lowercase = "linear" , lowercase = None , lowercase = "fixed_small" , lowercase = True , lowercase = "epsilon" , lowercase = jnp.floataa , ) -> List[Any]: '''simple docstring''' A__ = dtype def UpperCamelCase ( self , lowercase = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: A__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution A__ = jnp.array(1.0 , dtype=self.dtype ) A__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowercase , init_noise_sigma=lowercase , timesteps=lowercase , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None ) -> jnp.ndarray: '''simple docstring''' return sample def UpperCamelCase ( self , lowercase , lowercase , lowercase = () ) -> DDPMSchedulerState: '''simple docstring''' A__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 A__ = (jnp.arange(0 , lowercase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowercase , timesteps=lowercase , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase=None , lowercase=None ) -> Optional[int]: '''simple docstring''' A__ = state.common.alphas_cumprod[t] A__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: A__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": A__ = jnp.clip(lowercase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": A__ = jnp.log(jnp.clip(lowercase , a_min=1e-20 ) ) elif variance_type == "fixed_large": A__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log A__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": A__ = variance A__ = state.common.betas[t] A__ = (predicted_variance + 1) / 2 A__ = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' A__ = timestep if key is None: A__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: A__ , A__ = jnp.split(lowercase , sample.shape[1] , axis=1 ) else: A__ = None # 1. compute alphas, betas A__ = state.common.alphas_cumprod[t] A__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) A__ = 1 - alpha_prod_t A__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A__ = model_output elif self.config.prediction_type == "v_prediction": A__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A__ = jnp.clip(lowercase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t A__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): A__ = jax.random.split(lowercase , num=1 ) A__ = jax.random.normal(lowercase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowercase , lowercase , predicted_variance=lowercase ) ** 0.5) * noise A__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) A__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowercase , state=lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , lowercase , lowercase , lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , lowercase , lowercase , lowercase ) def __len__( self ) -> str: '''simple docstring''' return self.config.num_train_timesteps
68
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 3 , lowercase = 32 , lowercase = 256 , lowercase = 32 , lowercase = None , lowercase = 0.18_215 , lowercase = "group" , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) lowerCAmelCase = VectorQuantizer(lowercase , lowercase , beta=0.25 , remap=lowercase , sane_index_shape=lowercase ) lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , norm_type=lowercase , ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = True ) -> VQEncoderOutput: lowerCAmelCase = self.encoder(lowercase ) lowerCAmelCase = self.quant_conv(lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = False , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.quantize(lowercase ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(lowercase ) lowerCAmelCase = self.decoder(lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase ) def _snake_case ( self , lowercase , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase = sample lowerCAmelCase = self.encode(lowercase ).latents lowerCAmelCase = self.decode(lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase )
46
0
import random def UpperCamelCase (lowercase_: Optional[int] , lowercase_: List[Any] ) -> Union[str, Any]: A__ : Any = [], [], [] for element in data: if element < pivot: less.append(__a ) elif element > pivot: greater.append(__a ) else: equal.append(__a ) return less, equal, greater def UpperCamelCase (lowercase_: int , lowercase_: int ) -> List[str]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__a ) or index < 0: return None A__ : str = items[random.randint(0 , len(__a ) - 1 )] A__ : Optional[Any] = 0 A__ : Optional[int] = _partition(__a , __a ) A__ : Any = len(__a ) A__ : str = len(__a ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__a , __a ) # must be in larger else: return quick_select(__a , index - (m + count) )
350
from typing import Any def UpperCamelCase (lowercase_: list ) -> list[Any]: if not input_list: return [] A__ : Any = [input_list.count(lowercase_ ) for value in input_list] A__ : List[Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
141
0
'''simple docstring''' import os lowercase : Optional[int] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def SCREAMING_SNAKE_CASE__ ( __A ) -> int: _snake_case = 0 _snake_case = 0 while index < len(__A ) - 1: _snake_case = SYMBOLS[numerals[index]] _snake_case = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = '' _snake_case = num // 1_000 numerals += m_count * "M" num %= 1_000 _snake_case = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _snake_case = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def SCREAMING_SNAKE_CASE__ ( __A = "/p089_roman.txt" ) -> int: _snake_case = 0 with open(os.path.dirname(__A ) + roman_numerals_filename ) as filea: _snake_case = filea.readlines() for line in lines: _snake_case = line.strip() _snake_case = parse_roman_numerals(__A ) _snake_case = generate_roman_numerals(__A ) savings += len(__A ) - len(__A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : List[str] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
1
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :int = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''c'''] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,[2] ) # Out indices set to match out features __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = get_aligned_output_features_output_indices(['''a''', '''c'''] ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''a''', '''c'''] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,[0, 2] ) # Out features set to match out indices __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ ,[0, 2] ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''a''', '''c'''] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,[0, 2] ) # Out features selected from negative indices __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ ,[-3, -1] ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''a''', '''c'''] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,[-3, -1] ) def _UpperCamelCase ( self ) -> int: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,SCREAMING_SNAKE_CASE__ ) # Out features must be a list with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(('''a''', '''b''') ,(0, 1) ,['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ ,0 ,['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ ,(0, 1) ,['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0,) ,['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 2) ,['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(['''b''', '''a'''] ,(0, 1) ,['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] ,(0, 1, -1) ,['''a''', '''b''', '''c''', '''d'''] ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = BackboneMixin() __SCREAMING_SNAKE_CASE :str = ['''a''', '''b''', '''c'''] __SCREAMING_SNAKE_CASE :List[str] = ['''a''', '''c'''] __SCREAMING_SNAKE_CASE :str = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly __SCREAMING_SNAKE_CASE :List[str] = ['''a''', '''b'''] self.assertEqual(backbone.out_features ,['''a''', '''b'''] ) self.assertEqual(backbone.out_indices ,[0, 1] ) __SCREAMING_SNAKE_CASE :Optional[int] = [-3, -1] self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
239
"""simple docstring""" import math import random def __lowerCamelCase ( a_ : float , a_ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase_ = 0.02 def __lowerCamelCase ( a_ : int , a_ : int ) -> float: __SCREAMING_SNAKE_CASE :Any = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(a_ ): # Forward propagation __SCREAMING_SNAKE_CASE :Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE :Tuple = (expected / 1_00) - layer_a # Error delta __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_1_error * sigmoid_function(a_ , a_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Expected value: ")) lowerCamelCase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
239
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : int ): lowercase_ :Union[str, Any] = DPTConfig() if "large" in checkpoint_url: lowercase_ :Tuple = 10_24 lowercase_ :Optional[Any] = 40_96 lowercase_ :Optional[Any] = 24 lowercase_ :Optional[int] = 16 lowercase_ :List[Any] = [5, 11, 17, 23] lowercase_ :Union[str, Any] = [2_56, 5_12, 10_24, 10_24] lowercase_ :Dict = (1, 3_84, 3_84) if "ade" in checkpoint_url: lowercase_ :Optional[int] = True lowercase_ :Any = 1_50 lowercase_ :str = "huggingface/label-files" lowercase_ :Union[str, Any] = "ade20k-id2label.json" lowercase_ :Tuple = json.load(open(cached_download(hf_hub_url(__lowerCamelCase ,__lowerCamelCase ,repo_type="dataset" ) ) ,"r" ) ) lowercase_ :int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase_ :int = idalabel lowercase_ :str = {v: k for k, v in idalabel.items()} lowercase_ :str = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCAmelCase_ ( __lowerCamelCase : int ): lowercase_ :Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase_ :List[Any] = name.replace("pretrained.model" ,"dpt.encoder" ) if "pretrained.model" in name: lowercase_ :Dict = name.replace("pretrained.model" ,"dpt.embeddings" ) if "patch_embed" in name: lowercase_ :List[Any] = name.replace("patch_embed" ,"patch_embeddings" ) if "pos_embed" in name: lowercase_ :Dict = name.replace("pos_embed" ,"position_embeddings" ) if "attn.proj" in name: lowercase_ :Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" ) if "proj" in name and "project" not in name: lowercase_ :int = name.replace("proj" ,"projection" ) if "blocks" in name: lowercase_ :Dict = name.replace("blocks" ,"layer" ) if "mlp.fc1" in name: lowercase_ :str = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: lowercase_ :Dict = name.replace("mlp.fc2" ,"output.dense" ) if "norm1" in name: lowercase_ :str = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: lowercase_ :List[Any] = name.replace("norm2" ,"layernorm_after" ) if "scratch.output_conv" in name: lowercase_ :Dict = name.replace("scratch.output_conv" ,"head" ) if "scratch" in name: lowercase_ :str = name.replace("scratch" ,"neck" ) if "layer1_rn" in name: lowercase_ :Dict = name.replace("layer1_rn" ,"convs.0" ) if "layer2_rn" in name: lowercase_ :Optional[Any] = name.replace("layer2_rn" ,"convs.1" ) if "layer3_rn" in name: lowercase_ :int = name.replace("layer3_rn" ,"convs.2" ) if "layer4_rn" in name: lowercase_ :List[Any] = name.replace("layer4_rn" ,"convs.3" ) if "refinenet" in name: lowercase_ :List[str] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase_ :Optional[int] = name.replace(F'refinenet{layer_idx}' ,F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: lowercase_ :str = name.replace("out_conv" ,"projection" ) if "resConfUnit1" in name: lowercase_ :Any = name.replace("resConfUnit1" ,"residual_layer1" ) if "resConfUnit2" in name: lowercase_ :List[str] = name.replace("resConfUnit2" ,"residual_layer2" ) if "conv1" in name: lowercase_ :str = name.replace("conv1" ,"convolution1" ) if "conv2" in name: lowercase_ :Optional[int] = name.replace("conv2" ,"convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase_ :Tuple = name.replace("pretrained.act_postprocess1.0.project.0" ,"neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase_ :Optional[int] = name.replace("pretrained.act_postprocess2.0.project.0" ,"neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase_ :Tuple = name.replace("pretrained.act_postprocess3.0.project.0" ,"neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase_ :List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" ,"neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase_ :str = name.replace("pretrained.act_postprocess1.3" ,"neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase_ :List[Any] = name.replace("pretrained.act_postprocess1.4" ,"neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase_ :Optional[int] = name.replace("pretrained.act_postprocess2.3" ,"neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase_ :Tuple = name.replace("pretrained.act_postprocess2.4" ,"neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase_ :List[str] = name.replace("pretrained.act_postprocess3.3" ,"neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase_ :Tuple = name.replace("pretrained.act_postprocess4.3" ,"neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase_ :List[str] = name.replace("pretrained.act_postprocess4.4" ,"neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase_ :List[Any] = name.replace("pretrained" ,"dpt" ) if "bn" in name: lowercase_ :Tuple = name.replace("bn" ,"batch_norm" ) if "head" in name: lowercase_ :Any = name.replace("head" ,"head.head" ) if "encoder.norm" in name: lowercase_ :str = name.replace("encoder.norm" ,"layernorm" ) if "auxlayer" in name: lowercase_ :Dict = name.replace("auxlayer" ,"auxiliary_head.head" ) return name def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : Any ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ :Optional[Any] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) lowercase_ :str = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase_ :Optional[Any] = in_proj_weight[: config.hidden_size, :] lowercase_ :Optional[Any] = in_proj_bias[: config.hidden_size] lowercase_ :Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ :Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowercase_ :int = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( ): lowercase_ :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ :List[str] = Image.open(requests.get(__lowerCamelCase ,stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int ): lowercase_ , lowercase_ :Optional[int] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL lowercase_ :Optional[int] = torch.hub.load_state_dict_from_url(__lowerCamelCase ,map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase_ :Optional[int] = state_dict.pop(__lowerCamelCase ) lowercase_ :Optional[int] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase ,__lowerCamelCase ) # load HuggingFace model lowercase_ :int = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image lowercase_ :int = 4_80 if "ade" in checkpoint_url else 3_84 lowercase_ :Any = DPTImageProcessor(size=__lowerCamelCase ) lowercase_ :Union[str, Any] = prepare_img() lowercase_ :Tuple = image_processor(__lowerCamelCase ,return_tensors="pt" ) # forward pass lowercase_ :Tuple = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth # Assert logits lowercase_ :List[str] = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: lowercase_ :Dict = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(__lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] ,__lowerCamelCase ,atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] ,__lowerCamelCase ) ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase ,__lowerCamelCase ) ,organization="nielsr" ,commit_message="Add model" ,use_temp_dir=__lowerCamelCase ,) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase ,__lowerCamelCase ) ,organization="nielsr" ,commit_message="Add image processor" ,use_temp_dir=__lowerCamelCase ,) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) lowerCAmelCase : List[Any] =parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
223
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a_ ( unittest.TestCase ): def __init__( self : List[str] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : int=7 , lowercase : List[str]=True , lowercase : int=True , lowercase : str=True , lowercase : Any=True , lowercase : List[str]=99 , lowercase : Union[str, Any]=32 , lowercase : Optional[Any]=5 , lowercase : Dict=4 , lowercase : Dict=37 , lowercase : Dict="gelu" , lowercase : Optional[int]=0.1 , lowercase : str=0.1 , lowercase : List[Any]=512 , lowercase : str=16 , lowercase : Dict=2 , lowercase : Any=0.02 , lowercase : Any=4 , ): """simple docstring""" lowercase_ :List[str] = parent lowercase_ :Any = batch_size lowercase_ :Dict = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Optional[int] = use_attention_mask lowercase_ :Any = use_token_type_ids lowercase_ :Union[str, Any] = use_labels lowercase_ :Dict = vocab_size lowercase_ :Tuple = hidden_size lowercase_ :Tuple = num_hidden_layers lowercase_ :Optional[int] = num_attention_heads lowercase_ :Optional[Any] = intermediate_size lowercase_ :str = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Tuple = max_position_embeddings lowercase_ :Any = type_vocab_size lowercase_ :int = type_sequence_label_size lowercase_ :Tuple = initializer_range lowercase_ :Optional[Any] = num_choices def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_attention_mask: lowercase_ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ :List[str] = None if self.use_token_type_ids: lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Any = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Union[str, Any] = config_and_inputs lowercase_ :Dict = True lowercase_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = True __A = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[Any] = FlaxBertModelTester(self ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :List[str] = FlaxBertModel.from_pretrained("bert-base-cased" ) lowercase_ :str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase )
223
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class UpperCamelCase__ ( A__ ): _SCREAMING_SNAKE_CASE : List[str] = 'mgp-str' def __init__(self : Optional[int] , snake_case_ : Union[str, Any]=[3_2, 1_2_8] , snake_case_ : str=4 , snake_case_ : Tuple=3 , snake_case_ : Optional[int]=2_7 , snake_case_ : Optional[int]=3_8 , snake_case_ : str=5_0_2_5_7 , snake_case_ : List[str]=3_0_5_2_2 , snake_case_ : List[Any]=7_6_8 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : List[Any]=1_2 , snake_case_ : Tuple=4.0 , snake_case_ : Any=True , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[Any]=1E-5 , snake_case_ : Optional[int]=0.0 , snake_case_ : str=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Optional[Any]=False , snake_case_ : Optional[Any]=0.02 , **snake_case_ : Optional[Any] , ): super().__init__(**lowerCamelCase__ ) __a : List[Any] = image_size __a : Optional[Any] = patch_size __a : Optional[int] = num_channels __a : str = max_token_length __a : Tuple = num_character_labels __a : Optional[Any] = num_bpe_labels __a : Any = num_wordpiece_labels __a : List[str] = hidden_size __a : List[str] = num_hidden_layers __a : Any = num_attention_heads __a : str = mlp_ratio __a : List[str] = distilled __a : List[Any] = layer_norm_eps __a : Optional[Any] = drop_rate __a : int = qkv_bias __a : int = attn_drop_rate __a : Optional[int] = drop_path_rate __a : Dict = output_aa_attentions __a : Optional[int] = initializer_range
357
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = PhobertTokenizer _SCREAMING_SNAKE_CASE : int = False def lowerCAmelCase (self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Optional[int] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __a : Tuple = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __a : int = ['''#version: 0.2''', '''l à</w>'''] __a : List[Any] = {'''unk_token''': '''<unk>'''} __a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def lowerCAmelCase (self : Union[str, Any] , **snake_case_ : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : Dict ): __a : Union[str, Any] = '''Tôi là VinAI Research''' __a : int = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowerCAmelCase (self : Optional[Any] ): __a : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : Any = '''Tôi là VinAI Research''' __a : Union[str, Any] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __a : List[str] = tokenizer.tokenize(snake_case_ ) print(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __a : str = tokens + [tokenizer.unk_token] __a : str = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
90
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''spiece.model'''} lowerCamelCase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } lowerCamelCase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } lowerCamelCase = '''▁''' class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, lowercase_, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_="[CLS]", lowercase_="[SEP]", lowercase_="<unk>", lowercase_="[SEP]", lowercase_="<pad>", lowercase_="[CLS]", lowercase_="[MASK]", lowercase_ = None, **lowercase_, ) -> None: """simple docstring""" a__ =( AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_, normalized=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else mask_token ) a__ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_, remove_space=lowercase_, keep_accents=lowercase_, bos_token=lowercase_, eos_token=lowercase_, unk_token=lowercase_, sep_token=lowercase_, pad_token=lowercase_, cls_token=lowercase_, mask_token=lowercase_, sp_model_kwargs=self.sp_model_kwargs, **lowercase_, ) a__ =do_lower_case a__ =remove_space a__ =keep_accents a__ =vocab_file a__ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def _UpperCAmelCase ( self ) -> int: """simple docstring""" return len(self.sp_model ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" a__ ={self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: """simple docstring""" a__ =self.__dict__.copy() a__ =None return state def __setstate__( self, lowercase_ ) -> Any: """simple docstring""" a__ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): a__ ={} a__ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self, lowercase_ ) -> int: """simple docstring""" if self.remove_space: a__ =''' '''.join(inputs.strip().split() ) else: a__ =inputs a__ =outputs.replace('''``''', '''"''' ).replace('''\'\'''', '''"''' ) if not self.keep_accents: a__ =unicodedata.normalize('''NFKD''', lowercase_ ) a__ =''''''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: a__ =outputs.lower() return outputs def _UpperCAmelCase ( self, lowercase_ ) -> List[str]: """simple docstring""" a__ =self.preprocess_text(lowercase_ ) a__ =self.sp_model.encode(lowercase_, out_type=lowercase_ ) a__ =[] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a__ =self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_, '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__ =cur_pieces[1:] else: a__ =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def _UpperCAmelCase ( self, lowercase_ ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(lowercase_ ) def _UpperCAmelCase ( self, lowercase_ ) -> int: """simple docstring""" return self.sp_model.IdToPiece(lowercase_ ) def _UpperCAmelCase ( self, lowercase_ ) -> Tuple: """simple docstring""" a__ =[] a__ ='''''' a__ =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token a__ =True a__ =[] else: current_sub_tokens.append(lowercase_ ) a__ =False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def _UpperCAmelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: """simple docstring""" a__ =[self.sep_token_id] a__ =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self, lowercase_, lowercase_ = None, lowercase_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_, token_ids_a=lowercase_, already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def _UpperCAmelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: """simple docstring""" a__ =[self.sep_token_id] a__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a__ =os.path.join( lowercase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_, '''wb''' ) as fi: a__ =self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
188
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCAmelCase__ ( _A : int = 3 ): '''simple docstring''' if isinstance(_A , _A ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_A ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) a__ =QuantumRegister(_A , '''qr''' ) a__ =ClassicalRegister(_A , '''cr''' ) a__ =QuantumCircuit(_A , _A ) a__ =number_of_qubits for i in range(_A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _A , _A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_A , _A ) # simulate with 10000 shots a__ =Aer.get_backend('''qasm_simulator''' ) a__ =execute(_A , _A , shots=1_00_00 ) return job.result().get_counts(_A ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
188
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=1_0 ): __a : List[str] = [] for _ in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any=1_0 ): __a : Optional[Any] = [] for step in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __a : Tuple = os.path.join(lowerCAmelCase__ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , lowerCAmelCase__ ) __a : Tuple = torch.load(lowerCAmelCase__ ) scheduler.load_state_dict(lowerCAmelCase__ ) return lrs @require_torch class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : str , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Any ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ ) def lowerCAmelCase (self : int ): __a : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) __a : Any = torch.tensor([0.4, 0.2, -0.5] ) __a : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a : Any = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): __a : List[str] = criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase (self : Tuple ): __a : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) __a : str = torch.tensor([0.4, 0.2, -0.5] ) __a : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a : str = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case_ , weight_decay=0.0 , relative_step=snake_case_ , scale_parameter=snake_case_ , warmup_init=snake_case_ , ) for _ in range(1_0_0_0 ): __a : Any = criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(50 ,50 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : Union[str, Any] = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : Any = 10 def lowerCAmelCase (self : Tuple , snake_case_ : str , snake_case_ : int , snake_case_ : int , snake_case_ : str=None ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ , msg=snake_case_ ) def lowerCAmelCase (self : List[str] ): __a : List[Any] = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __a : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __a , __a : List[str] = data __a : int = scheduler_func(self.optimizer , **snake_case_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __a : Dict = unwrap_schedule(snake_case_ , self.num_steps ) self.assertListAlmostEqual( snake_case_ , snake_case_ , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) __a : str = scheduler_func(self.optimizer , **snake_case_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case_ ) # wrap to test picklability of the schedule __a : Any = unwrap_and_save_reload_schedule(snake_case_ , self.num_steps ) self.assertListEqual(snake_case_ , snake_case_ , msg=f"failed for {scheduler_func} in save and reload" ) class UpperCamelCase__ : def __init__(self : str , snake_case_ : Dict ): __a : int = fn def __call__(self : str , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): return self.fn(*snake_case_ , **snake_case_ ) @classmethod def lowerCAmelCase (self : Optional[Any] , snake_case_ : Dict ): __a : List[Any] = list(map(self , scheduler.lr_lambdas ) )
90
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : Tuple ): __a : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=snake_case_ ).to(snake_case_ ) __a : List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __a : Optional[int] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __a : Dict = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __a : Optional[Any] = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss __a : Tuple = -(labels.shape[-1] * loss.item()) __a : Dict = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
90
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Union[str, Any] = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' while a != 0: _lowerCAmelCase , _lowerCAmelCase = b % a, a return b def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) != 1: _lowerCAmelCase = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1, 0, a _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 1, m while va != 0: _lowerCAmelCase = ua // va _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
158
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = 1 @register_to_config def __init__( self : Dict , UpperCAmelCase__ : int = 1_0_0_0 , UpperCAmelCase__ : Optional[Union[np.ndarray, List[float]]] = None ) -> Optional[int]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(UpperCAmelCase__ ) # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __SCREAMING_SNAKE_CASE = 4 # running values __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, torch.device] = None ) -> str: __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __SCREAMING_SNAKE_CASE = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __SCREAMING_SNAKE_CASE = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = torch.sin(steps * math.pi / 2 ) ** 2 __SCREAMING_SNAKE_CASE = (1.0 - self.betas**2) ** 0.5 __SCREAMING_SNAKE_CASE = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __SCREAMING_SNAKE_CASE = timesteps.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : int , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) __SCREAMING_SNAKE_CASE = (self.timesteps == timestep).nonzero().item() __SCREAMING_SNAKE_CASE = timestep_index + 1 __SCREAMING_SNAKE_CASE = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase__ ) if len(self.ets ) == 1: __SCREAMING_SNAKE_CASE = self.ets[-1] elif len(self.ets ) == 2: __SCREAMING_SNAKE_CASE = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __SCREAMING_SNAKE_CASE = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: __SCREAMING_SNAKE_CASE = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) __SCREAMING_SNAKE_CASE = self._get_prev_sample(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : int ) -> torch.FloatTensor: return sample def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> Any: __SCREAMING_SNAKE_CASE = self.alphas[timestep_index] __SCREAMING_SNAKE_CASE = self.betas[timestep_index] __SCREAMING_SNAKE_CASE = self.alphas[prev_timestep_index] __SCREAMING_SNAKE_CASE = self.betas[prev_timestep_index] __SCREAMING_SNAKE_CASE = (sample - sigma * ets) / max(UpperCAmelCase__ , 1E-8 ) __SCREAMING_SNAKE_CASE = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : str ) -> Optional[Any]: return self.config.num_train_timesteps
360
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R".*/layers_(\d+)" __SCREAMING_SNAKE_CASE = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = R"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase_ ) return s_dict a__ : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="./" , lowerCAmelCase_=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_params["target"] __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ , sep="/" ) __SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
195
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __snake_case ( ): """simple docstring""" A_ = [randint(-1000 ,1000 ) for i in range(10 )] A_ = randint(-5000 ,5000 ) return (arr, r) __a :Optional[int] = make_dataset() def __snake_case ( __UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" for triplet in permutations(__UpperCamelCase ,3 ): if sum(__UpperCamelCase ) == target: return tuple(sorted(__UpperCamelCase ) ) return (0, 0, 0) def __snake_case ( __UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" arr.sort() A_ = len(__UpperCamelCase ) for i in range(n - 1 ): A_ , A_ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __snake_case ( ): """simple docstring""" A_ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" A_ = "\ntriplet_sum1(*dataset)\n" A_ = "\ntriplet_sum2(*dataset)\n" A_ = repeat(setup=__UpperCamelCase ,stmt=__UpperCamelCase ,repeat=5 ,number=1_0000 ) A_ = repeat(setup=__UpperCamelCase ,stmt=__UpperCamelCase ,repeat=5 ,number=1_0000 ) return (min(__UpperCamelCase ), min(__UpperCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() __a :List[Any] = solution_times() print(F"The time for naive implementation is {times[0]}.") print(F"The time for optimized implementation is {times[1]}.")
312
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def lowercase_ (self : Tuple ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowercase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.dummy_uncond_unet UpperCAmelCase__ = ScoreSdeVeScheduler() UpperCAmelCase__ = ScoreSdeVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) sde_ve.to(__UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__UpperCAmelCase ).images UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__UpperCAmelCase , return_dict=__UpperCAmelCase )[ 0 ] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def lowercase_ (self : Tuple ) -> str: """simple docstring""" UpperCAmelCase__ = "google/ncsnpp-church-256" UpperCAmelCase__ = UNetaDModel.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = ScoreSdeVeScheduler.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = ScoreSdeVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) sde_ve.to(__UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = sde_ve(num_inference_steps=1_0 , output_type="numpy" , generator=__UpperCAmelCase ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCAmelCase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
143
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase__ = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = PegasusTokenizer __UpperCAmelCase : Any = ['input_ids', 'attention_mask'] def __init__(self : Optional[int] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=1_0_3 , **__UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is""" f""" {type(__UpperCAmelCase )}""" ) UpperCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase__ = additional_special_tokens_extended else: UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
143
1
from torch import nn def A ( a_ ) -> Any: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
71
import random from .binary_exp_mod import bin_exp_mod def A ( a_ ,a_=1_000 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCamelCase : List[Any] =n - 1 __UpperCamelCase : Dict =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCamelCase : Optional[Any] =0 while count < prec: __UpperCamelCase : Dict =random.randint(2 ,n - 1 ) __UpperCamelCase : Optional[Any] =bin_exp_mod(a_ ,a_ ,a_ ) if b != 1: __UpperCamelCase : List[str] =True for _ in range(a_ ): if b == n - 1: __UpperCamelCase : Tuple =False break __UpperCamelCase : Dict =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A_ :str = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
71
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : int | str ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def lowercase ( _SCREAMING_SNAKE_CASE : int = 100_0000 ): '''simple docstring''' _UpperCAmelCase = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> Optional[Any]: _lowercase : List[Any] = str(a_ ) return n == n[::-1] def _A ( snake_case = 1_00_00_00 ) -> str: _lowercase : List[Any] = 0 for i in range(1 , a_ ): if is_palindrome(a_ ) and is_palindrome(bin(a_ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
250
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Any = (3_2, 3_2) _UpperCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Union[str, Any] = DDPMScheduler() _UpperCAmelCase : str = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : int = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = "A painting of a squirrel eating a burger" _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase : Optional[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.dummy_cond_unet_upscale _UpperCAmelCase : Tuple = DDPMScheduler() _UpperCAmelCase : Dict = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : str = self.dummy_vae _UpperCAmelCase : Optional[Any] = self.dummy_text_encoder _UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : int = output.images assert image.shape[0] == 2 _UpperCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase : Tuple = unet.half() _UpperCAmelCase : Dict = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase : Tuple = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : str = StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "a cat sitting on a park bench" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Dict = "a cat sitting on a park bench" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : int = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Tuple = "a cat sitting on a park bench" _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
145
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
51
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Any = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) UpperCamelCase__ : Union[str, Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : List[Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCamelCase__ : Dict = DDPMScheduler() UpperCamelCase__ : List[Any] = AudioDiffusionPipeline(vqvae=lowerCamelCase__ , unet=self.dummy_unet , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : List[str] = pipe(generator=lowerCamelCase__ , steps=4 ) UpperCamelCase__ : Union[str, Any] = output.audios[0] UpperCamelCase__ : Any = output.images[0] UpperCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : int = pipe(generator=lowerCamelCase__ , steps=4 , return_dict=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase__ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : Any = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : str = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ : List[str] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCamelCase__ : Optional[Any] = DDIMScheduler() UpperCamelCase__ : Union[str, Any] = self.dummy_vqvae_and_unet UpperCamelCase__ : Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase__ : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCamelCase__ : Optional[int] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : Union[str, Any] = pipe(raw_audio=lowerCamelCase__ , generator=lowerCamelCase__ , start_step=5 , steps=10 ) UpperCamelCase__ : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase__ : List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ : Any = self.dummy_unet_condition UpperCamelCase__ : str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCamelCase__ , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase__ : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCamelCase__ : Union[str, Any] = torch.rand((1, 1, 10) ) UpperCamelCase__ : int = pipe(generator=lowerCamelCase__ , encoding=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = output.images[0] UpperCamelCase__ : List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : str = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = torch_device UpperCamelCase__ : Dict = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) UpperCamelCase__ : Optional[int] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(42 ) UpperCamelCase__ : Optional[Any] = pipe(generator=lowerCamelCase__ ) UpperCamelCase__ : Dict = output.audios[0] UpperCamelCase__ : Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase__ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCamelCase__ : List[Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
51
1
'''simple docstring''' from collections.abc import Generator def a_ ( ) -> Generator[int, None, None]: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = 0, 1 while True: __lowerCamelCase ,__lowerCamelCase : Dict = b, a + b yield b def a_ ( _lowerCAmelCase = 1000 ) -> int: __lowerCamelCase : Any = 1 __lowerCamelCase : str = fibonacci_generator() while len(str(next(_lowerCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
208
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCamelCase_ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowerCAmelCase__ ( self: str ): # If no defaults are changed, `to_kwargs` returns an empty dict. __lowerCamelCase = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() __lowerCamelCase = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __lowerCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , UpperCamelCase_ ) @require_multi_gpu def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase_ = torch.nn.Linear(100, 200) UpperCAmelCase_ = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase_ = '' UpperCAmelCase_ = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = HfArgumentParser(UpperCamelCase__ ) _a : int = parser.parse_args_into_dataclasses()[0] _a : Tuple = TensorFlowBenchmark(args=UpperCamelCase__ ) try: _a : Dict = parser.parse_args_into_dataclasses()[0] except ValueError as e: _a : List[Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" _a : List[str] = """ """.join(str(UpperCamelCase__ ).split(""" """ )[:-1] ) _a : Union[str, Any] = """""" _a : Dict = eval(str(UpperCamelCase__ ).split(""" """ )[-1] ) _a : Optional[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Dict = full_error_msg + begin_error_msg + str(UpperCamelCase__ ) raise ValueError(UpperCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
294
"""simple docstring""" import cva import numpy as np class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> Dict: if k in (0.0_4, 0.0_6): _a : List[str] = k _a : List[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Dict ) -> str: return str(self.k ) def _lowercase ( self : int , UpperCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]: _a : Dict = cva.imread(UpperCAmelCase__ , 0 ) _a , _a : List[Any] = img.shape _a : list[list[int]] = [] _a : List[Any] = img.copy() _a : int = cva.cvtColor(UpperCAmelCase__ , cva.COLOR_GRAY2RGB ) _a , _a : Any = np.gradient(UpperCAmelCase__ ) _a : Tuple = dx**2 _a : Union[str, Any] = dy**2 _a : Union[str, Any] = dx * dy _a : int = 0.0_4 _a : List[str] = self.window_size // 2 for y in range(UpperCAmelCase__ , h - offset ): for x in range(UpperCAmelCase__ , w - offset ): _a : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : Any = (wxx * wyy) - (wxy**2) _a : Tuple = wxx + wyy _a : Any = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case , _snake_case = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
294
1
def __lowerCAmelCase ( a__ = 100_0000 ) -> int: __a = set(range(3 , a__ , 2 ) ) primes.add(2 ) for p in range(3 , a__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , a__ , a__ ) ) ) __a = [float(a__ ) for n in range(limit + 1 )] for p in primes: for n in range(a__ , limit + 1 , a__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] ): A = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): A = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): A = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A = key[key.find('patch_embed' ) + len('patch_embed' )] A = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(snake_case__ )-1}' ) if "norm" in key: A = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] A = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(snake_case__ )-1}' ) if "layer_norm1" in key: A = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: A = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 A = key[key.find('block' ) + len('block' )] A = key.replace(F'block{idx}' , F'block.{int(snake_case__ )-1}' ) if "attn.q" in key: A = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: A = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: A = key.replace('attn' , 'attention.self' ) if "fc1" in key: A = key.replace('fc1' , 'dense1' ) if "fc2" in key: A = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: A = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: A = key.replace('linear_fuse.conv' , 'linear_fuse' ) A = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A = key[key.find('linear_c' ) + len('linear_c' )] A = key.replace(F'linear_c{idx}' , F'linear_c.{int(snake_case__ )-1}' ) if "bot_conv" in key: A = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: A = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: A = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: A = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: A = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: A = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: A = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): A = key.replace('module.last_layer_depth' , 'head.head' ) A = value return new_state_dict def _snake_case ( snake_case__ : List[Any] , snake_case__ : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) A = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict A = kv_weight[ : config.hidden_sizes[i], : ] A = kv_bias[: config.hidden_sizes[i]] A = kv_weight[ config.hidden_sizes[i] :, : ] A = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def _snake_case ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : str=False , snake_case__ : Union[str, Any]=None ): A = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) A = GLPNImageProcessor() # prepare image A = prepare_img() A = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict A = torch.load(snake_case__ , map_location=torch.device('cpu' ) ) # rename keys A = rename_keys(snake_case__ ) # key and value matrices need special treatment read_in_k_v(snake_case__ , snake_case__ ) # create HuggingFace model and load state dict A = GLPNForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # forward pass A = model(snake_case__ ) A = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: A = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: A = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) A = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case__ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=snake_case__ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=snake_case__ , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) _lowercase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
74
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[int]=0.999 , snake_case__ : Union[str, Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) A = [] for i in range(snake_case__ ): A = i / num_diffusion_timesteps A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [e.name for e in KarrasDiffusionSchedulers] _lowerCamelCase: Optional[Any] = 2 @register_to_config def __init__( self : str ,A_ : int = 1000 ,A_ : float = 0.0_00_85 ,A_ : float = 0.0_12 ,A_ : str = "linear" ,A_ : Optional[Union[np.ndarray, List[float]]] = None ,A_ : str = "epsilon" ,A_ : Optional[bool] = False ,A_ : Optional[bool] = False ,A_ : float = 1.0 ,A_ : str = "linspace" ,A_ : int = 0 ,) -> List[str]: if trained_betas is not None: A = torch.tensor(A_ ,dtype=torch.floataa ) elif beta_schedule == "linear": A = torch.linspace(A_ ,A_ ,A_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,A_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A = betas_for_alpha_bar(A_ ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": A = betas_for_alpha_bar(A_ ,alpha_transform_type='exp' ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) A = 1.0 - self.betas A = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(A_ ,A_ ,A_ ) A = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : Tuple=None ) -> Tuple: if schedule_timesteps is None: A = self.timesteps A = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A = 1 if len(A_ ) > 1 else 0 else: A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep A = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : torch.FloatTensor ,A_ : Union[float, torch.FloatTensor] ,) -> torch.FloatTensor: A = self.index_for_timestep(A_ ) A = self.sigmas[step_index] A = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : Union[str, torch.device] = None ,A_ : Optional[int] = None ,) -> Optional[Any]: A = num_inference_steps A = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A = np.linspace(0 ,num_train_timesteps - 1 ,A_ ,dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": A = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(0 ,A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(A_ ,0 ,-step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) A = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A = np.log(A_ ) A = np.interp(A_ ,np.arange(0 ,len(A_ ) ) ,A_ ) if self.config.use_karras_sigmas: A = self._convert_to_karras(in_sigmas=A_ ,num_inference_steps=self.num_inference_steps ) A = np.array([self._sigma_to_t(A_ ,A_ ) for sigma in sigmas] ) A = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A = torch.from_numpy(A_ ).to(device=A_ ) A = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A = torch.from_numpy(A_ ) A = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith('mps' ): # mps does not support float64 A = timesteps.to(A_ ,dtype=torch.floataa ) else: A = timesteps.to(device=A_ ) # empty dt and derivative A = None A = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A = defaultdict(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : List[str] ) -> Dict: # get log sigma A = np.log(A_ ) # get distribution A = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A = low_idx + 1 A = log_sigmas[low_idx] A = log_sigmas[high_idx] # interpolate sigmas A = (low - log_sigma) / (low - high) A = np.clip(A_ ,0 ,1 ) # transform interpolation to time range A = (1 - w) * low_idx + w * high_idx A = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : torch.FloatTensor ,A_ : int ) -> torch.FloatTensor: A = in_sigmas[-1].item() A = in_sigmas[0].item() A = 7.0 # 7.0 is the value used in the paper A = np.linspace(0 ,1 ,A_ ) A = sigma_min ** (1 / rho) A = sigma_max ** (1 / rho) A = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.dt is None def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : Union[float, torch.FloatTensor] ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : bool = True ,) -> Union[SchedulerOutput, Tuple]: A = self.index_for_timestep(A_ ) # advance index counter by 1 A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A = self.sigmas[step_index] A = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A = self.sigmas[step_index - 1] A = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A = 0 A = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A = sigma_hat if self.state_in_first_order else sigma_next A = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A = sigma_hat if self.state_in_first_order else sigma_next A = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: A = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A = sigma_next - sigma_hat # store for 2nd order step A = derivative A = dt A = sample else: # 2. 2nd order / Heun's method A = (sample - pred_original_sample) / sigma_next A = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A = self.dt A = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A = None A = None A = None A = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples A = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 A = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) A = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: A = self.timesteps.to(original_samples.device ) A = timesteps.to(original_samples.device ) A = [self.index_for_timestep(A_ ,A_ ) for t in timesteps] A = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A = sigma.unsqueeze(-1 ) A = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ) -> int: return self.config.num_train_timesteps
74
1
UpperCAmelCase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: '''simple docstring''' assert len(str(UpperCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case = year // 100 _snake_case = (5 * (century % 4) + 2) % 7 _snake_case = year % 100 _snake_case = centurian % 12 _snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
356
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : Tuple ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : Dict = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase__ : Optional[int] = get_sagemaker_input() else: UpperCamelCase__ : Dict = get_cluster_input() return config def SCREAMING_SNAKE_CASE ( __lowerCAmelCase=None ) -> List[str]: if subparsers is not None: UpperCamelCase__ : List[Any] = subparsers.add_parser("config" , description=__lowerCAmelCase ) else: UpperCamelCase__ : Any = argparse.ArgumentParser("Accelerate config command" , description=__lowerCAmelCase ) parser.add_argument( "--config_file" , default=__lowerCAmelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: UpperCamelCase__ : Union[str, Any] = get_user_input() if args.config_file is not None: UpperCamelCase__ : Tuple = args.config_file else: if not os.path.isdir(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__lowerCAmelCase ) else: config.to_yaml_file(__lowerCAmelCase ) print(f'accelerate configuration saved at {config_file}' ) def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : List[str] = config_command_parser() UpperCamelCase__ : Dict = parser.parse_args() config_command(__lowerCAmelCase ) if __name__ == "__main__": main()
189
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __a ( A__ ): _lowerCAmelCase : str = '''facebook/bart-large-mnli''' _lowerCAmelCase : Tuple = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) _lowerCAmelCase : Any = '''text_classifier''' _lowerCAmelCase : int = AutoTokenizer _lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification _lowerCAmelCase : Union[str, Any] = ['''text''', ['''text''']] _lowerCAmelCase : Dict = ['''text'''] def __lowercase ( self : int ): '''simple docstring''' super().setup() UpperCamelCase__ : Dict = self.model.config UpperCamelCase__ : Union[str, Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCamelCase__ : List[str] = int(SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = labels return self.pre_processor( [text] * len(SCREAMING_SNAKE_CASE ) , [F'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : List[Any] = outputs.logits UpperCamelCase__ : Any = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
189
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A (__lowerCamelCase :Namespace ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowercase = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _lowercase ( _lowercase ): """simple docstring""" _lowerCAmelCase = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=_lowercase , required=_lowercase , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=_lowercase , required=_lowercase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=_lowercase , required=_lowercase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=_lowercase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=_lowercase , default=_lowercase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase , ): """simple docstring""" _lowerCAmelCase = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F'Loading model {model_type}' ) _lowerCAmelCase = model_type _lowerCAmelCase = tf_checkpoint _lowerCAmelCase = pytorch_dump_output _lowerCAmelCase = config _lowerCAmelCase = finetuning_task_name def _lowercase ( self ): """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCAmelCase = self._tf_checkpoint _lowerCAmelCase = """""" else: _lowerCAmelCase = self._tf_checkpoint _lowerCAmelCase = """""" convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
229
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
229
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = s.rsplit(__lowerCamelCase, __lowerCamelCase ) return new.join(__lowerCamelCase ) def __a ( __lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase_ : Tuple = key.replace(f"""{group_key}.""", f"""{group_key}.group.""" ) if "res_path" in key: UpperCAmelCase_ : Optional[Any] = key.replace("res_path.", "res_path.path." ) if key.endswith(".w" ): UpperCAmelCase_ : Any = rreplace(__lowerCamelCase, ".w", ".weight", 1 ) if key.endswith(".b" ): UpperCAmelCase_ : Optional[Any] = rreplace(__lowerCamelCase, ".b", ".bias", 1 ) UpperCAmelCase_ : Optional[Any] = value.float() return upgrade @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=True ): from dall_e import Encoder UpperCAmelCase_ : Any = Encoder() if os.path.exists(__lowerCamelCase ): UpperCAmelCase_ : str = torch.load(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = torch.hub.load_state_dict_from_url(__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = ckpt.state_dict() encoder.load_state_dict(__lowerCamelCase ) if config_path is not None: UpperCAmelCase_ : int = FlavaImageCodebookConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : List[Any] = FlavaImageCodebookConfig() UpperCAmelCase_ : str = FlavaImageCodebook(__lowerCamelCase ).eval() UpperCAmelCase_ : Dict = encoder.state_dict() UpperCAmelCase_ : List[str] = upgrade_state_dict(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) UpperCAmelCase_ : List[str] = hf_model.state_dict() UpperCAmelCase_ : List[Any] = count_parameters(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase, __lowerCamelCase, atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
61
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase_ = "true" def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(SCREAMING_SNAKE_CASE__ ) A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) model.to(accelerator.device ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model, ddp_model, dataloader def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) A__ = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ): A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs with accelerator.main_process_first(): A__ = dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) A__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ ) A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches ) A__ = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' A__ = [] for batch in dataloader: A__ , A__ = batch.values() with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A__ , A__ = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE__ ) targs.append(SCREAMING_SNAKE_CASE__ ) A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ ) return logits, targs def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]: '''simple docstring''' A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert ( len(SCREAMING_SNAKE_CASE__ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}' def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str: '''simple docstring''' A__ = evaluate.load('glue' , 'mrpc' ) A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # First do baseline A__ , A__ , A__ = setup['no'] model.to(SCREAMING_SNAKE_CASE__ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE__ ) with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] ) A__ = metric.compute() # Then do distributed A__ , A__ , A__ = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) A__ = batch['labels'] A__ , A__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) A__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _snake_case( ) -> Optional[Any]: '''simple docstring''' A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) A__ = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 ) accelerator.state._reset_state() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
7
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): UpperCamelCase__ : Union[str, Any] = [image] UpperCamelCase__ : List[str] = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase__ : str = torch.stack(lowerCAmelCase__ ) return image class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A__ , scheduler=A__ ) def _A ( self : str , UpperCAmelCase_ : Union[str, Any] ): if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _A ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): # get the original timestep using init_timestep UpperCamelCase__ : List[str] = min(int(num_inference_steps * strength ) , A__ ) UpperCamelCase__ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _A ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=None ): if not isinstance(A__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(A__ )}''' ) UpperCamelCase__ : Optional[Any] = image.to(device=A__ , dtype=A__ ) if isinstance(A__ , A__ ) and len(A__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase__ : List[Any] = init_latents.shape UpperCamelCase__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) # get latents print("add noise to latents at timestep" , A__ ) UpperCamelCase__ : List[Any] = self.scheduler.add_noise(A__ , A__ , A__ ) UpperCamelCase__ : int = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : str = 0.8 , UpperCAmelCase_ : List[Any] = 1 , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : Dict = 0.0 , UpperCAmelCase_ : List[Any] = 50 , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : List[str] = "pil" , UpperCAmelCase_ : List[str] = True , ): self.check_inputs(A__ ) # 2. Preprocess image UpperCamelCase__ : str = preprocess(A__ ) # 3. set timesteps self.scheduler.set_timesteps(A__ , device=self.device ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.get_timesteps(A__ , A__ , self.device ) UpperCamelCase__ : Dict = timesteps[:1].repeat(A__ ) # 4. Prepare latent variables UpperCamelCase__ : str = self.prepare_latents(A__ , A__ , A__ , self.unet.dtype , self.device , A__ ) UpperCamelCase__ : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(A__ ): # 1. predict noise model_output UpperCamelCase__ : Union[str, Any] = self.unet(A__ , A__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase__ : int = self.scheduler.step( A__ , A__ , A__ , eta=A__ , use_clipped_model_output=A__ , generator=A__ , ).prev_sample UpperCamelCase__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : Dict = self.numpy_to_pil(A__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=A__ )
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): __UpperCAmelCase : Any = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) return image def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : int = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Optional[int] = dct.pop(__lowerCamelCase ) __UpperCAmelCase : Any = val def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase : str = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) __UpperCAmelCase : Optional[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __UpperCAmelCase : Optional[Any] = torch.cat((q_bias, torch.zeros_like(__lowerCamelCase , requires_grad=__lowerCamelCase ), v_bias) ) __UpperCAmelCase : str = qkv_bias def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): __UpperCAmelCase : Tuple = 364 if """coco""" in model_name else 224 __UpperCAmelCase : Optional[Any] = BlipaVisionConfig(image_size=__lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=__lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: __UpperCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=__lowerCamelCase ).to_dict() elif "t5-xl" in model_name: __UpperCAmelCase : Union[str, Any] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase : List[str] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() __UpperCAmelCase : int = BlipaConfig(vision_config=__lowerCamelCase , text_config=__lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=False ): __UpperCAmelCase : Optional[int] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) __UpperCAmelCase : Union[str, Any] = tokenizer("""\n""" , add_special_tokens=__lowerCamelCase ).input_ids[0] __UpperCAmelCase , __UpperCAmelCase : str = get_blipa_config(__lowerCamelCase , eos_token_id=__lowerCamelCase ) __UpperCAmelCase : Dict = BlipaForConditionalGeneration(__lowerCamelCase ).eval() __UpperCAmelCase : Optional[int] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __UpperCAmelCase : str = """cuda""" if torch.cuda.is_available() else """cpu""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = load_model_and_preprocess( name=__lowerCamelCase , model_type=__lowerCamelCase , is_eval=__lowerCamelCase , device=__lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys __UpperCAmelCase : Dict = original_model.state_dict() __UpperCAmelCase : Any = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase : int = state_dict.pop(__lowerCamelCase ) if key.startswith("""Qformer.bert""" ): __UpperCAmelCase : Dict = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __UpperCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: __UpperCAmelCase : Optional[int] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: __UpperCAmelCase : List[str] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): __UpperCAmelCase : Optional[int] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): __UpperCAmelCase : List[str] = key.replace("""t5""" , """language""" ) __UpperCAmelCase : int = val # read in qv biases read_in_q_v_bias(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : int = hf_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert len(__lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCAmelCase : str = load_demo_image() __UpperCAmelCase : Tuple = vis_processors["""eval"""](__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(__lowerCamelCase ) # create processor __UpperCAmelCase : Dict = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__lowerCamelCase , image_std=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = BlipaProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase ) __UpperCAmelCase : Any = processor(images=__lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(__lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowerCamelCase , __lowerCamelCase ) original_model.to(__lowerCamelCase ) hf_model.to(__lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: __UpperCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits __UpperCAmelCase : List[Any] = hf_model(__lowerCamelCase , __lowerCamelCase ).logits else: __UpperCAmelCase : Optional[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits __UpperCAmelCase : Union[str, Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __UpperCAmelCase : Union[str, Any] = hf_model(__lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCAmelCase : Optional[int] = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowerCamelCase ) else: # cast to same type __UpperCAmelCase : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(__lowerCamelCase ) , __lowerCamelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) __UpperCAmelCase : Dict = """""" __UpperCAmelCase : Dict = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids.to(__lowerCamelCase ) __UpperCAmelCase : Tuple = original_model.generate({"""image""": original_pixel_values} ) __UpperCAmelCase : Union[str, Any] = hf_model.generate( __lowerCamelCase , __lowerCamelCase , do_sample=__lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , __lowerCamelCase ) __UpperCAmelCase : List[Any] = input_ids.shape[1] __UpperCAmelCase : List[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowerCamelCase ) __UpperCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , __lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() a : str = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) a : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
114
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = "src/diffusers" a : str = "." # This is to make sure the diffusers module imported is the one in the repo. a : Tuple = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a : List[str] = spec.loader.load_module() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __lowerCamelCase ) is not None def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = object_name.split(""".""" ) __UpperCAmelCase : List[Any] = 0 # First let's find the module where our object lives. __UpperCAmelCase : Optional[Any] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase : List[str] = """""" __UpperCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase : List[str] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) a : Any = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a : Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") a : Dict = re.compile(r"<FILL\s+[^>]*>") def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[Any] = code.split("""\n""" ) __UpperCAmelCase : str = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCamelCase__ ( __lowerCamelCase : List[str] ): __UpperCAmelCase : Tuple = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __UpperCAmelCase : Optional[Any] = f"""class Bla:\n{code}""" __UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__lowerCamelCase ) __UpperCAmelCase : Dict = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = style_docstrings_in_code(__lowerCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=False ): with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = search.groups() __UpperCAmelCase : Any = find_code_in_diffusers(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = get_indent(__lowerCamelCase ) __UpperCAmelCase : Tuple = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase : Any = theoretical_indent __UpperCAmelCase : Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase : int = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __UpperCAmelCase : List[Any] = lines[line_index] __UpperCAmelCase : str = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(f"""^{indent}# End copy""" , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Optional[int] = lines[start_index:line_index] __UpperCAmelCase : int = """""".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase : Tuple = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __UpperCAmelCase : List[Any] = """\n""".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __UpperCAmelCase : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __UpperCAmelCase : Any = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = pattern.groups() __UpperCAmelCase : List[str] = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __UpperCAmelCase : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __UpperCAmelCase : int = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase : int = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase : Union[str, Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ ( __lowerCamelCase : bool = False ): __UpperCAmelCase : Tuple = glob.glob(os.path.join(__lowerCamelCase , """**/*.py""" ) , recursive=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] for filename in all_files: __UpperCAmelCase : str = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __UpperCAmelCase : Union[str, Any] = """\n""".join(__lowerCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
114
1
'''simple docstring''' from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """openai/whisper-base""" lowerCamelCase = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowerCamelCase = """transcriber""" lowerCamelCase = WhisperProcessor lowerCamelCase = WhisperForConditionalGeneration lowerCamelCase = ["""audio"""] lowerCamelCase = ["""text"""] def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(UpperCamelCase__ , return_tensors='''pt''' ).input_features def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.model.generate(inputs=UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.pre_processor.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )[0]
360
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: snake_case : int = json.load(SCREAMING_SNAKE_CASE__ ) snake_case : Any = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path snake_case : Any = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file snake_case : Dict = load_original_entity_vocab(SCREAMING_SNAKE_CASE__ ) # add an entry for [MASK2] snake_case : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : int = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Union[str, Any] = AddedToken('''<ent>''' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = AddedToken('''<ent2>''' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , '''tokenizer_config.json''' ) , '''r''' ) as f: snake_case : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = '''MLukeTokenizer''' with open(os.path.join(SCREAMING_SNAKE_CASE__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens snake_case : List[str] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] snake_case : List[str] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] snake_case : List[str] = state_dict['''embeddings.word_embeddings.weight'''] snake_case : int = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Dict = state_dict[bias_name] snake_case : Any = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : str = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[Any] = F'encoder.layer.{layer_index}.attention.self.' snake_case : int = state_dict[prefix + matrix_name] snake_case : Union[str, Any] = state_dict[prefix + matrix_name] snake_case : int = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] snake_case : Dict = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case : List[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[Any] = state_dict['''entity_predictions.bias'''] snake_case : Optional[int] = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : str = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) snake_case : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): snake_case : int = state_dict[key] else: snake_case : List[str] = state_dict[key] snake_case ,snake_case : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if set(SCREAMING_SNAKE_CASE__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[int] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task='''entity_classification''' ) snake_case : Tuple = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' snake_case : int = (0, 9) snake_case : str = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors='''pt''' ) snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Dict = torch.Size((1, 33, 768) ) snake_case : int = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : str = torch.Size((1, 1, 768) ) snake_case : Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = '''Tokyo is the capital of <mask>.''' snake_case : Union[str, Any] = (24, 30) snake_case : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors='''pt''' ) snake_case : int = model(**SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = encoding['''input_ids'''][0].tolist() snake_case : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) snake_case : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = outputs.entity_logits[0][0].argmax().item() snake_case : Dict = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> List[str]: '''simple docstring''' snake_case : Dict = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] snake_case : List[Any] = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in open(SCREAMING_SNAKE_CASE__ )] snake_case : Optional[int] = {} for entry in data: snake_case : Optional[Any] = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : List[str] = entity_id break snake_case : Any = F'{language}:{entity_name}' snake_case : List[str] = entity_id return new_mapping if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowercase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
83
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase = { '''facebook/blenderbot_small-90M''': 512, } class _a ( _lowercase): _a : Dict = VOCAB_FILES_NAMES _a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Dict = BlenderbotSmallTokenizer def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Tuple="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Any="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[Any]=True , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=_SCREAMING_SNAKE_CASE , merges=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , ) , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : List[str] = add_prefix_space def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any=None )-> Optional[int]: lowerCAmelCase__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
131
def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Any = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCAmelCase__ : Union[str, Any] = remove_duplicates(key.upper() ) lowerCAmelCase__ : Dict = len(_a ) # First fill cipher with key characters lowerCAmelCase__ : Any = {alphabet[i]: char for i, char in enumerate(_a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_a ) , 26 ): lowerCAmelCase__ : List[str] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase__ : str = alphabet[i - offset] lowerCAmelCase__ : Dict = char return cipher_alphabet def lowerCamelCase_ ( _a , _a ): """simple docstring""" return "".join(cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : int = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Any = input('''Enter message to encode or decode: ''' ).strip() lowerCAmelCase__ : Tuple = input('''Enter keyword: ''' ).strip() lowerCAmelCase__ : List[str] = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: lowerCAmelCase__ : List[Any] = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) lowerCAmelCase__ : Dict = create_cipher_map(_a ) print(func(_a , _a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
131
1
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Tuple = prime_factors(UpperCamelCase ) if is_square_free(UpperCamelCase ): return -1 if len(UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A: str = None A: List[Any] = logging.get_logger(__name__) A: Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A: Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A: Tuple = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off A: Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Tuple = ['input_ids', 'attention_mask'] __lowerCAmelCase : str = MBartTokenizer __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = vocab_file UpperCAmelCase : Optional[int] = False if not self.vocab_file else True UpperCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCAmelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : int = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase : List[str] = src_lang UpperCAmelCase : Union[str, Any] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : int = src_lang UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = [] UpperCAmelCase : Tuple = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Tuple = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : str = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return UpperCAmelCase : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
76
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _a ( a :Features ) -> Optional[int]: a = np.inf def set_batch_size(a :FeatureType ) -> None: nonlocal batch_size if isinstance(a , a ): a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(a , a ): a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(a , a ) and feature.dtype == "binary": a = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(a , a ) return None if batch_size is np.inf else batch_size class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : NestedDataStructureLike[PathLike] , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[Any] , ) ->List[Any]: """simple docstring""" super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} a = _PACKAGED_DATASETS_MODULES['''parquet'''][1] a = Parquet( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , hash=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" if self.streaming: a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a = None a = None a = None a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) a = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Dataset , __UpperCAmelCase : Union[PathLike, BinaryIO] , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[str] , ) ->Any: """simple docstring""" a = dataset a = path_or_buf a = batch_size or get_writer_batch_size(dataset.features ) a = parquet_writer_kwargs def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: a = self._write(file_obj=__UpperCAmelCase , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs ) else: a = self._write(file_obj=self.path_or_buf , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : BinaryIO , __UpperCAmelCase : int , **__UpperCAmelCase : List[str] ) ->int: """simple docstring""" a = 0 a = parquet_writer_kwargs.pop('''path_or_buf''' , __UpperCAmelCase ) a = self.dataset.features.arrow_schema a = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase , **__UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __UpperCAmelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): a = query_table( table=self.dataset._data , key=slice(__UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__UpperCAmelCase ) written += batch.nbytes writer.close() return written
0
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE = 1_000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
153
0
"""simple docstring""" class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self): __SCREAMING_SNAKE_CASE = {} # Mapping from char to TrieNode __SCREAMING_SNAKE_CASE = False def snake_case_ ( self , lowerCAmelCase__): for word in words: self.insert(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self for char in word: if char not in curr.nodes: __SCREAMING_SNAKE_CASE = TrieNode() __SCREAMING_SNAKE_CASE = curr.nodes[char] __SCREAMING_SNAKE_CASE = True def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self for char in word: if char not in curr.nodes: return False __SCREAMING_SNAKE_CASE = curr.nodes[char] return curr.is_leaf def snake_case_ ( self , lowerCAmelCase__): def _delete(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) -> bool: if index == len(lowerCAmelCase__): # If word does not exist if not curr.is_leaf: return False __SCREAMING_SNAKE_CASE = False return len(curr.nodes) == 0 __SCREAMING_SNAKE_CASE = word[index] __SCREAMING_SNAKE_CASE = curr.nodes.get(lowerCAmelCase__) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __SCREAMING_SNAKE_CASE = _delete(lowerCAmelCase__ , lowerCAmelCase__ , index + 1) if delete_curr: del curr.nodes[char] return len(curr.nodes) == 0 return delete_curr _delete(self , lowerCAmelCase__ , 0) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if node.is_leaf: print(UpperCamelCase_ , end=""" """ ) for key, value in node.nodes.items(): print_words(UpperCamelCase_ , word + key ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = """banana bananas bandana band apple all beast""".split() __SCREAMING_SNAKE_CASE = TrieNode() root.insert_many(UpperCamelCase_ ) # print_words(root, "") assert all(root.find(UpperCamelCase_ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): print(str(UpperCamelCase_ ) , """works!""" if passes else """doesn't work :(""" ) def _lowerCAmelCase ( ): assert test_trie() def _lowerCAmelCase ( ): print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
255
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Any = RoCBertTokenizer __lowercase : List[str] = None __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = True __lowercase : int = filter_non_english def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} for i, value in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(lowerCAmelCase__ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = RoCBertWordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def snake_case_ ( self): self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def snake_case_ ( self): self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def snake_case_ ( self): self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def snake_case_ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , """do_lower_case""") else False __SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __SCREAMING_SNAKE_CASE = tokenizer.encode("""你好""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""你是谁""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): __SCREAMING_SNAKE_CASE = """你好,你是谁""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.prepare_for_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
255
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } SCREAMING_SNAKE_CASE_ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = VOCAB_FILES_NAMES __snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : int = "left" def __init__( self : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str=False ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : Union[str, Any]="<s>" ,lowerCamelCase__ : int="</s>" ,lowerCamelCase__ : Any="<unk>" ,lowerCamelCase__ : str="<sep>" ,lowerCamelCase__ : Tuple="<pad>" ,lowerCamelCase__ : Optional[int]="<cls>" ,lowerCamelCase__ : Any="<mask>" ,lowerCamelCase__ : Union[str, Any]=["<eop>", "<eod>"] ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,**lowerCamelCase__ : Union[str, Any] ,) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[str] ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : int ) -> Any: '''simple docstring''' if self.remove_space: SCREAMING_SNAKE_CASE = """ """.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE = inputs SCREAMING_SNAKE_CASE = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKD""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """""".join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.preprocess_text(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.sp_model.encode(lowerCamelCase__ ,out_type=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE = cur_pieces[1:] else: SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ).replace(lowerCamelCase__ ,""" """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : bool = True ,**lowerCamelCase__ : List[Any] ,) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.pop("""use_source_tokenizer""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = [] sub_texts.append(lowerCamelCase__ ) else: current_sub_text.append(lowerCamelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE = self.clean_up_tokenization(lowerCamelCase__ ) return clean_text else: return text def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ ,"""wb""" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
296
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("""_""" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 1_28 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_18_41 else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split(""".""" ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
296
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowerCamelCase(__UpperCamelCase ) -> str: if "://" in dataset_path: _lowerCAmelCase =dataset_path.split("""://""" )[1] return dataset_path def _lowerCamelCase(__UpperCamelCase ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: _lowerCAmelCase =not is_remote_filesystem(_lowerCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowerCAmelCase ) , fs._strip_protocol(_lowerCAmelCase ) ) else: fs.mv(_lowerCAmelCase , _lowerCAmelCase , recursive=_lowerCAmelCase ) def _lowerCamelCase() -> None: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =threading.Lock()
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
def UpperCamelCase ( __lowercase : int ,__lowercase : int ): '''simple docstring''' while a != 0: A_ , A_ : Union[str, Any] = b % a, a return b def UpperCamelCase ( __lowercase : int ,__lowercase : int ): '''simple docstring''' if gcd(__lowercase ,__lowercase ) != 1: A_ : Any = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(__lowercase ) A_ , A_ , A_ : Union[str, Any] = 1, 0, a A_ , A_ , A_ : Optional[int] = 0, 1, m while va != 0: A_ : Tuple = ua // va A_ , A_ , A_ , A_ , A_ , A_ : Optional[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
140
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if hor == 1_28: A_ : List[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Tuple = (32, 1_28, 2_56) A_ : Optional[int] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A_ : Union[str, Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Any = (32, 64, 1_28, 2_56) A_ : int = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A_ : List[str] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A_ : List[Any] = model.state_dict() A_ : List[str] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[Any] = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : Optional[int] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Any = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A_ : Union[str, Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A_ : List[Any] = model A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[int] = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : List[str] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
140
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : List[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } lowercase__ : Any = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[Any] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Optional[Any] = getattr(_a , _a ).shape else: snake_case_ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : str = value elif weight_type == "weight_g": snake_case_ : Any = value elif weight_type == "weight_v": snake_case_ : Optional[int] = value elif weight_type == "bias": snake_case_ : List[Any] = value else: snake_case_ : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowercase ( _a , _a ): snake_case_ : str = [] snake_case_ : Optional[Any] = fairseq_model.state_dict() snake_case_ : List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : int = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ : Dict = True else: for key, mapped_key in MAPPING.items(): snake_case_ : Optional[int] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue snake_case_ : Tuple = True if "*" in mapped_key: snake_case_ : Dict = name.split(_a )[0].split('''.''' )[-2] snake_case_ : int = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : str = '''weight_g''' elif "weight_v" in name: snake_case_ : Dict = '''weight_v''' elif "bias" in name: snake_case_ : Tuple = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : Optional[Any] = '''weight''' else: snake_case_ : Tuple = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) def __lowercase ( _a , _a , _a , _a , _a ): snake_case_ : Optional[Any] = full_name.split('''conv_layers.''' )[-1] snake_case_ : Optional[Any] = name.split('''.''' ) snake_case_ : str = int(items[0] ) snake_case_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case_ : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) snake_case_ : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case_ : str = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_a ) @torch.no_grad() def __lowercase ( _a , _a , _a=None , _a=None , _a=True ): if config_path is not None: snake_case_ : Any = UniSpeechSatConfig.from_pretrained(_a ) else: snake_case_ : str = UniSpeechSatConfig() snake_case_ : Dict = '''''' if is_finetuned: snake_case_ : Optional[Any] = UniSpeechSatForCTC(_a ) else: snake_case_ : Optional[int] = UniSpeechSatForPreTraining(_a ) snake_case_, snake_case_, snake_case_ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) snake_case_ : Tuple = model[0].eval() recursively_load_weights(_a , _a ) hf_wavavec.save_pretrained(_a ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowercase__ : List[str] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
155
"""simple docstring""" def __lowercase ( _a , _a ): return base * power(_a , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') lowercase__ : Optional[Any] = int(input('''Enter the base: ''').strip()) lowercase__ : int = int(input('''Enter the exponent: ''').strip()) lowercase__ : int = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowercase__ : Any = 1 / result print(f'{base} to the power of {exponent} is {result}')
155
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase : Optional[Any] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCamelCase_ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' A__ = load_tool('''text-question-answering''') self.tool.setup() A__ = load_tool('''text-question-answering''' , remote=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = self.remote_tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = self.tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = self.remote_tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''')
14
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a : Dict , a : Optional[int]=13 , a : List[str]=7 , a : int=True , a : List[Any]=True , a : List[Any]=True , a : Tuple=True , a : Union[str, Any]=99 , a : str=16 , a : Union[str, Any]=36 , a : Optional[Any]=6 , a : Dict=6 , a : Optional[int]=6 , a : int=37 , a : str="gelu" , a : str=0.1 , a : List[str]=0.1 , a : Optional[int]=512 , a : Optional[Any]=16 , a : Union[str, Any]=2 , a : Union[str, Any]=0.02 , a : Dict=3 , a : Optional[Any]=4 , a : List[str]=None , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = embedding_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_hidden_groups lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[int]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : List[Any] , a : Optional[Any] , a : Optional[int] , a : Tuple , a : int , a : Union[str, Any] )-> Any: """simple docstring""" lowercase__ = AlbertModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowercase__ = model(_snake_case , token_type_ids=_snake_case ) lowercase__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : str , a : Tuple , a : List[Any] , a : Union[str, Any] , a : List[str] )-> str: """simple docstring""" lowercase__ = AlbertForPreTraining(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , sentence_order_label=_snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Union[str, Any] , a : Union[str, Any] , a : Optional[int] , a : str , a : Tuple , a : Any , a : Tuple )-> Dict: """simple docstring""" lowercase__ = AlbertForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Union[str, Any] , a : List[Any] , a : Tuple , a : str , a : Optional[int] , a : Tuple , a : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = AlbertForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : Any , a : Optional[Any] , a : List[str] , a : Optional[Any] , a : int , a : Union[str, Any] , a : Optional[int] )-> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = AlbertForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Optional[int] , a : Optional[int] , a : Dict , a : Union[str, Any] , a : Tuple , a : Union[str, Any] , a : Optional[int] )-> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = AlbertForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Optional[Any] , a : Tuple , a : Any , a : int , a : List[str] , a : List[Any] , a : Tuple )-> Any: """simple docstring""" lowercase__ = self.num_choices lowercase__ = AlbertForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Any = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : int = True def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Any , a : List[str] , a : int=False )-> Optional[Any]: """simple docstring""" lowercase__ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class in get_values(_snake_case ): lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" lowercase__ = AlbertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AlbertModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" lowercase__ = AlbertModel.from_pretrained('albert-base-v2' ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ = model(_snake_case , attention_mask=_snake_case )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _snake_case ) lowercase__ = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1E-4 ) )
361
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'transfo-xl' _UpperCamelCase : Any = ['mems'] _UpperCamelCase : Any = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Optional[int]=267_735 , a : str=[20_000, 40_000, 200_000] , a : str=1_024 , a : str=1_024 , a : int=16 , a : Optional[int]=64 , a : Optional[int]=4_096 , a : int=4 , a : Tuple=False , a : Any=18 , a : Tuple=1_600 , a : Union[str, Any]=1_000 , a : str=True , a : Dict=True , a : Any=0 , a : List[Any]=-1 , a : List[Any]=True , a : Tuple=0.1 , a : List[Any]=0.0 , a : Optional[Any]=True , a : int="normal" , a : Optional[Any]=0.01 , a : str=0.01 , a : List[Any]=0.02 , a : List[Any]=1E-5 , a : Optional[Any]=0 , **a : Optional[int] , )-> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(a ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] )-> Optional[int]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ = 4_000_000 ): """simple docstring""" A__ = [] A__ , A__ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCamelCase__ ) A__ , A__ = b, a + b return sum(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
221
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 2_55 ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: A__ = get_resize_output_image_size(__UpperCAmelCase ,size['shortest_edge'] ,default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase ,size=(size['height'], size['width']) ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> Optional[Any]: A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: return normalize(__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(__UpperCAmelCase ) if do_resize: A__ = self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) if do_center_crop: A__ = self.center_crop(__UpperCAmelCase ,size=__UpperCAmelCase ) if do_rescale: A__ = self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ,offset=__UpperCAmelCase ) if do_normalize: A__ = self.normalize(image=__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ) A__ = to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) return image def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(__UpperCAmelCase ) A__ = [ [ self._preprocess_image( image=__UpperCAmelCase ,do_resize=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,do_center_crop=__UpperCAmelCase ,crop_size=__UpperCAmelCase ,do_rescale=__UpperCAmelCase ,rescale_factor=__UpperCAmelCase ,offset=__UpperCAmelCase ,do_normalize=__UpperCAmelCase ,image_mean=__UpperCAmelCase ,image_std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
221
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : List[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = ['''MobileViTFeatureExtractor'''] lowerCAmelCase_ : str = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
170
'''simple docstring''' from __future__ import annotations def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
170
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _a ( UpperCamelCase_ : int="" ) -> str: """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() return os.path.join(UpperCamelCase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase__ = AgentAudio(__UpperCAmelCase ) lowerCAmelCase__ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__UpperCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__UpperCAmelCase ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase__ , lowerCAmelCase__ = sf.read(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , torch.tensor(__UpperCAmelCase ) , atol=1E-4 ) ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase__ = get_new_path(suffix=".wav" ) sf.write(__UpperCAmelCase , __UpperCAmelCase , 16000 ) lowerCAmelCase__ = AgentAudio(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , __UpperCAmelCase ) @require_vision @require_torch class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = torch.randint(0 , 256 , (64, 64, 3) ) lowerCAmelCase__ = AgentImage(__UpperCAmelCase ) lowerCAmelCase__ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__UpperCAmelCase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__UpperCAmelCase ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowerCAmelCase__ = Image.open(__UpperCAmelCase ) lowerCAmelCase__ = AgentImage(__UpperCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__UpperCAmelCase ) ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowerCAmelCase__ = Image.open(__UpperCAmelCase ) lowerCAmelCase__ = AgentImage(__UpperCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__UpperCAmelCase ) ) class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = "Hey!" lowerCAmelCase__ = AgentText(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , agent_type.to_string() ) self.assertEqual(__UpperCAmelCase , agent_type.to_raw() ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
340
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Dict = DebertaTokenizer __lowercase : List[Any] = True __lowercase : Tuple = DebertaTokenizerFast def __UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase = {'unk_token': '[UNK]'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = 'lower newer' UpperCamelCase = 'lower newer' return input_text, output_text def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = 'lower newer' UpperCamelCase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer('Hello' , 'World' ) UpperCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , A_ ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) UpperCamelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) UpperCamelCase = tokenizer.encode( 'sequence builders' , add_special_tokens=A_ , add_prefix_space=A_ ) UpperCamelCase = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=A_ , add_prefix_space=A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase = tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] UpperCamelCase = tokenizer(A_ , padding=A_ ) UpperCamelCase = [tokenizer.decode(A_ , skip_special_tokens=A_ ) for seq in encoding['input_ids']] # fmt: off UpperCamelCase = { 'input_ids': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , A_ ) for expected, decoded in zip(A_ , A_ ): self.assertEqual(A_ , A_ )
367
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> int: '''simple docstring''' UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) return image def A ( lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def A ( lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = dct.pop(lowercase ) UpperCamelCase = val def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) UpperCamelCase = qkv_bias def A ( lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 364 if 'coco' in model_name else 224 UpperCamelCase = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def A ( lowercase , lowercase=None , lowercase=False ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase = tokenizer('\n' , add_special_tokens=lowercase ).input_ids[0] UpperCamelCase , UpperCamelCase = get_blipa_config(lowercase , eos_token_id=lowercase ) UpperCamelCase = BlipaForConditionalGeneration(lowercase ).eval() UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase = original_model.state_dict() UpperCamelCase = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase = state_dict.pop(lowercase ) if key.startswith('Qformer.bert' ): UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase = key.replace('t5' , 'language' ) UpperCamelCase = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) UpperCamelCase , UpperCamelCase = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase = load_demo_image() UpperCamelCase = vis_processors['eval'](lowercase ).unsqueeze(0 ).to(lowercase ) UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowercase ) # create processor UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase , image_std=lowercase ) UpperCamelCase = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) UpperCamelCase = processor(images=lowercase , return_tensors='pt' ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase = hf_model(lowercase , lowercase ).logits else: UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowercase ) else: # cast to same type UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase = '' UpperCamelCase = tokenizer(lowercase , return_tensors='pt' ).input_ids.to(lowercase ) UpperCamelCase = original_model.generate({'image': original_pixel_values} ) UpperCamelCase = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowercase ) UpperCamelCase = input_ids.shape[1] UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() _UpperCAmelCase : str = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _UpperCAmelCase : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
110
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowercase__ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' lowercase__ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' lowercase__ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase=None , lowercase=True , lowercase=False) -> Union[str, Any]: '''simple docstring''' if rouge_types is None: a__: Union[str, Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__: Any = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase) if use_aggregator: a__: Dict = scoring.BootstrapAggregator() else: a__: Optional[Any] = [] for ref, pred in zip(lowercase , lowercase): a__: List[str] = scorer.score(lowercase , lowercase) if use_aggregator: aggregator.add_scores(lowercase) else: scores.append(lowercase) if use_aggregator: a__: List[str] = aggregator.aggregate() else: a__: Any = {} for key in scores[0]: a__: Optional[Any] = [score[key] for score in scores] return result
290
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowercase__ = TypeVar('T') lowercase__ = Union[List[T], Tuple[T, ...]] lowercase__ = Union[T, List[T], Dict[str, T]] lowercase__ = Union[str, bytes, os.PathLike]
290
1
"""simple docstring""" def snake_case_ ( A_ : list ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A_ ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(A_ ) == 1: return True _lowerCamelCase : Optional[int] = series[1] - series[0] for index in range(len(A_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def snake_case_ ( A_ : list ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A_ ) == 0: raise ValueError('''Input list must be a non empty list''' ) _lowerCamelCase : List[str] = 0 for val in series: answer += val return answer / len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
175
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __snake_case ( _lowercase): snake_case__ : List[Any] = "xglm" snake_case__ : Dict = ["past_key_values"] snake_case__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __lowerCAmelCase : List[Any]=2_5_6_0_0_8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : Dict=1_0_2_4 , __lowerCAmelCase : List[str]=4_0_9_6 , __lowerCAmelCase : Tuple=2_4 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : int = d_model _lowerCamelCase : Optional[Any] = ffn_dim _lowerCamelCase : Any = num_layers _lowerCamelCase : Union[str, Any] = attention_heads _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Union[str, Any] = dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : List[str] = init_std _lowerCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : str = use_cache super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
175
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _A ( lowercase__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _A ( lowercase__ ): # word like '180' or '身高' or '神' for char in word: lowercase__ = ord(lowercase__ ) if not _is_chinese_char(lowercase__ ): return 0 return 1 def _A ( lowercase__ ): lowercase__ = set() for token in tokens: lowercase__ = len(lowercase__ ) > 1 and is_chinese(lowercase__ ) if chinese_word: word_set.add(lowercase__ ) lowercase__ = list(lowercase__ ) return word_list def _A ( lowercase__ , lowercase__ ): if not chinese_word_set: return bert_tokens lowercase__ = max([len(lowercase__ ) for w in chinese_word_set] ) lowercase__ = bert_tokens lowercase__ , lowercase__ = 0, len(lowercase__ ) while start < end: lowercase__ = True if is_chinese(bert_word[start] ): lowercase__ = min(end - start , lowercase__ ) for i in range(lowercase__ , 1 , -1 ): lowercase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase__ = """##""" + bert_word[j] lowercase__ = start + i lowercase__ = False break if single_word: start += 1 return bert_word def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = [] for i in range(0 , len(lowercase__ ) , 100 ): lowercase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowercase__ = [get_chinese_word(lowercase__ ) for r in res] ltp_res.extend(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) lowercase__ = [] for i in range(0 , len(lowercase__ ) , 100 ): lowercase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowercase__ , truncation=lowercase__ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(lowercase__ ) == len(lowercase__ ) lowercase__ = [] for input_ids, chinese_word in zip(lowercase__ , lowercase__ ): lowercase__ = [] for id in input_ids: lowercase__ = bert_tokenizer._convert_id_to_token(lowercase__ ) input_tokens.append(lowercase__ ) lowercase__ = add_sub_symbol(lowercase__ , lowercase__ ) lowercase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase__ ): if token[:2] == "##": lowercase__ = token[2:] # save chinese tokens' pos if len(lowercase__ ) == 1 and _is_chinese_char(ord(lowercase__ ) ): ref_id.append(lowercase__ ) ref_ids.append(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) return ref_ids def _A ( lowercase__ ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase__ = f.readlines() lowercase__ = [line.strip() for line in data if len(lowercase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase__ = LTP(args.ltp ) # faster in GPU device lowercase__ = BertTokenizer.from_pretrained(args.bert ) lowercase__ = prepare_ref(lowercase__ , lowercase__ , lowercase__ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase__ = [json.dumps(lowercase__ ) + """\n""" for ref in ref_ids] f.writelines(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __A = parser.parse_args() main(args)
164
"""simple docstring""" import requests UpperCAmelCase__ = """""" # <-- Put your OpenWeatherMap appid here! UpperCAmelCase__ = """https://api.openweathermap.org/data/2.5/""" def __UpperCAmelCase ( lowercase = "Chicago" ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """weather""" ,params=locals() ).json() def __UpperCAmelCase ( lowercase = "Kolkata, India" ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """forecast""" ,params=locals() ).json() def __UpperCAmelCase ( lowercase = 55.68 ,lowercase = 12.57 ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """onecall""" ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase__ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
289
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow a = False class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Any=32 ): set_seed(0 ) _A = UNetaDModel(sample_size=_A , in_channels=3 , out_channels=3 ) _A = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def lowerCAmelCase_ ( self : Any ): _A = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _A = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_A , ) _A = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_A , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _A = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_A ) for _ in range(4 )] _A = [torch.randn((4, 3, 32, 32) ).to(_A ) for _ in range(4 )] _A = [torch.randint(0 , 1_000 , (4,) ).long().to(_A ) for _ in range(4 )] # train with a DDPM scheduler _A = self.get_model_optimizer(resolution=32 ) model.train().to(_A ) for i in range(4 ): optimizer.zero_grad() _A = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _A = model(_A , timesteps[i] ).sample _A = torch.nn.functional.mse_loss(_A , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _A = self.get_model_optimizer(resolution=32 ) model.train().to(_A ) for i in range(4 ): optimizer.zero_grad() _A = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _A = model(_A , timesteps[i] ).sample _A = torch.nn.functional.mse_loss(_A , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) ) self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) )
350
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a = logging.getLogger(__name__) def _snake_case ( _snake_case : str , _snake_case : Tuple ) -> Any: '''simple docstring''' if os.path.exists(_snake_case ): if os.path.exists(os.path.join(_snake_case , 'config.json' ) ) and os.path.isfile( os.path.join(_snake_case , 'config.json' ) ): os.remove(os.path.join(_snake_case , 'config.json' ) ) if os.path.exists(os.path.join(_snake_case , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_snake_case , 'pytorch_model.bin' ) ): os.remove(os.path.join(_snake_case , 'pytorch_model.bin' ) ) else: os.makedirs(_snake_case ) model.save_pretrained(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[int]=False ) -> Tuple: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(_snake_case , _snake_case ) _A = p * torch.log(_snake_case ) _A = 0 return -plogp.sum(dim=-1 ) def _snake_case ( _snake_case : Optional[Any] ) -> int: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(_snake_case ) ) ) ) for row in range(len(_snake_case ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _snake_case ( _snake_case : List[str] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Union[str, Any]=True , _snake_case : Any=True , _snake_case : List[str]=None , _snake_case : List[Any]=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(_snake_case , _snake_case ).to(args.device ) _A = torch.zeros(_snake_case , _snake_case ).to(args.device ) if head_mask is None: _A = torch.ones(_snake_case , _snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=_snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(_snake_case , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(_snake_case , labels=_snake_case , head_mask=_snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_snake_case ): _A = entropy(attn.detach() , _snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(_snake_case , _snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_snake_case ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_snake_case ) logger.info('Head ranked by importance scores' ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(_snake_case ) print_ad_tensor(_snake_case ) return attn_entropy, head_importance, total_loss def _snake_case ( _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(_snake_case , _snake_case , _snake_case , compute_entropy=_snake_case ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _snake_case , original_score * args.masking_threshold ) _A = torch.ones_like(_snake_case ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float('Inf' ) _A = head_importance.view(-1 ).sort()[1] if len(_snake_case ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(_snake_case ) _A = new_head_mask.clone().detach() print_ad_tensor(_snake_case ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , head_mask=_snake_case ) _A = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(_snake_case ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , compute_importance=_snake_case , head_mask=_snake_case ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(_snake_case , _snake_case ): _A = [ v, ] assert sum(len(_snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_snake_case ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , compute_importance=_snake_case , head_mask=_snake_case , actually_pruned=_snake_case , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _snake_case , _snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _snake_case , _snake_case ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(_snake_case , args.output_dir ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_snake_case , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_snake_case , type=_snake_case , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_snake_case , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_snake_case , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_snake_case , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_snake_case , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=_snake_case , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_snake_case , help='Batch size.' ) parser.add_argument('--seed' , type=_snake_case , default=42 ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device('cuda' , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( _snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_snake_case ) elif args.n_gpu > 1: _A = nn.DataParallel(_snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_snake_case ) torch.save(_snake_case , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _snake_case ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(_snake_case ),) _A = TensorDataset(*_snake_case ) _A = RandomSampler(_snake_case ) _A = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_snake_case , _snake_case , _snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(_snake_case , _snake_case , _snake_case ) prune_heads(_snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": main()
271
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase__ = '''.''' if __name__ == "__main__": UpperCAmelCase__ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCAmelCase__ = [] UpperCAmelCase__ = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase__ = line.strip() UpperCAmelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase__ = '''\n'''.join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
5
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
274
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ) -> str: lowerCAmelCase_ :Union[str, Any] = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :List[Any] = seq_length lowerCAmelCase_ :List[str] = is_training lowerCAmelCase_ :List[Any] = use_input_mask lowerCAmelCase_ :Any = use_token_type_ids lowerCAmelCase_ :Dict = use_labels lowerCAmelCase_ :str = vocab_size lowerCAmelCase_ :Tuple = hidden_size lowerCAmelCase_ :Any = num_hidden_layers lowerCAmelCase_ :Union[str, Any] = num_attention_heads lowerCAmelCase_ :Any = intermediate_size lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :str = hidden_dropout_prob lowerCAmelCase_ :Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ :Any = max_position_embeddings lowerCAmelCase_ :Any = type_vocab_size lowerCAmelCase_ :Union[str, Any] = type_sequence_label_size lowerCAmelCase_ :Dict = initializer_range lowerCAmelCase_ :List[str] = num_labels lowerCAmelCase_ :List[Any] = num_choices lowerCAmelCase_ :int = scope def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :List[Any] = None if self.use_input_mask: lowerCAmelCase_ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ :List[str] = None if self.use_token_type_ids: lowerCAmelCase_ :int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ :Optional[Any] = None if self.use_labels: lowerCAmelCase_ :int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ :Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ :Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Any: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: lowerCAmelCase_ :Optional[Any] = NystromformerModel(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Dict = model(__A , attention_mask=__A , token_type_ids=__A ) lowerCAmelCase_ :Optional[int] = model(__A , token_type_ids=__A ) lowerCAmelCase_ :Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[int]: lowerCAmelCase_ :Optional[int] = NystromformerForMaskedLM(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Tuple = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Any: lowerCAmelCase_ :Tuple = NystromformerForQuestionAnswering(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Tuple = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = self.num_labels lowerCAmelCase_ :Optional[int] = NystromformerForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: lowerCAmelCase_ :Union[str, Any] = self.num_labels lowerCAmelCase_ :Union[str, Any] = NystromformerForTokenClassification(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Tuple = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: lowerCAmelCase_ :Optional[int] = self.num_choices lowerCAmelCase_ :Tuple = NystromformerForMultipleChoice(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ :Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ :Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ :int = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) :Optional[int] = config_and_inputs lowerCAmelCase_ :int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCAmelCase_ :Tuple = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase_ :Dict = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ :int = False UpperCAmelCase_ :Optional[int] = False def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[Any] = NystromformerModelTester(self ) lowerCAmelCase_ :Any = ConfigTester(self , config_class=__A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ :str = type self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def __lowerCAmelCase ( self ) -> Dict: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ :List[str] = NystromformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) lowerCAmelCase_ :List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowerCAmelCase_ :Union[str, Any] = model(__A )[0] lowerCAmelCase_ :List[str] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __A ) lowerCAmelCase_ :Optional[Any] = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = """the [MASK] of Belgium is Brussels""" lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) lowerCAmelCase_ :Union[str, Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) lowerCAmelCase_ :Optional[int] = tokenizer(__A , return_tensors="""pt""" ) with torch.no_grad(): lowerCAmelCase_ :Union[str, Any] = model(encoding.input_ids ).logits lowerCAmelCase_ :Union[str, Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__A ) , """capital""" )
355
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __UpperCAmelCase = get_tests_dir('fixtures/dummy-config.json') class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :int = 0 def __lowerCAmelCase ( self ) -> List[str]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Tuple = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :int = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Any = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :int = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase_ :int = os.path.join(__A , """fake-roberta""" ) os.makedirs(__A , exist_ok=__A ) with open(os.path.join(__A , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) lowerCAmelCase_ :Any = AutoConfig.from_pretrained(__A ) self.assertEqual(type(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[int]: try: AutoConfig.register("""custom""" , __A ) # Wrong model type will raise an error with self.assertRaises(__A ): AutoConfig.register("""model""" , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoConfig.register("""bert""" , __A ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ :Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) lowerCAmelCase_ :Optional[int] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase_ :List[str] = AutoConfig.from_pretrained("""bert-base""" ) def __lowerCAmelCase ( self ) -> Any: with self.assertRaisesRegex( __A , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase_ :Dict = AutoConfig.from_pretrained(__A , revision="""aaaaaa""" ) def __lowerCAmelCase ( self ) -> int: with self.assertRaisesRegex( __A , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): lowerCAmelCase_ :Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def __lowerCAmelCase ( self ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): lowerCAmelCase_ :Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): lowerCAmelCase_ :List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) lowerCAmelCase_ :str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) lowerCAmelCase_ :Dict = AutoConfig.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def __lowerCAmelCase ( self ) -> int: class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :int = "new-model" try: AutoConfig.register("""new-model""" , __A ) # If remote code is not set, the default is to use local lowerCAmelCase_ :Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. lowerCAmelCase_ :Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub lowerCAmelCase_ :Optional[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
1
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): _a = ['pixel_values'] def __init__( self : Optional[int] , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , **lowerCAmelCase : Optional[Any] , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = size if size is not None else {"""shortest_edge""": 224} lowerCAmelCase = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} lowerCAmelCase = get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def __lowercase ( self : Dict , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PIL.Image.BILINEAR , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Dict , ): lowerCAmelCase = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def __lowercase ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ): lowerCAmelCase = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def __lowercase ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[str] , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def __lowercase ( self : Any , lowerCAmelCase : np.ndarray , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(lowerCAmelCase , data_format=lowerCAmelCase ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Any , ): lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) lowerCAmelCase = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowerCAmelCase = [self.flip_channel_order(image=lowerCAmelCase ) for image in images] lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) def __lowercase ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[Tuple] = None ): lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase ): lowerCAmelCase = target_sizes.numpy() lowerCAmelCase = [] for idx in range(len(lowerCAmelCase ) ): lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase ) lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase ) else: lowerCAmelCase = logits.argmax(dim=1 ) lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
155
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[Any] ): lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCAmelCase = BlipProcessor(lowerCAmelCase , lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).tokenizer def __lowercase ( self : List[Any] , **lowerCAmelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def __lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : List[str] ): lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowerCAmelCase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowerCAmelCase ) lowerCAmelCase = tokenizer(lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def __lowercase ( self : List[Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowerCAmelCase ) lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
155
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig SCREAMING_SNAKE_CASE : Optional[Any] = 'roberta' def __init__( self : List[Any] ,lowercase__ : Optional[Any] ): super().__init__(lowercase__ ) __lowercase = RobertaEmbeddings(lowercase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RobertaConfig SCREAMING_SNAKE_CASE : Any = 'roberta' def __init__( self : Union[str, Any] ,lowercase__ : int ): super().__init__(lowercase__ ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeRobertaModel(lowercase__ ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : int=None ,lowercase__ : Dict=None ,lowercase__ : List[Any]=None ,lowercase__ : str=None ,lowercase__ : List[Any]=-1 ,lowercase__ : Tuple=False ,): __lowercase = self.num_layers try: __lowercase = self.roberta( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,) __lowercase = outputs[1] __lowercase = self.dropout(lowercase__ ) __lowercase = self.classifier(lowercase__ ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(lowercase__ ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
369
'''simple docstring''' from math import sqrt def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(A__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(A__ , A__ ), "'status' must been from type bool" return status def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(A__ ): ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(A__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(A__ ): while quotient != 1: if is_prime(A__ ) and (quotient % factor == 0): ans.append(A__ ) quotient /= factor else: factor += 1 else: ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = max(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = min(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , A__ ), "compare bust been from type bool" return number % 2 == 0 def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , A__ ), "compare bust been from type bool" return number % 2 != 0 def _A ( A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and (number > 2) and is_even(A__ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(A__ ) __lowercase = len(A__ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(A__ , A__ ) and (len(A__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(A__ , A__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(A__ ) __lowercase = prime_factorization(A__ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(A__ , A__ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(A__ ) __lowercase = prime_fac_a.count(A__ ) for _ in range(max(A__ , A__ ) ): ans *= n else: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # precondition assert isinstance(A__ , A__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(A__ ): ans += 1 # precondition assert isinstance(A__ , A__ ) and is_prime( A__ ), "'ans' must been a prime number and from type int" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( is_prime(A__ ) and is_prime(A__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(A__ ): number += 1 while number < p_number_a: ans.append(A__ ) number += 1 # fetch the next prime number. while not is_prime(A__ ): number += 1 # precondition assert ( isinstance(A__ , A__ ) and ans[0] != p_number_a and ans[len(A__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(A__ ) # precondition assert ans[0] == 1 and ans[len(A__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(A__ ) # precondition assert ( isinstance(A__ , A__ ) and (divisors[0] == 1) and (divisors[len(A__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(A__ ) , abs(A__ ) ) # precondition assert ( isinstance(A__ , A__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
52
0
import functools def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(SCREAMING_SNAKE_CASE ) == 0: return 0 if min(SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("All days elements should be less than 366" ) a__ : Any =set(SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
import numpy as np def _A ( SCREAMING_SNAKE_CASE : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
95
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a__: Union[str, Any] = '__DUMMY_TRANSFORMERS_USER__' a__: Any = 'Dummy User' a__: List[Any] = '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' a__: Tuple = 'https://hub-ci.huggingface.co' a__: Any = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' a__: Optional[int] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' a__: str = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : Any )->int: monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : int )->int: monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , UpperCamelCase__ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : str )->Optional[Any]: monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple )->Optional[int]: HfFolder.save_token(UpperCamelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def UpperCamelCase__( )->List[str]: return HfApi(endpoint=UpperCamelCase__ ) @pytest.fixture(scope='''session''' ) def UpperCamelCase__( UpperCamelCase__ : HfApi )->List[str]: A__ = HfFolder.get_token() HfFolder.save_token(UpperCamelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : Dict )->Optional[int]: def _cleanup_repo(UpperCamelCase__ : List[str] ): hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : Tuple )->Optional[Any]: @contextmanager def _temporary_repo(UpperCamelCase__ : List[Any] ): try: yield repo_id finally: cleanup_repo(UpperCamelCase__ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def UpperCamelCase__( UpperCamelCase__ : HfApi , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] )->Any: A__ = f"repo_txt_data-{int(time.time() * 1_0e3 )}" A__ = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo='''data/text_data.txt''' , repo_id=UpperCamelCase__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple )->Optional[Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def UpperCamelCase__( UpperCamelCase__ : HfApi , UpperCamelCase__ : List[str] , UpperCamelCase__ : str )->Union[str, Any]: A__ = f"repo_zipped_txt_data-{int(time.time() * 1_0e3 )}" A__ = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo='''data.zip''' , repo_id=UpperCamelCase__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] )->int: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def UpperCamelCase__( UpperCamelCase__ : HfApi , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] )->Tuple: A__ = f"repo_zipped_img_data-{int(time.time() * 1_0e3 )}" A__ = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo='''data.zip''' , repo_id=UpperCamelCase__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int )->Tuple: return hf_private_dataset_repo_zipped_img_data_
39
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int: A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
39
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : UpperCAmelCase__ = XGLMConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=0.02 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = d_model UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = ffn_dim UpperCAmelCase = activation_function UpperCAmelCase = activation_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = 2 UpperCAmelCase = 1 def _lowercase ( self ): '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = self.get_config() UpperCAmelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_A , ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A_ (a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFXGLMModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , n_embd=3_7 ) def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @slow def _lowercase ( self ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFXGLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class A_ (unittest.TestCase ): @slow def _lowercase ( self , _A=True ): '''simple docstring''' UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCAmelCase = model.generate(_A , do_sample=_A , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _A ) @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCAmelCase = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCAmelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCAmelCase = model.generate(_A , do_sample=_A , seed=[7, 0] ) UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=_A ) UpperCAmelCase = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_A , _A ) @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = '''left''' # use different length sentences to test batching UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCAmelCase = tokenizer(_A , return_tensors='''tf''' , padding=_A ) UpperCAmelCase = inputs['''input_ids'''] UpperCAmelCase = model.generate(input_ids=_A , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCAmelCase = model.generate(input_ids=_A , max_new_tokens=1_2 ) UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCAmelCase = model.generate(input_ids=_A , max_new_tokens=1_2 ) UpperCAmelCase = tokenizer.batch_decode(_A , skip_special_tokens=_A ) UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_A ) UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_A ) UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , [non_padded_sentence, padded_sentence] )
273
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''prompt'''] UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] if "image" in inputs: UpperCAmelCase = inputs['''image'''] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['''mask_image'''] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['''original_image'''] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(_A ) # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_A , _A , _A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 )
273
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: bool = True , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 224} __lowerCAmelCase : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} __lowerCAmelCase : Union[str, Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name="crop_size") __lowerCAmelCase : str = do_resize __lowerCAmelCase : List[Any] = size __lowerCAmelCase : Tuple = resample __lowerCAmelCase : List[Any] = do_center_crop __lowerCAmelCase : int = crop_size __lowerCAmelCase : Any = do_rescale __lowerCAmelCase : str = rescale_factor __lowerCAmelCase : List[str] = do_normalize __lowerCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCAmelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCAmelCase : Any = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: str , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") __lowerCAmelCase : List[Any] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=_SCREAMING_SNAKE_CASE) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Optional[int] , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : int = get_size_dict(_SCREAMING_SNAKE_CASE) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Union[int, float] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> Dict: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Union[float, List[float]] , _SCREAMING_SNAKE_CASE: Union[float, List[float]] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: float = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: Optional[ChannelDimension] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: Any , ) -> PIL.Image.Image: """simple docstring""" __lowerCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Any = size if size is not None else self.size __lowerCAmelCase : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="size" , default_to_square=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = resample if resample is not None else self.resample __lowerCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : int = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : str = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : str = image_std if image_std is not None else self.image_std __lowerCAmelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCAmelCase : Optional[Any] = make_list_of_images(_SCREAMING_SNAKE_CASE) if not valid_images(_SCREAMING_SNAKE_CASE): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCAmelCase : str = [convert_to_rgb(_SCREAMING_SNAKE_CASE) for image in images] # All transformations expect numpy arrays. __lowerCAmelCase : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE) for image in images] if do_resize: __lowerCAmelCase : Tuple = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE) for image in images] if do_center_crop: __lowerCAmelCase : Tuple = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE) for image in images] if do_rescale: __lowerCAmelCase : List[Any] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE) for image in images] if do_normalize: __lowerCAmelCase : int = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE)
58
"""simple docstring""" __snake_case : Any = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __snake_case : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __snake_case : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __snake_case : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __snake_case : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __snake_case : Any = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __snake_case : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __snake_case : str = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
58
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) def _A (__a=None , __a=None ) -> int: """simple docstring""" return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __UpperCamelCase = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __UpperCamelCase = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __UpperCamelCase = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __UpperCamelCase = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __UpperCamelCase = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __UpperCamelCase = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __UpperCamelCase = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) __UpperCamelCase = field( default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __UpperCamelCase = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return json.dumps(dataclasses.asdict(self) , indent=2) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' if len(self.models) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''') return self.models @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''') return False else: return True
91
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(A ) @property def __A ( self ) -> List[Any]: '''simple docstring''' def extract(*A , **A ): class __lowercase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' lowerCamelCase = torch.ones([0] ) def __A ( self , A ) -> Tuple: '''simple docstring''' self.pixel_values.to(A ) return self return Out() return extract def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=A ) assert isinstance(A , A ) assert isinstance(pipe.scheduler , A ) assert pipe.safety_checker is None lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) lowerCamelCase = StableDiffusionPipeline.from_pretrained(A ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowerCamelCase = unet.half() lowerCamelCase = vae.half() lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowerCamelCase = 40_03_66_03_46 lowerCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowerCamelCase = 27_34_97_17_55 lowerCamelCase = 7 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowerCamelCase = 10_44_35_52_34 lowerCamelCase = 12 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
252
0
'''simple docstring''' import unittest from transformers import DonutProcessor a__ : Dict = 'naver-clova-ix/donut-base' class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = DonutProcessor.from_pretrained(lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } __UpperCamelCase = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) __UpperCamelCase = self.processor.tokenajson(lowercase ) self.assertDictEqual(lowercase , lowercase )
243
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a__ : Tuple = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
243
1
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key snake_case_ = remove_duplicates(key.upper() ) snake_case_ = len(UpperCamelCase__ ) # First fill cipher with key characters snake_case_ = {alphabet[i]: char for i, char in enumerate(UpperCamelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCamelCase__ ) , 26 ): snake_case_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case_ = alphabet[i - offset] snake_case_ = char return cipher_alphabet def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return "".join(cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = input('Enter message to encode or decode: ' ).strip() snake_case_ = input('Enter keyword: ' ).strip() snake_case_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: snake_case_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) snake_case_ = create_cipher_map(UpperCamelCase__ ) print(func(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
285
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger() @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : list = field(default_factory=lowercase_ ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = len(list(m.modules() ) ) == 1 or isinstance(snake_case , nn.Convad ) or isinstance(snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self , snake_case ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def a ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) def __call__( self , snake_case ): snake_case_ = Tracker(self.dest )(snake_case ).parametrized snake_case_ = Tracker(self.src )(snake_case ).parametrized snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.src_skip , snake_case ) ) snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip , snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( F'''Numbers of operations are different. Source module has {len(snake_case )} operations while''' F''' destination module has {len(snake_case )}.''' ) for dest_m, src_m in zip(snake_case , snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() snake_case_ = ResNetForImageClassification(UpperCamelCase__ ).eval() snake_case_ = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) snake_case_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." snake_case_ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one snake_case_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) print(F'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 1000 snake_case_ = (1, num_labels) snake_case_ = 'huggingface/label-files' snake_case_ = num_labels snake_case_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) snake_case_ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _UpperCAmelCase : Optional[Any] = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{sampling_rate}""" _snake_case = '1' _snake_case = 'f32le' _snake_case = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__a , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _snake_case = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error _snake_case = output_stream[0] _snake_case = np.frombuffer(__a , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "f32le" , ): _snake_case = f"""{sampling_rate}""" _snake_case = '1' if format_for_conversion == "s16le": _snake_case = 2 elif format_for_conversion == "f32le": _snake_case = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _snake_case = platform.system() if system == "Linux": _snake_case = 'alsa' _snake_case = 'default' elif system == "Darwin": _snake_case = 'avfoundation' _snake_case = ':0' elif system == "Windows": _snake_case = 'dshow' _snake_case = 'default' _snake_case = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] _snake_case = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _snake_case = _ffmpeg_stream(__a , __a ) for item in iterator: yield item def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "f32le" , ): if stream_chunk_s is not None: _snake_case = stream_chunk_s else: _snake_case = chunk_length_s _snake_case = ffmpeg_microphone(__a , __a , format_for_conversion=__a ) if format_for_conversion == "s16le": _snake_case = np.intaa _snake_case = 2 elif format_for_conversion == "f32le": _snake_case = np.floataa _snake_case = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _snake_case = chunk_length_s / 6 _snake_case = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a , (int, float) ): _snake_case = [stride_length_s, stride_length_s] _snake_case = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _snake_case = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _snake_case = datetime.datetime.now() _snake_case = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a , __a , stride=(stride_left, stride_right) , stream=__a ): # Put everything back in numpy scale _snake_case = np.frombuffer(item["""raw"""] , dtype=__a ) _snake_case = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) _snake_case = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): _snake_case = b'' _snake_case = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _snake_case = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _snake_case = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _snake_case = (_stride_left, stride_right) _snake_case = {'raw': acc[:chunk_len], 'stride': stride} if stream: _snake_case = False yield item _snake_case = stride_left _snake_case = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _snake_case = {'raw': acc, 'stride': (_stride_left, 0)} if stream: _snake_case = False yield item def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 2**24 # 16Mo try: with subprocess.Popen(__a , stdout=subprocess.PIPE , bufsize=__a ) as ffmpeg_process: while True: _snake_case = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
350
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. _snake_case = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] _snake_case = run_maze(_SCREAMING_SNAKE_CASE , 0 , 0 , _SCREAMING_SNAKE_CASE ) if solved: print("""\n""".join(str(_SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): _snake_case = 1 return True _snake_case = (not i < 0) and (not j < 0) # Check lower bounds _snake_case = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _snake_case = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _snake_case = 1 # check for directions if ( run_maze(_SCREAMING_SNAKE_CASE , i + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j + 1 , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - 1 , _SCREAMING_SNAKE_CASE ) ): return True _snake_case = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
270
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Any = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class _snake_case ( lowerCAmelCase_ ): UpperCamelCase__ = "lxmert" UpperCamelCase__ = {} def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=9_500 , _a=1_600 , _a=400 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=9 , _a=5 , _a=5 , _a=2_048 , _a=4 , _a=6.67 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=True , _a=True , **_a , ): __magic_name__ : Dict = vocab_size __magic_name__ : Dict = hidden_size __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Any = layer_norm_eps __magic_name__ : List[Any] = num_qa_labels __magic_name__ : List[str] = num_object_labels __magic_name__ : List[Any] = num_attr_labels __magic_name__ : Optional[Any] = l_layers __magic_name__ : Optional[Any] = x_layers __magic_name__ : Dict = r_layers __magic_name__ : Optional[Any] = visual_feat_dim __magic_name__ : Optional[int] = visual_pos_dim __magic_name__ : Union[str, Any] = visual_loss_normalizer __magic_name__ : int = task_matched __magic_name__ : Tuple = task_mask_lm __magic_name__ : str = task_obj_predict __magic_name__ : Dict = task_qa __magic_name__ : Tuple = visual_obj_loss __magic_name__ : Optional[int] = visual_attr_loss __magic_name__ : Dict = visual_feat_loss __magic_name__ : List[str] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCamelCase__ )
281
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "table-transformer" __snake_case : Union[str, Any] = ["past_key_values"] __snake_case : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[int]=100 ,lowerCamelCase__ : List[Any]=6 ,lowerCamelCase__ : Dict=2048 ,lowerCamelCase__ : List[Any]=8 ,lowerCamelCase__ : Dict=6 ,lowerCamelCase__ : Dict=2048 ,lowerCamelCase__ : Any=8 ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[int]="relu" ,lowerCamelCase__ : Tuple=256 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : List[Any]=0.02 ,lowerCamelCase__ : int=1.0 ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Optional[Any]="sine" ,lowerCamelCase__ : List[str]="resnet50" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : Dict=5 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : Union[str, Any]=1 ,lowerCamelCase__ : str=1 ,lowerCamelCase__ : Any=5 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : str=0.1 ,**lowerCamelCase__ : List[str] ,) -> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = None, None, None SCREAMING_SNAKE_CASE = use_timm_backbone SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = auxiliary_loss SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = dilation # Hungarian matcher SCREAMING_SNAKE_CASE = class_cost SCREAMING_SNAKE_CASE = bbox_cost SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE = mask_loss_coefficient SCREAMING_SNAKE_CASE = dice_loss_coefficient SCREAMING_SNAKE_CASE = bbox_loss_coefficient SCREAMING_SNAKE_CASE = giou_loss_coefficient SCREAMING_SNAKE_CASE = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ ,**lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.d_model class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' return 12
296
0
import math def __snake_case ( _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: if ( not isinstance(_lowerCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def __snake_case ( _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: if ( not isinstance(_lowerCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
70
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''falcon''' __UpperCamelCase = ['''past_key_values'''] def __init__( self :List[Any] , snake_case :Optional[int]=65_024 , snake_case :Tuple=4_544 , snake_case :Dict=32 , snake_case :Union[str, Any]=71 , snake_case :List[Any]=1e-5 , snake_case :Union[str, Any]=0.02 , snake_case :List[Any]=True , snake_case :Union[str, Any]=0.0 , snake_case :int=0.0 , snake_case :Union[str, Any]=None , snake_case :Dict=False , snake_case :int=False , snake_case :Tuple=True , snake_case :str=True , snake_case :List[Any]=False , snake_case :Optional[Any]=11 , snake_case :Tuple=11 , **snake_case :List[Any] , ): '''simple docstring''' A_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg A_ : Any = kwargs.pop("n_embed" , snake_case ) A_ : str = hidden_size if n_embed is None else n_embed A_ : List[str] = num_hidden_layers A_ : List[str] = num_attention_heads A_ : List[str] = layer_norm_epsilon A_ : Optional[Any] = initializer_range A_ : Optional[int] = use_cache A_ : str = hidden_dropout A_ : str = attention_dropout A_ : str = bos_token_id A_ : List[str] = eos_token_id A_ : Union[str, Any] = num_attention_heads if num_kv_heads is None else num_kv_heads A_ : int = alibi A_ : str = new_decoder_architecture A_ : Dict = multi_query # Ignored when new_decoder_architecture is True A_ : Any = parallel_attn A_ : Optional[Any] = bias super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return not self.alibi
70
1
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE__ = tuple[int, int] class lowercase : def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> None: lowerCAmelCase = pos_x lowerCAmelCase = pos_y lowerCAmelCase = (pos_y, pos_x) lowerCAmelCase = goal_x lowerCAmelCase = goal_y lowerCAmelCase = g_cost lowerCAmelCase = parent lowerCAmelCase = self.calculate_heuristic() lowerCAmelCase = self.g_cost + self.h_cost def _snake_case ( self ) -> float: lowerCAmelCase = self.pos_x - self.goal_x lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase ) + abs(lowercase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase ) -> bool: return self.f_cost < other.f_cost class lowercase : def __init__( self , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase ) lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowercase ) lowerCAmelCase = [self.start] lowerCAmelCase = [] lowerCAmelCase = False def _snake_case ( self ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase ) self.closed_nodes.append(lowercase ) lowerCAmelCase = self.get_successors(lowercase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase ) else: # retrieve the best current path lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowercase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase ) else: self.open_nodes.append(lowercase ) return [self.start.pos] def _snake_case ( self , lowercase ) -> list[Node]: lowerCAmelCase = [] for action in delta: lowerCAmelCase = parent.pos_x + action[1] lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase , lowercase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase , ) ) return successors def _snake_case ( self , lowercase ) -> list[TPosition]: lowerCAmelCase = node lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase = current_node.parent path.reverse() return path class lowercase : def __init__( self , lowercase , lowercase ) -> None: lowerCAmelCase = AStar(lowercase , lowercase ) lowerCAmelCase = AStar(lowercase , lowercase ) lowerCAmelCase = False def _snake_case ( self ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase , lowercase ) self.fwd_astar.closed_nodes.append(lowercase ) self.bwd_astar.closed_nodes.append(lowercase ) lowerCAmelCase = current_bwd_node lowerCAmelCase = current_fwd_node lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowercase ), self.bwd_astar: self.bwd_astar.get_successors(lowercase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase ) else: # retrieve the best current path lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowercase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase ) else: astar.open_nodes.append(lowercase ) return [self.fwd_astar.start.pos] def _snake_case ( self , lowercase , lowercase ) -> list[TPosition]: lowerCAmelCase = self.fwd_astar.retrace_path(lowercase ) lowerCAmelCase = self.bwd_astar.retrace_path(lowercase ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = AStar(init, goal) SCREAMING_SNAKE_CASE__ = a_star.search() SCREAMING_SNAKE_CASE__ = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE__ = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
46
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 3 , lowercase = 32 , lowercase = 256 , lowercase = 32 , lowercase = None , lowercase = 0.18_215 , lowercase = "group" , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) lowerCAmelCase = VectorQuantizer(lowercase , lowercase , beta=0.25 , remap=lowercase , sane_index_shape=lowercase ) lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , norm_type=lowercase , ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = True ) -> VQEncoderOutput: lowerCAmelCase = self.encoder(lowercase ) lowerCAmelCase = self.quant_conv(lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = False , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.quantize(lowercase ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(lowercase ) lowerCAmelCase = self.decoder(lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase ) def _snake_case ( self , lowercase , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase = sample lowerCAmelCase = self.encode(lowercase ).latents lowerCAmelCase = self.decode(lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase )
46
1
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __A = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } __A = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :Optional[int] = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase__ :List[str] = state_dict.pop(_SCREAMING_SNAKE_CASE ) # emb -> embedding if name.startswith('emb.' ): lowerCAmelCase__ :List[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): lowerCAmelCase__ :Any = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention lowerCAmelCase__ :Any = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , _SCREAMING_SNAKE_CASE ) # ffn -> feed_forward lowerCAmelCase__ :List[str] = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , _SCREAMING_SNAKE_CASE ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): lowerCAmelCase__ :Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): lowerCAmelCase__ :List[str] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): lowerCAmelCase__ :List[Any] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": lowerCAmelCase__ :int = 'rwkv.' + name lowerCAmelCase__ :Union[str, Any] = weight return state_dict def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None ) ->Tuple: """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) lowerCAmelCase__ :Any = 5_0277 lowerCAmelCase__ :Dict = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: lowerCAmelCase__ :Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) # 2. Build the config lowerCAmelCase__ :Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase__ :Tuple = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) lowerCAmelCase__ :Union[str, Any] = RwkvConfig( vocab_size=_SCREAMING_SNAKE_CASE , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) # 3. Download model file then convert state_dict lowerCAmelCase__ :Optional[Any] = hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) lowerCAmelCase__ :Union[str, Any] = convert_state_dict(_SCREAMING_SNAKE_CASE ) # 4. Split in shards and save lowerCAmelCase__ , lowerCAmelCase__ :str = shard_checkpoint(_SCREAMING_SNAKE_CASE ) for shard_file, shard in shards.items(): torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if index is not None: lowerCAmelCase__ :List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save the index as well with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: lowerCAmelCase__ :Dict = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' f.write(_SCREAMING_SNAKE_CASE ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) lowerCAmelCase__ :Optional[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase__ :Union[str, Any] = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) lowerCAmelCase__ :List[Any] = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE , max_shard_size='2GB' ) tokenizer.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
254
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=3 , __UpperCAmelCase=1_0 , __UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = parent lowerCAmelCase__ :Dict = batch_size lowerCAmelCase__ :Optional[int] = image_size lowerCAmelCase__ :Any = num_channels lowerCAmelCase__ :Union[str, Any] = embeddings_size lowerCAmelCase__ :Optional[int] = hidden_sizes lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :str = hidden_act lowerCAmelCase__ :List[Any] = num_labels lowerCAmelCase__ :Union[str, Any] = scope lowerCAmelCase__ :Any = len(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Any = self.get_config() return config, pixel_values def snake_case ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = FlaxRegNetModel(config=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.num_labels lowerCAmelCase__ :int = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) lowerCAmelCase__ :Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = config_and_inputs lowerCAmelCase__ :Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ :Any = False __magic_name__ :int = False __magic_name__ :Any = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = FlaxRegNetModelTester(self ) lowerCAmelCase__ :Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): '''simple docstring''' return def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :str = [*signature.parameters.keys()] lowerCAmelCase__ :Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ :Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ :Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCAmelCase__ :Dict = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase__ :Union[str, Any] = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __A () ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCAmelCase__ :Any = self.default_image_processor lowerCAmelCase__ :Dict = prepare_img() lowerCAmelCase__ :Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='np' ) lowerCAmelCase__ :List[str] = model(**__UpperCAmelCase ) # verify the logits lowerCAmelCase__ :Union[str, Any] = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Any = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
254
1
A__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case , snake_case , snake_case ) order.append(snake_case ) return order def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case , snake_case , snake_case ) return component def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = len(snake_case ) * [False] _lowerCAmelCase = {vert: [] for vert in range(len(snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case ) _lowerCAmelCase = [] for i, was_visited in enumerate(snake_case ): if not was_visited: order += topology_sort(snake_case , snake_case , snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = len(snake_case ) * [False] for i in range(len(snake_case ) ): _lowerCAmelCase = order[len(snake_case ) - i - 1] if not visited[vert]: _lowerCAmelCase = find_components(snake_case , snake_case , snake_case ) components_list.append(snake_case ) return components_list
82
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = AudioLDMPipeline __lowerCamelCase = TEXT_TO_AUDIO_PARAMS __lowerCamelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_snake_case , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(_snake_case ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_snake_case , ) _lowerCAmelCase = SpeechTaHifiGan(_snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) embeds.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = """egg cracking""" _lowerCAmelCase = audioldm_pipe(**_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = ["""hey"""] _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(_snake_case ).to(_snake_case ) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): """simple docstring""" _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
82
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = str(id_ ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = [] UpperCAmelCase__ = {} # {vertex:distance} def __lt__( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" return self.key < other.key def __repr__( self : int ): """simple docstring""" return self.id def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[str] ): """simple docstring""" self.neighbors.append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = weight def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , SCREAMING_SNAKE_CASE__ ) graph[b - 1].add_edge(graph[a - 1] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : Vertex ): '''simple docstring''' UpperCAmelCase__ = [] for u in graph: UpperCAmelCase__ = math.inf UpperCAmelCase__ = None UpperCAmelCase__ = 0 UpperCAmelCase__ = graph[:] while q: UpperCAmelCase__ = min(SCREAMING_SNAKE_CASE__ ) q.remove(SCREAMING_SNAKE_CASE__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase__ = u UpperCAmelCase__ = u.edges[v.id] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : Vertex ): '''simple docstring''' for u in graph: UpperCAmelCase__ = math.inf UpperCAmelCase__ = None UpperCAmelCase__ = 0 UpperCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) hq.heapify(SCREAMING_SNAKE_CASE__ ) while h: UpperCAmelCase__ = hq.heappop(SCREAMING_SNAKE_CASE__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase__ = u UpperCAmelCase__ = u.edges[v.id] hq.heapify(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' import enum import shutil import sys UpperCAmelCase_ , UpperCAmelCase_ = shutil.get_terminal_size() UpperCAmelCase_ = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase_ ( enum.Enum ): '''simple docstring''' lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Union[str, Any] = 1 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]="" ): '''simple docstring''' sys.stdout.write(str(SCREAMING_SNAKE_CASE__ ) + end ) sys.stdout.flush() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int="" ): '''simple docstring''' forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def _UpperCamelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def _UpperCamelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
61
1
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" while second != 0: __lowercase =first & second first ^= second __lowercase =c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = int(input("""Enter the first number: """).strip()) lowerCamelCase = int(input("""Enter the second number: """).strip()) print(f"{add(first, second) = }")
166
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) return (preds == labels).mean() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) __lowercase =simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) __lowercase =pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] __lowercase =spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase )
166
1
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = " " ): UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Optional[int] = 0 for index, char in enumerate(UpperCamelCase__ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase__ : Union[str, Any] = index + 1 elif index + 1 == len(UpperCamelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
359
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False ): UpperCAmelCase__ : str = """backbone.""" if is_semantic else """""" UpperCAmelCase__ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (f'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (f'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (f'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False ): for i in range(config.num_hidden_layers ): UpperCAmelCase__ : Optional[Any] = """backbone.""" if is_semantic else """""" # queries, keys and values UpperCAmelCase__ : Any = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ : List[str] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase__ : int = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase__ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ : Any = q_bias UpperCAmelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ : Any = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase__ : Dict = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase__ : Dict = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase__ : Union[str, Any] = gamma_a UpperCAmelCase__ : str = gamma_a def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = dct.pop(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = val def _UpperCamelCase ( ): UpperCAmelCase__ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ : Dict = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): UpperCAmelCase__ : Optional[Any] = False if """rvlcdip""" in checkpoint_url else True UpperCAmelCase__ : Any = BeitConfig(use_absolute_position_embeddings=UpperCamelCase__ , use_mask_token=UpperCamelCase__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase__ : Optional[Any] = 1_0_2_4 UpperCAmelCase__ : Dict = 4_0_9_6 UpperCAmelCase__ : Any = 2_4 UpperCAmelCase__ : Tuple = 1_6 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase__ : int = 1_6 UpperCAmelCase__ : List[str] = """huggingface/label-files""" UpperCAmelCase__ : Optional[Any] = """rvlcdip-id2label.json""" UpperCAmelCase__ : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ : Union[str, Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase__ : Optional[Any] = idalabel UpperCAmelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""model"""] UpperCAmelCase__ : List[str] = create_rename_keys(UpperCamelCase__ , has_lm_head=UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , has_lm_head=UpperCamelCase__ ) # load HuggingFace model UpperCAmelCase__ : str = BeitForMaskedImageModeling(UpperCamelCase__ ) if has_lm_head else BeitForImageClassification(UpperCamelCase__ ) model.eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image UpperCAmelCase__ : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ ) UpperCAmelCase__ : List[str] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) UpperCAmelCase__ : Optional[Any] = encoding["""pixel_values"""] UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase__ ) UpperCAmelCase__ : int = outputs.logits # verify logits UpperCAmelCase__ : int = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(UpperCamelCase__ ), "Shape of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: if has_lm_head: UpperCAmelCase__ : Union[str, Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: UpperCAmelCase__ : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) __A =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
283
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Tuple: '''simple docstring''' lowercase_ = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase_ , lowercase_ = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase_ = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) assert base_extractor.is_extractable(__lowerCAmelCase ) lowercase_ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ = file_path.read_text(encoding="""utf-8""" ) else: lowercase_ = output_path.read_text(encoding="""utf-8""" ) lowercase_ = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase_ = input_paths[compression_format] if input_path is None: lowercase_ = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) lowercase_ = Extractor.infer_extractor_format(__lowerCAmelCase ) assert extractor_format is not None lowercase_ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ = file_path.read_text(encoding="""utf-8""" ) else: lowercase_ = output_path.read_text(encoding="""utf-8""" ) lowercase_ = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' import tarfile lowercase_ = tmp_path / """data_dot_dot""" directory.mkdir() lowercase_ = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__lowerCAmelCase , """w""" ) as f: f.add(__lowerCAmelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' import tarfile lowercase_ = tmp_path / """data_sym_link""" directory.mkdir() lowercase_ = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__lowerCAmelCase ) with tarfile.TarFile(__lowerCAmelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase_ = insecure_tar_files[insecure_tar_file] lowercase_ = tmp_path / """extracted""" TarExtractor.extract(__lowerCAmelCase , __lowerCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase_ = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__lowerCAmelCase ) assert zipfile.is_zipfile(str(__lowerCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__lowerCAmelCase ) # but we're right
136
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "gpt_neox" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=5_0_4_3_2 , lowerCAmelCase_ : List[Any]=6_1_4_4 , lowerCAmelCase_ : str=4_4 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Optional[int]=2_4_5_7_6 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Any=0.25 , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = rotary_pct lowercase_ = rotary_emb_base lowercase_ = attention_dropout lowercase_ = hidden_dropout lowercase_ = classifier_dropout lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = use_parallel_residual lowercase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''') lowercase_ = self.rope_scaling.get("""type""" , lowerCAmelCase_) lowercase_ = self.rope_scaling.get("""factor""" , lowerCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
136
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): super().__init__(*__lowerCamelCase,**__lowerCamelCase ) A__ = {} def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ): A__ = super().add_tokens(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {placeholder_token}. Please pass a different" ''' `placeholder_token` that is not already in the tokenizer.''' ) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,__lowerCamelCase=1,**__lowerCamelCase ): A__ = [] if num_vec_per_token == 1: self.try_adding_tokens(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) output.append(__lowerCamelCase ) else: A__ = [] for i in range(__lowerCamelCase ): A__ = placeholder_token + f"_{i}" self.try_adding_tokens(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) output.append(__lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"The tokenizer already has placeholder token {token} that can get confused with" f" {placeholder_token}keep placeholder tokens independent" ) A__ = output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=False,__lowerCamelCase=1.0 ): if isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = [] for i in range(len(__lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=__lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A__ = self.token_map[placeholder_token] A__ = tokens[: 1 + int(len(__lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: A__ = copy.copy(__lowerCamelCase ) random.shuffle(__lowerCamelCase ) A__ = text.replace(__lowerCamelCase,''' '''.join(__lowerCamelCase ) ) return text def __call__( self,__lowerCamelCase,*__lowerCamelCase,__lowerCamelCase=False,__lowerCamelCase=1.0,**__lowerCamelCase ): return super().__call__( self.replace_placeholder_tokens_in_text( __lowerCamelCase,vector_shuffle=__lowerCamelCase,prop_tokens_to_load=__lowerCamelCase ),*__lowerCamelCase,**__lowerCamelCase,) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,__lowerCamelCase=False,__lowerCamelCase=1.0,**__lowerCamelCase ): return super().encode( self.replace_placeholder_tokens_in_text( __lowerCamelCase,vector_shuffle=__lowerCamelCase,prop_tokens_to_load=__lowerCamelCase ),*__lowerCamelCase,**__lowerCamelCase,)
353
from __future__ import annotations from collections.abc import Iterator from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = data A__ = None class SCREAMING_SNAKE_CASE__ : def __init__( self ): A__ = None A__ = None def __iter__( self ): A__ = self.head while self.head: yield node.data A__ = node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(__lowerCamelCase ) for item in iter(self ) ) def UpperCamelCase ( self,__lowerCamelCase ): self.insert_nth(len(self ),__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): self.insert_nth(0,__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) A__ = Node(__lowerCamelCase ) if self.head is None: A__ = new_node # first node points itself A__ = A__ = new_node elif index == 0: # insert at head A__ = self.head A__ = A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node if index == len(self ) - 1: # insert at tail A__ = new_node def UpperCamelCase ( self ): return self.delete_nth(0 ) def UpperCamelCase ( self ): return self.delete_nth(len(self ) - 1 ) def UpperCamelCase ( self,__lowerCamelCase = 0 ): if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) A__ = self.head if self.head == self.tail: # just one node A__ = A__ = None elif index == 0: # delete head node A__ = self.tail.next.next A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next if index == len(self ) - 1: # delete at tail A__ = temp return delete_node.data def UpperCamelCase ( self ): return len(self ) == 0 def UpperCamelCase__( )->None: A__ = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) UpperCamelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCamelCase__ :List[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids UpperCamelCase__ :Union[str, Any] = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids UpperCamelCase__ :Union[str, Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ ).loss UpperCamelCase__ :Union[str, Any] = -tf.math.reduce_mean(UpperCamelCase_ ).numpy() UpperCamelCase__ :Tuple = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
97
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple=None , UpperCamelCase: Tuple=None , **UpperCamelCase: Dict ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) A__ = eval_examples A__ = post_process_function def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Optional[Dataset] = None , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[List[str]] = None , UpperCamelCase: str = "eval" , **UpperCamelCase: Optional[int] , ): """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase ) return metrics def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: List[str] , UpperCamelCase: Dict=None , UpperCamelCase: str = "test" , **UpperCamelCase: Optional[int] ): """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(UpperCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase , """predict""" ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase )
335
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = list(_snake_case ) UpperCAmelCase = list(_snake_case ) UpperCAmelCase = 0 for i in range(len(_snake_case ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase = """_""" if count > 1: return False else: return "".join(_snake_case ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] while True: UpperCAmelCase = ["""$"""] * len(_snake_case ) UpperCAmelCase = [] for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase = """*""" UpperCAmelCase = """*""" temp.append("""X""" ) for i in range(len(_snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_snake_case ) == 0: return pi UpperCAmelCase = list(set(_snake_case ) ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] for minterm in minterms: UpperCAmelCase = """""" for _ in range(_snake_case ): UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(_snake_case ) return temp def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = list(_snake_case ) UpperCAmelCase = list(_snake_case ) UpperCAmelCase = 0 for i in range(len(_snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [0] * len(_snake_case ) for i in range(len(chart[0] ) ): UpperCAmelCase = 0 UpperCAmelCase = -1 for j in range(len(_snake_case ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase = j if count == 1: UpperCAmelCase = 1 for i in range(len(_snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_snake_case ) ): UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = 0 for i in range(len(_snake_case ) ): UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase = count_n UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_snake_case ) ): UpperCAmelCase = 0 def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [[0 for x in range(len(_snake_case ) )] for x in range(len(_snake_case ) )] for i in range(len(_snake_case ) ): UpperCAmelCase = prime_implicants[i].count("""_""" ) for j in range(len(_snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , _snake_case ): UpperCAmelCase = 1 return chart def _a ( ): """simple docstring""" UpperCAmelCase = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase = [ float(_snake_case ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase = decimal_to_binary(_snake_case , _snake_case ) UpperCAmelCase = check(_snake_case ) print("""Prime Implicants are:""" ) print(_snake_case ) UpperCAmelCase = prime_implicant_chart(_snake_case , _snake_case ) UpperCAmelCase = selection(_snake_case , _snake_case ) print("""Essential Prime Implicants are:""" ) print(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
234
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1024} class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A = None ,**A ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(A ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self ,A ): UpperCAmelCase = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.fairseq_ids_to_tokens ) def _UpperCamelCase ( self ): UpperCAmelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self ,A ): return self.sp_model.encode(A ,out_type=A ) def _UpperCamelCase ( self ,A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCamelCase ( self ,A ): return self.fairseq_ids_to_tokens[index] def _UpperCamelCase ( self ,A ): UpperCAmelCase = """""".join(A ).replace(A ,""" """ ).strip() return out_string def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
234
1
'''simple docstring''' import random def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) ->Optional[int]: _SCREAMING_SNAKE_CASE = a[left_index] _SCREAMING_SNAKE_CASE = left_index + 1 for j in range(left_index + 1 , __lowerCamelCase ): if a[j] < pivot: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i], a[j] i += 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) ->str: if left < right: _SCREAMING_SNAKE_CASE = random.randint(__lowerCamelCase , right - 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( a[left], a[pivot], ) # switches the pivot with the left most bound _SCREAMING_SNAKE_CASE = partition(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) quick_sort_random( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowerCamelCase , pivot_index + 1 , __lowerCamelCase ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ) ->Tuple: _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""" ).strip() _SCREAMING_SNAKE_CASE = [int(__lowerCamelCase ) for item in user_input.split(""",""" )] quick_sort_random(__lowerCamelCase , 0 , len(__lowerCamelCase ) ) print(__lowerCamelCase ) if __name__ == "__main__": main()
58
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
58
1
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [] create_all_state(1, __lowerCamelCase, __lowerCamelCase, [], __lowerCamelCase ) return result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCamelCase, total_number - level + 2 ): current_list.append(__lowerCamelCase ) create_all_state(i + 1, __lowerCamelCase, level - 1, __lowerCamelCase, __lowerCamelCase ) current_list.pop() def lowerCamelCase__ (__lowerCamelCase ): for i in total_list: print(*__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =4 UpperCamelCase__ =2 UpperCamelCase__ =generate_all_combinations(n, k) print_all_state(total_list)
355
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCAmelCase ( lowercase ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCAmelCase ( ): """simple docstring""" __lowercase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__SCREAMING_SNAKE_CASE ) __lowercase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Parse args __lowercase = parser.parse_known_args() if not hasattr(__SCREAMING_SNAKE_CASE , '''func''' ): parser.print_help() exit(1 ) __lowercase = parse_unknown_args(__SCREAMING_SNAKE_CASE ) # Run __lowercase = args.func(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
210
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): print('Loading config file...' ) def flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any="" , __SCREAMING_SNAKE_CASE : List[Any]="." ): lowercase_ : List[str] = [] for k, v in d.items(): lowercase_ : Dict = parent_key + sep + k if parent_key else k if isinstance(__SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sep=__SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = argparse.Namespace() with open(__SCREAMING_SNAKE_CASE , 'r' ) as yaml_file: try: lowercase_ : str = yaml.load(__SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) lowercase_ : List[Any] = flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE ) ) ) return config def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = MobileViTVaConfig() lowercase_ : List[str] = False # dataset if task_name.startswith('imagenet1k_' ): lowercase_ : List[Any] = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : str = 3_84 else: lowercase_ : Dict = 2_56 lowercase_ : int = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowercase_ : int = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Optional[Any] = 3_84 else: lowercase_ : Tuple = 2_56 lowercase_ : List[str] = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowercase_ : int = 1_51 lowercase_ : Optional[Any] = 5_12 lowercase_ : str = 'ade20k-id2label.json' lowercase_ : List[Any] = True elif task_name.startswith('voc_' ): lowercase_ : Union[str, Any] = 21 lowercase_ : Tuple = 5_12 lowercase_ : List[str] = 'pascal-voc-id2label.json' lowercase_ : str = True # orig_config lowercase_ : Optional[int] = load_orig_config_file(__SCREAMING_SNAKE_CASE ) assert getattr(__SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) lowercase_ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label lowercase_ : Optional[Any] = 'huggingface/label-files' lowercase_ : List[Any] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : int = idalabel lowercase_ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): if base_model: lowercase_ : int = '' else: lowercase_ : str = 'mobilevitv2.' lowercase_ : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase_ : Dict = k[8:] else: lowercase_ : Union[str, Any] = k if ".block." in k: lowercase_ : List[str] = k_new.replace('.block.' , '.' ) if ".conv." in k: lowercase_ : List[Any] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: lowercase_ : str = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: lowercase_ : Dict = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowercase_ : Tuple = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase_ : Any = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: lowercase_ : str = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowercase_ : Tuple = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowercase_ : Any = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowercase_ : List[Any] = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase_ : Dict = [0, 1] elif i == 4: lowercase_ : int = [0, 1, 2, 3] elif i == 5: lowercase_ : List[str] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowercase_ : List[str] = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase_ : int = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowercase_ : str = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowercase_ : Any = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: lowercase_ : List[str] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowercase_ : int = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowercase_ : str = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: lowercase_ : Union[str, Any] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: lowercase_ : Optional[int] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: lowercase_ : Dict = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: lowercase_ : Dict = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : str = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( ): lowercase_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Tuple = get_mobilevitva_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load original state_dict lowercase_ : Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowercase_ : Tuple = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Optional[int] = False else: lowercase_ : Any = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : int = False # remove and rename some keys of load the original model lowercase_ : Any = checkpoint remove_unused_keys(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase_ : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase_ : Any = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('imagenet' ): lowercase_ : List[str] = outputs.logits lowercase_ : int = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
213
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : int = '' else: lowerCAmelCase__ : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase__ : Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Tuple = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = val def lowerCAmelCase__ ( ) -> Optional[int]: lowerCAmelCase__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase__ : Optional[int] = 8 # set labels if required if not base_model: lowerCAmelCase__ : Union[str, Any] = 1_000 lowerCAmelCase__ : str = 'huggingface/label-files' lowerCAmelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCAmelCase__ : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ : List[Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = idalabel lowerCAmelCase__ : Any = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase__ : Any = 384 lowerCAmelCase__ : Optional[Any] = 1_536 lowerCAmelCase__ : Union[str, Any] = 12 lowerCAmelCase__ : Optional[Any] = 6 # load original model from torch hub lowerCAmelCase__ : List[Any] = torch.hub.load('facebookresearch/dino:main' , SCREAMING_SNAKE_CASE_ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Dict = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if base_model: lowerCAmelCase__ : Union[str, Any] = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ).eval() else: lowerCAmelCase__ : Tuple = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase__ : Tuple = ViTImageProcessor() lowerCAmelCase__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ : str = encoding['pixel_values'] lowerCAmelCase__ : str = model(SCREAMING_SNAKE_CASE_ ) if base_model: lowerCAmelCase__ : Dict = original_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: lowerCAmelCase__ : Any = original_model(SCREAMING_SNAKE_CASE_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) lowerCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
307
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCAmelCase = (7_20, 12_80) # Height, Width lowerCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCAmelCase = 1 / 1_00 lowerCAmelCase = """""" lowerCAmelCase = """""" lowerCAmelCase = """""" lowerCAmelCase = 2_50 def lowerCAmelCase_ ( ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): lowerCamelCase__ : Optional[int] =random.sample(range(len(snake_case_ ) ) , 4 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase__ : Optional[int] =random_chars(3_2 ) lowerCamelCase__ : str =path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCamelCase__ : int =f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) lowerCamelCase__ : Tuple =[] for anno in new_annos: lowerCamelCase__ : Tuple =anno[3] - anno[1] lowerCamelCase__ : int =anno[4] - anno[2] lowerCamelCase__ : Dict =anno[1] + width / 2 lowerCamelCase__ : Union[str, Any] =anno[2] + height / 2 lowerCamelCase__ : Tuple =f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(f"""{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[str] ) ->Optional[int]: lowerCamelCase__ : Dict =[] lowerCamelCase__ : List[Any] =[] for label_file in glob.glob(os.path.join(snake_case_ , '*.txt' ) ): lowerCamelCase__ : int =label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(snake_case_ ) as in_file: lowerCamelCase__ : Dict =in_file.readlines() lowerCamelCase__ : List[str] =os.path.join(snake_case_ , f"""{label_name}.jpg""" ) lowerCamelCase__ : Dict =[] for obj_list in obj_lists: lowerCamelCase__ : List[Any] =obj_list.rstrip('\n' ).split(' ' ) lowerCamelCase__ : Optional[Any] =float(obj[1] ) - float(obj[3] ) / 2 lowerCamelCase__ : Optional[Any] =float(obj[2] ) - float(obj[4] ) / 2 lowerCamelCase__ : Dict =float(obj[1] ) + float(obj[3] ) / 2 lowerCamelCase__ : Tuple =float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Dict = 0.0 , ) ->List[str]: lowerCamelCase__ : List[str] =np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCamelCase__ : Union[str, Any] =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCamelCase__ : int =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCamelCase__ : Union[str, Any] =int(scale_x * output_size[1] ) lowerCamelCase__ : Dict =int(scale_y * output_size[0] ) lowerCamelCase__ : Tuple =[] lowerCamelCase__ : int =[] for i, index in enumerate(snake_case_ ): lowerCamelCase__ : Dict =all_img_list[index] path_list.append(snake_case_ ) lowerCamelCase__ : Optional[int] =all_annos[index] lowerCamelCase__ : Dict =cva.imread(snake_case_ ) if i == 0: # top-left lowerCamelCase__ : int =cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) lowerCamelCase__ : Optional[int] =img for bbox in img_annos: lowerCamelCase__ : Dict =bbox[1] * scale_x lowerCamelCase__ : List[str] =bbox[2] * scale_y lowerCamelCase__ : int =bbox[3] * scale_x lowerCamelCase__ : int =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCamelCase__ : Optional[int] =cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) lowerCamelCase__ : List[Any] =img for bbox in img_annos: lowerCamelCase__ : Union[str, Any] =scale_x + bbox[1] * (1 - scale_x) lowerCamelCase__ : Tuple =bbox[2] * scale_y lowerCamelCase__ : List[Any] =scale_x + bbox[3] * (1 - scale_x) lowerCamelCase__ : Dict =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCamelCase__ : Dict =cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) lowerCamelCase__ : Union[str, Any] =img for bbox in img_annos: lowerCamelCase__ : List[str] =bbox[1] * scale_x lowerCamelCase__ : Dict =scale_y + bbox[2] * (1 - scale_y) lowerCamelCase__ : Tuple =bbox[3] * scale_x lowerCamelCase__ : List[str] =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCamelCase__ : int =cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCamelCase__ : Tuple =img for bbox in img_annos: lowerCamelCase__ : List[str] =scale_x + bbox[1] * (1 - scale_x) lowerCamelCase__ : Dict =scale_y + bbox[2] * (1 - scale_y) lowerCamelCase__ : str =scale_x + bbox[3] * (1 - scale_x) lowerCamelCase__ : Any =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCamelCase__ : Tuple =[ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCAmelCase_ ( snake_case_ : Optional[int] ) ->Union[str, Any]: assert number_char > 1, "The number of character should greater than 1" lowerCamelCase__ : Tuple =ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
126
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __magic_name__( lowerCamelCase=None, lowerCamelCase=None): return field(default_factory=lambda: default, metadata=lowerCamelCase) @dataclass class a__ : """simple docstring""" __UpperCamelCase : str = field( metadata={'help': 'The csv file to plot.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Disable logarithmic scale when plotting'} , ) __UpperCamelCase : bool = field( default=__A , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) __UpperCamelCase : Optional[str] = field( default=__A , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) __UpperCamelCase : Optional[List[str]] = list_field( default=__A , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __magic_name__( lowerCamelCase): try: int(lowerCamelCase) return True except ValueError: return False def __magic_name__( lowerCamelCase): try: float(lowerCamelCase) return True except ValueError: return False class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = args __lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __lowerCAmelCase = csv.DictReader(__lowercase ) for row in reader: __lowerCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __lowerCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __lowerCAmelCase = float(row['''result'''] ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = plt.subplots() __lowerCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' __lowerCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __lowerCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __lowerCAmelCase = self.result_dict[model_name]['''result'''] ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowercase , ) else: __lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __lowerCAmelCase = np.asarray(__lowercase , __lowercase )[: len(__lowercase )] plt.scatter( __lowercase , __lowercase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__lowercase , __lowercase , '''--''' ) title_str += F""" {label_model_name} vs.""" __lowerCAmelCase = title_str[:-4] __lowerCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(__lowercase ) plt.xlabel(__lowercase ) plt.ylabel(__lowercase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __magic_name__( ): __lowerCAmelCase = HfArgumentParser(lowerCamelCase) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase = Plot(args=lowerCamelCase) plot.plot() if __name__ == "__main__": main()
174
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __a ( __UpperCamelCase ): __lowercase : Tuple = '' __lowercase : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' super().__init__(self , **lowerCAmelCase__ ) lowercase__: Tuple = repo_info lowercase__: List[Any] = token lowercase__: Optional[Any] = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' if self.dir_cache is None: lowercase__: Optional[int] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase__: List[str] = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(lowerCAmelCase__ ): {'name': str(lowerCAmelCase__ ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "rb" , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' if not isinstance(self.repo_info , lowerCAmelCase__ ): raise NotImplementedError(F'Open is only implemented for dataset repositories, but got {self.repo_info}' ) lowercase__: Tuple = hf_hub_url(self.repo_info.id , lowerCAmelCase__ , revision=self.repo_info.sha ) return fsspec.open( lowerCAmelCase__ , mode=lowerCAmelCase__ , headers=get_authentication_headers_for_url(lowerCAmelCase__ , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' self._get_dirs() lowercase__: Optional[int] = self._strip_protocol(lowerCAmelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' self._get_dirs() lowercase__: List[str] = PurePosixPath(path.strip('/' ) ) lowercase__: Any = {} for p, f in self.dir_cache.items(): lowercase__: str = PurePosixPath(p.strip('/' ) ) lowercase__: Optional[int] = p.parent if root == path: lowercase__: Optional[Any] = f lowercase__: List[Any] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
288
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __a ( __UpperCamelCase ): __lowercase : Any = 'pegasus' __lowercase : Union[str, Any] = ['past_key_values'] __lowercase : Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowerCAmelCase__=50_265 , lowerCAmelCase__=1_024 , lowerCAmelCase__=12 , lowerCAmelCase__=4_096 , lowerCAmelCase__=16 , lowerCAmelCase__=12 , lowerCAmelCase__=4_096 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_024 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=0 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowercase__: int = vocab_size lowercase__: Optional[int] = max_position_embeddings lowercase__: List[str] = d_model lowercase__: Optional[Any] = encoder_ffn_dim lowercase__: Optional[Any] = encoder_layers lowercase__: Union[str, Any] = encoder_attention_heads lowercase__: Optional[int] = decoder_ffn_dim lowercase__: Tuple = decoder_layers lowercase__: Union[str, Any] = decoder_attention_heads lowercase__: Dict = dropout lowercase__: List[str] = attention_dropout lowercase__: List[str] = activation_dropout lowercase__: Optional[int] = activation_function lowercase__: Dict = init_std lowercase__: Optional[Any] = encoder_layerdrop lowercase__: List[str] = decoder_layerdrop lowercase__: Union[str, Any] = use_cache lowercase__: Any = encoder_layers lowercase__: List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.d_model
288
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE , "all_results.json" ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : Optional[int] = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" import xla_spawn lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[Any] = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(snake_case__ , "argv" , snake_case__ ): lowerCAmelCase : Tuple = time() xla_spawn.main() lowerCAmelCase : Tuple = time() lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowercase__ ( self ): """simple docstring""" import xla_spawn lowerCAmelCase : Any = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(snake_case__ , "argv" , snake_case__ ): xla_spawn.main()
133
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = '''src/diffusers''' lowerCAmelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase__ = spec.loader.load_module() def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , SCREAMING_SNAKE_CASE ) is not None def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = object_name.split("." ) lowerCAmelCase : Optional[int] = 0 # First let's find the module where our object lives. lowerCAmelCase : Any = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : List[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase : List[str] = "" lowerCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase : List[str] = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : List[Any] = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase__ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase__ = re.compile(r'''<FILL\s+[^>]*>''') def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = code.split("\n" ) lowerCAmelCase : List[str] = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowerCAmelCase : Tuple = f"""class Bla:\n{code}""" lowerCAmelCase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : List[Any] = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len("class Bla:\n" ) :] if has_indent else result def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : List[str] = [] lowerCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = search.groups() lowerCAmelCase : List[str] = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = get_indent(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase : Optional[int] = theoretical_indent lowerCAmelCase : List[str] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase : str = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : str = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : Tuple = lines[start_index:line_index] lowerCAmelCase : List[str] = "".join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] lowerCAmelCase : Union[str, Any] = "\n".join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : str = replace_pattern.replace("with" , "" ).split("," ) lowerCAmelCase : List[str] = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = pattern.groups() lowerCAmelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowerCAmelCase : Optional[Any] = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) lowerCAmelCase : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCAmelCase : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase : int = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def a__ ( SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : List[Any] = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , "**/*.py" ) , recursive=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = [] for filename in all_files: lowerCAmelCase : List[Any] = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : List[Any] = "\n".join(SCREAMING_SNAKE_CASE ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
133
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase__ : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
37
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowerCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' _lowerCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' _lowerCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase="binary" ): """simple docstring""" lowerCAmelCase__ : Any = simple_accuracy(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = {} for id_pred, label in zip(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ : Dict = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Optional[int] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*UpperCamelCase ) lowerCAmelCase__ : List[Any] = fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average="""macro""" ) fas.append(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase ) ) ems.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = float(sum(UpperCamelCase ) / len(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = sum(UpperCamelCase ) / len(UpperCamelCase ) lowerCAmelCase__ : Dict = float(fa_score(y_true=UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None ,) def UpperCAmelCase_ ( self ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase ,__UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCAmelCase ,__UpperCAmelCase ,fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ : Union[str, Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__UpperCAmelCase ,__UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCAmelCase ,__UpperCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
37
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = emb.weight.shape SCREAMING_SNAKE_CASE_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = emb.weight.data return lin_layer def a__ ( __UpperCamelCase , __UpperCamelCase="facebook/mbart-large-en-ro" , __UpperCamelCase=False , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , map_location="cpu" )["model"] remove_ignore_keys_(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = state_dict["encoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE_ = MBartConfig.from_pretrained(__UpperCamelCase , vocab_size=__UpperCamelCase ) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE_ = "relu" SCREAMING_SNAKE_CASE_ = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE_ = MBartForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase ) if finetuned: SCREAMING_SNAKE_CASE_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") A : Dict = parser.parse_args() A : Optional[Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
305
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = "text" lowerCamelCase__ = "summary" @property def __A ( self : Dict ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
305
1