code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case_ ( _lowerCAmelCase : Any ) -> Tuple: if "model" in orig_key: UpperCAmelCase : Dict = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: UpperCAmelCase : Dict = orig_key.split('''.''' )[0].split('''_''' )[-1] UpperCAmelCase : Optional[Any] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: UpperCAmelCase : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: UpperCAmelCase : Tuple = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: UpperCAmelCase : Tuple = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: UpperCAmelCase : List[str] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: UpperCAmelCase : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: UpperCAmelCase : int = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: UpperCAmelCase : Tuple = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: UpperCAmelCase : Union[str, Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: UpperCAmelCase : str = '''yoso.''' + orig_key return orig_key def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> Any: for key in orig_state_dict.copy().keys(): UpperCAmelCase : Any = orig_state_dict.pop(_lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase : Union[str, Any] = val UpperCAmelCase : Dict = orig_state_dict['''cls.predictions.decoder.bias'''] UpperCAmelCase : Union[str, Any] = torch.arange(_lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : str = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model_state_dict'''] UpperCAmelCase : str = YosoConfig.from_json_file(_lowerCAmelCase ) UpperCAmelCase : int = YosoForMaskedLM(_lowerCAmelCase ) UpperCAmelCase : Tuple = convert_checkpoint_helper(config.max_position_embeddings , _lowerCAmelCase ) print(model.load_state_dict(_lowerCAmelCase ) ) model.eval() model.save_pretrained(_lowerCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": UpperCamelCase__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__: List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ : Tuple = 1_6 lowerCAmelCase_ : List[str] = 3_2 def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase , max_length=lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( lowerCAmelCase , padding="""longest""" , max_length=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ : int = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["""lr"""] UpperCAmelCase = int(config["""num_epochs"""] ) UpperCAmelCase = int(config["""seed"""] ) UpperCAmelCase = int(config["""batch_size"""] ) set_seed(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(lowerCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(lowerCAmelCase , lowerCAmelCase ) # Now we train the model for epoch in range(lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase , references=lowerCAmelCase , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(lowerCAmelCase ), """epoch""": epoch, } , step=lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase , default=lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=lowerCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
355
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
248
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a( A : Optional[Any] ) -> Optional[int]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a( ) -> Union[str, Any]: """simple docstring""" with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" a = [1, 2, 3] with pytest.raises(A ): with parallel_backend("unsupported backend" ): map_nested(A , A , num_proc=2 ) with pytest.raises(A ): with parallel_backend("unsupported backend" ): map_nested(A , A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def a( A : Dict ) -> List[str]: """simple docstring""" a = [1, 2] a = {"a": 1, "b": 2} a = {"a": [1, 2], "b": [3, 4]} a = {"a": {"1": 1}, "b": 2} a = {"a": 1, "b": 2, "c": 3, "d": 4} a = [2, 3] a = {"a": 2, "b": 3} a = {"a": [2, 3], "b": [4, 5]} a = {"a": {"1": 2}, "b": 3} a = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(A , A , num_proc=A ) == expected_map_nested_sa assert map_nested(A , A , num_proc=A ) == expected_map_nested_sa assert map_nested(A , A , num_proc=A ) == expected_map_nested_sa assert map_nested(A , A , num_proc=A ) == expected_map_nested_sa assert map_nested(A , A , num_proc=A ) == expected_map_nested_sa
227
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: str = logging.get_logger(__name__) _lowercase: List[str] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "trocr" __A = ["past_key_values"] __A = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__(self , lowerCamelCase_=50265 , lowerCamelCase_=1024 , lowerCamelCase_=12 , lowerCamelCase_=16 , lowerCamelCase_=4096 , lowerCamelCase_="gelu" , lowerCamelCase_=512 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=0.0 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , **lowerCamelCase_ , ): """simple docstring""" a = vocab_size a = d_model a = decoder_layers a = decoder_attention_heads a = decoder_ffn_dim a = activation_function a = max_position_embeddings a = dropout a = attention_dropout a = activation_dropout a = init_std a = decoder_layerdrop a = use_cache a = scale_embedding a = use_learned_position_embeddings a = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
227
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): stooge(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) - 1 ) return arr def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __lowercase , __lowercase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __lowercase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowerCamelCase_ , lowerCamelCase_ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowerCamelCase_ , i + t , (lowerCamelCase_) ) # Recursively sort first 2/3 elements stooge(lowerCamelCase_ , lowerCamelCase_ , (h - t) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input('''Enter numbers separated by a comma:\n''').strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
364
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : Dict = PRETRAINED_VOCAB_FILES_MAP a : int = PRETRAINED_INIT_CONFIGURATION a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = ElectraTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> List[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> str: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
217
0
def lowercase( UpperCamelCase_ , UpperCamelCase_ = " " ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = 0 for index, char in enumerate(UpperCamelCase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCamelCase = index + 1 elif index + 1 == len(UpperCamelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
343
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = TFResNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
343
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : List[str] = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Union[str, Any] = """altclip_text_model""" def __init__( self : str , lowercase_ : Union[str, Any]=250002 , lowercase_ : int=1024 , lowercase_ : List[str]=24 , lowercase_ : int=16 , lowercase_ : List[str]=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Dict=0.1 , lowercase_ : int=0.1 , lowercase_ : Tuple=514 , lowercase_ : Any=1 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=0.02 , lowercase_ : Any=1E-05 , lowercase_ : Any=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : Dict=2 , lowercase_ : List[Any]="absolute" , lowercase_ : Dict=True , lowercase_ : int=768 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ : Dict = vocab_size snake_case_ : str = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : List[Any] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Dict = initializer_factor snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Dict = position_embedding_type snake_case_ : str = use_cache snake_case_ : int = project_dim class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Union[str, Any] = """altclip_vision_model""" def __init__( self : Any , lowercase_ : str=768 , lowercase_ : Optional[int]=3072 , lowercase_ : int=512 , lowercase_ : List[Any]=12 , lowercase_ : Dict=12 , lowercase_ : List[str]=3 , lowercase_ : str=224 , lowercase_ : Optional[int]=32 , lowercase_ : Tuple="quick_gelu" , lowercase_ : Tuple=1E-5 , lowercase_ : List[Any]=0.0 , lowercase_ : Any=0.02 , lowercase_ : Any=1.0 , **lowercase_ : Optional[int] , ): super().__init__(**lowercase_ ) snake_case_ : Optional[int] = hidden_size snake_case_ : str = intermediate_size snake_case_ : List[Any] = projection_dim snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Union[str, Any] = num_channels snake_case_ : Any = patch_size snake_case_ : List[Any] = image_size snake_case_ : List[Any] = initializer_range snake_case_ : str = initializer_factor snake_case_ : Optional[Any] = attention_dropout snake_case_ : int = layer_norm_eps snake_case_ : Optional[Any] = hidden_act @classmethod def _snake_case ( cls : str , lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ): cls._set_token_in_kwargs(lowercase_ ) snake_case_ : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": snake_case_ : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase_ , **lowercase_ ) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : str = """altclip""" _lowerCAmelCase : Union[str, Any] = True def __init__( self : Dict , lowercase_ : int=None , lowercase_ : Any=None , lowercase_ : Optional[int]=768 , lowercase_ : List[Any]=2.65_92 , **lowercase_ : Union[str, Any] ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). snake_case_ : List[Any] = kwargs.pop('''text_config_dict''' , lowercase_ ) snake_case_ : Optional[int] = kwargs.pop('''vision_config_dict''' , lowercase_ ) super().__init__(**lowercase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case_ : Any = {} # This is the complete result when using `text_config_dict`. snake_case_ : Dict = AltCLIPTextConfig(**lowercase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case_ : List[Any] = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: snake_case_ : Optional[Any] = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(lowercase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case_ : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. snake_case_ : Any = AltCLIPVisionConfig(**lowercase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case_ : Optional[int] = { str(lowercase_ ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case_ : List[str] = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: snake_case_ : List[Any] = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(lowercase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case_ : Union[str, Any] = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: snake_case_ : Union[str, Any] = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) snake_case_ : Any = AltCLIPTextConfig(**lowercase_ ) snake_case_ : Any = AltCLIPVisionConfig(**lowercase_ ) snake_case_ : str = projection_dim snake_case_ : str = logit_scale_init_value snake_case_ : Tuple = 1.0 @classmethod def _snake_case ( cls : str , lowercase_ : Union[str, Any] , lowercase_ : int , **lowercase_ : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def _snake_case ( self : Dict ): snake_case_ : Optional[int] = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.text_config.to_dict() snake_case_ : Union[str, Any] = self.vision_config.to_dict() snake_case_ : Optional[int] = self.__class__.model_type return output
352
"""simple docstring""" import os def __lowercase ( _a ): snake_case_ : Tuple = len(grid[0] ) snake_case_ : Optional[int] = len(_a ) snake_case_ : Union[str, Any] = 0 snake_case_ : Union[str, Any] = 0 snake_case_ : List[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_a ): for j in range(n_rows - 3 ): snake_case_ : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case_ : int = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case_ : Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case_ : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case_ : List[str] = max( _a , _a , _a , _a ) if max_product > largest: snake_case_ : str = max_product return largest def __lowercase ( ): snake_case_ : Tuple = [] with open(os.path.dirname(_a ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) snake_case_ : List[str] = [[int(_a ) for i in grid[j]] for j in range(len(_a ) )] return largest_product(_a ) if __name__ == "__main__": print(solution())
155
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _snake_case : Tuple = 1_92 _snake_case : Any = 7_68 _snake_case : Any = 12 _snake_case : List[Any] = 3 _snake_case : int = [8_00, 13_33] _snake_case : Tuple = False elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = 3_30 _snake_case : List[str] = 14 _snake_case : List[str] = 6 _snake_case : Union[str, Any] = 13_20 elif "yolos_s" in yolos_name: _snake_case : Union[str, Any] = 3_84 _snake_case : List[str] = 15_36 _snake_case : Any = 12 _snake_case : Optional[int] = 6 elif "yolos_b" in yolos_name: _snake_case : Dict = [8_00, 13_44] _snake_case : str = 91 _snake_case : Optional[Any] = """huggingface/label-files""" _snake_case : str = """coco-detection-id2label.json""" _snake_case : str = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : List[str] = idalabel _snake_case : List[str] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosConfig , snake_case__ : bool = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _snake_case : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _snake_case : Any = in_proj_weight[: config.hidden_size, :] _snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] _snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Tuple = in_proj_weight[-config.hidden_size :, :] _snake_case : List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" if "backbone" in name: _snake_case : str = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: _snake_case : Union[str, Any] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: _snake_case : str = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: _snake_case : str = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: _snake_case : Tuple = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _snake_case : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: _snake_case : str = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _snake_case : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _snake_case : str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _snake_case : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _snake_case : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _snake_case : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _snake_case : int = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: _snake_case : Union[str, Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: _snake_case : str = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: _snake_case : Union[str, Any] = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosForObjectDetection ): """simple docstring""" for key in orig_state_dict.copy().keys(): _snake_case : List[str] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: _snake_case : Optional[Any] = key.split(""".""" ) _snake_case : Optional[Any] = int(key_split[2] ) _snake_case : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _snake_case : str = val[:dim, :] _snake_case : Optional[Any] = val[ dim : dim * 2, : ] _snake_case : Optional[Any] = val[-dim:, :] else: _snake_case : Dict = val[:dim] _snake_case : Any = val[dim : dim * 2] _snake_case : Dict = val[-dim:] else: _snake_case : Tuple = val return orig_state_dict def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : bool = False ): """simple docstring""" _snake_case : Optional[Any] = get_yolos_config(snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] # load 🤗 model _snake_case : Optional[Any] = YolosForObjectDetection(snake_case__ ) model.eval() _snake_case : Optional[Any] = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by YolosImageProcessor _snake_case : List[str] = 8_00 if yolos_name != """yolos_ti""" else 5_12 _snake_case : Optional[int] = YolosImageProcessor(format="""coco_detection""" , size=snake_case__ ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) _snake_case , _snake_case : Optional[int] = outputs.logits, outputs.pred_boxes _snake_case , _snake_case : Dict = None, None if yolos_name == "yolos_ti": _snake_case : Optional[Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _snake_case : Tuple = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _snake_case : List[str] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _snake_case : List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _snake_case : Dict = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _snake_case : Union[str, Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _snake_case : Optional[Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _snake_case : int = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _snake_case : Optional[int] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: _snake_case : Dict = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) _snake_case : str = model_mapping[yolos_name] image_processor.push_to_hub(snake_case__ , organization="""hustvl""" ) model.push_to_hub(snake_case__ , organization="""hustvl""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
64
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any=7 ): """simple docstring""" _snake_case : Any = None if token is not None: _snake_case : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} # The id of a workflow (not of a workflow run) _snake_case : List[str] = """636036""" _snake_case : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" _snake_case : str = requests.get(snake_case__ , headers=snake_case__ ).json() return result["workflow_runs"] def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : str = get_daily_ci_runs(snake_case__ ) _snake_case : str = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _snake_case : List[str] = workflow_run["""id"""] break return workflow_run_id def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[Any] = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: _snake_case : Optional[Any] = get_artifacts_links(worflow_run_id=snake_case__ , token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _snake_case : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__ , artifact_url=snake_case__ , output_dir=snake_case__ , token=snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" get_last_daily_ci_artifacts(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = {} for artifact_name in artifact_names: _snake_case : int = os.path.join(snake_case__ , F"{artifact_name}.zip" ) if os.path.isfile(snake_case__ ): _snake_case : Tuple = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: _snake_case : Any = f.read().decode("""UTF-8""" ) return results
64
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = IFInpaintingSuperResolutionPipeline __lowercase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __lowercase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) __lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase_ ( self ) -> Any: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> List[Any]: if str(__UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase__ : Any = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ : Dict = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : Any = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def UpperCAmelCase_ ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" ) def UpperCAmelCase_ ( self ) -> List[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self ) -> List[Any]: self._test_save_load_local() def UpperCAmelCase_ ( self ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
184
'''simple docstring''' import os def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = len(grid[0] ) lowerCAmelCase__ : int = len(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(UpperCamelCase ): for j in range(n_rows - 3 ): lowerCAmelCase__ : str = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase__ : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase__ : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase__ : Tuple = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase__ : Dict = max( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if max_product > largest: lowerCAmelCase__ : Any = max_product return largest def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = [] with open(os.path.dirname(UpperCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) lowerCAmelCase__ : Dict = [[int(UpperCamelCase ) for i in grid[j]] for j in range(len(UpperCamelCase ) )] return largest_product(UpperCamelCase ) if __name__ == "__main__": print(solution())
184
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=[] ) -> Any: '''simple docstring''' __UpperCAmelCase = size[0] - overlap_pixels * 2 __UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 __UpperCAmelCase = np.pad(SCREAMING_SNAKE_CASE , mode='''linear_ramp''' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __UpperCAmelCase = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __UpperCAmelCase = tile.crop(SCREAMING_SNAKE_CASE ) return tile def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = n % d return n - divisor class A_ ( snake_case_ ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 350 , ) -> int: super().__init__( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , low_res_scheduler=__snake_case , scheduler=__snake_case , max_noise_level=__snake_case , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ) -> int: torch.manual_seed(0 ) __UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __UpperCAmelCase = add_overlap_rect(__snake_case , __snake_case , image.size ) __UpperCAmelCase = image.crop(__snake_case ) __UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __UpperCAmelCase = translated_slice_x - (original_image_slice / 2) __UpperCAmelCase = max(0 , __snake_case ) __UpperCAmelCase = squeeze_tile(__snake_case , __snake_case , __snake_case , __snake_case ) __UpperCAmelCase = to_input.size __UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __UpperCAmelCase = super(__snake_case , self ).__call__(image=__snake_case , **__snake_case ).images[0] __UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __UpperCAmelCase = unsqueeze_tile(__snake_case , __snake_case ) __UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __UpperCAmelCase = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) __UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__snake_case ) , mode='''L''' , ) final_image.paste( __snake_case , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __snake_case ) @torch.no_grad() def __call__(self , lowercase__ , lowercase__ , lowercase__ = 75 , lowercase__ = 9.0 , lowercase__ = 50 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = 1 , lowercase__ = 128 , lowercase__ = 32 , lowercase__ = 32 , ) -> str: __UpperCAmelCase = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) __UpperCAmelCase = math.ceil(image.size[0] / tile_size ) __UpperCAmelCase = math.ceil(image.size[1] / tile_size ) __UpperCAmelCase = tcx * tcy __UpperCAmelCase = 0 for y in range(__snake_case ): for x in range(__snake_case ): self._process_tile( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , prompt=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , noise_level=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def __a ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' __UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='''fp16''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to('''cuda''' ) __UpperCAmelCase = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(SCREAMING_SNAKE_CASE ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) __UpperCAmelCase = pipe(image=SCREAMING_SNAKE_CASE , prompt='''Black font, white background, vector''' , noise_level=4_0 , callback=SCREAMING_SNAKE_CASE ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
333
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : List[str] =logging.get_logger(__name__) A__ : Any ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Any ={ '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[Any] = VOCAB_FILES_NAMES _lowercase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: str = PRETRAINED_INIT_CONFIGURATION _lowercase: List[Any] = RoFormerTokenizer def __init__( self : Dict , __snake_case : str=None , __snake_case : Tuple=None , __snake_case : List[Any]=True , __snake_case : str="[UNK]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[PAD]" , __snake_case : str="[CLS]" , __snake_case : Any="[MASK]" , __snake_case : Dict=True , __snake_case : str=None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __snake_case ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __snake_case ) != strip_accents ): _lowerCAmelCase = getattr(__snake_case , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = pre_tok_class(**__snake_case ) _lowerCAmelCase = do_lower_case def __getstate__( self : int ) -> Optional[int]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = BertPreTokenizer() return state def __setstate__( self : Tuple , __snake_case : Tuple ) -> List[str]: _lowerCAmelCase = d _lowerCAmelCase = self.__dict__["""_tokenizer"""].get_vocab() _lowerCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=None ) -> Optional[Any]: _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: _lowerCAmelCase = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : List[Any]=False , **__snake_case : Dict , ) -> str: _lowerCAmelCase = BertPreTokenizer() return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
70
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") _UpperCAmelCase : Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) _UpperCAmelCase : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowercase : __lowercase : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) __lowercase : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the training data."} ) __lowercase : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the validation data."} ) __lowercase : Optional[float] = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) __lowercase : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) __lowercase : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) __lowercase : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __lowercase : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {} if self.train_dir is not None: UpperCamelCase = self.train_dir if self.validation_dir is not None: UpperCamelCase = self.validation_dir UpperCamelCase = data_files if data_files else None @dataclass class lowercase : __lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_SCREAMING_SNAKE_CASE )} , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) __lowercase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __lowercase : str = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} ) __lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __lowercase : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) __lowercase : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) __lowercase : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Stride to use for the encoder."} , ) class lowercase : def __init__( self , A_=192 , A_=32 , A_=4 , A_=0.6 ) -> Optional[Any]: """simple docstring""" UpperCamelCase = input_size UpperCamelCase = mask_patch_size UpperCamelCase = model_patch_size UpperCamelCase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) UpperCamelCase = self.input_size // self.mask_patch_size UpperCamelCase = self.mask_patch_size // self.model_patch_size UpperCamelCase = self.rand_size**2 UpperCamelCase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: """simple docstring""" UpperCamelCase = np.random.permutation(self.token_count )[: self.mask_count] UpperCamelCase = np.zeros(self.token_count , dtype=A_ ) UpperCamelCase = 1 UpperCamelCase = mask.reshape((self.rand_size, self.rand_size) ) UpperCamelCase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A ( lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = torch.stack([example['pixel_values'] for example in examples] ) UpperCamelCase = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: UpperCamelCase = ds['train'].train_test_split(data_args.train_val_split ) UpperCamelCase = split['train'] UpperCamelCase = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase ) elif model_args.model_name_or_path: UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase , 'decoder_type' ): UpperCamelCase = 'simmim' # adapt config UpperCamelCase = model_args.image_size if model_args.image_size is not None else config.image_size UpperCamelCase = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCamelCase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCamelCase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: UpperCamelCase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: UpperCamelCase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCamelCase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCamelCase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) UpperCamelCase = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: UpperCamelCase = ds['train'].column_names else: UpperCamelCase = ds['validation'].column_names if data_args.image_column_name is not None: UpperCamelCase = data_args.image_column_name elif "image" in column_names: UpperCamelCase = 'image' elif "img" in column_names: UpperCamelCase = 'img' else: UpperCamelCase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCamelCase = Compose( [ Lambda(lambda lowercase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCamelCase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase ): UpperCamelCase = [transforms(lowercase ) for image in examples[image_column_name]] UpperCamelCase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: UpperCamelCase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: UpperCamelCase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer UpperCamelCase = Trainer( model=lowercase , args=lowercase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics('eval' , lowercase ) trainer.save_metrics('eval' , lowercase ) # Write model card and (optionally) push to hub UpperCamelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
110
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : torch.FloatTensor class lowercase ( nn.Module ): def __init__( self , A_=3 , A_=3 , A_=("DownEncoderBlock2D",) , A_=(64,) , A_=2 , A_=32 , A_="silu" , A_=True , ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase = layers_per_block UpperCamelCase = torch.nn.Convad( A_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([] ) # down UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(A_ ): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] UpperCamelCase = i == len(A_ ) - 1 UpperCamelCase = get_down_block( A_ , num_layers=self.layers_per_block , in_channels=A_ , out_channels=A_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=A_ , resnet_groups=A_ , attention_head_dim=A_ , temb_channels=A_ , ) self.down_blocks.append(A_ ) # mid UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=A_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=A_ , temb_channels=A_ , ) # out UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=A_ , eps=1e-6 ) UpperCamelCase = nn.SiLU() UpperCamelCase = 2 * out_channels if double_z else out_channels UpperCamelCase = nn.Convad(block_out_channels[-1] , A_ , 3 , padding=1 ) UpperCamelCase = False def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = x UpperCamelCase = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ ): def custom_forward(*A_ ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) , A_ , use_reentrant=A_ ) # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , A_ , use_reentrant=A_ ) else: for down_block in self.down_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) , A_ ) # middle UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , A_ ) else: # down for down_block in self.down_blocks: UpperCamelCase = down_block(A_ ) # middle UpperCamelCase = self.mid_block(A_ ) # post-process UpperCamelCase = self.conv_norm_out(A_ ) UpperCamelCase = self.conv_act(A_ ) UpperCamelCase = self.conv_out(A_ ) return sample class lowercase ( nn.Module ): def __init__( self , A_=3 , A_=3 , A_=("UpDecoderBlock2D",) , A_=(64,) , A_=2 , A_=32 , A_="silu" , A_="group" , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase = layers_per_block UpperCamelCase = nn.Convad( A_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([] ) UpperCamelCase = in_channels if norm_type == 'spatial' else None # mid UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=A_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=A_ , temb_channels=A_ , ) # up UpperCamelCase = list(reversed(A_ ) ) UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): UpperCamelCase = output_channel UpperCamelCase = reversed_block_out_channels[i] UpperCamelCase = i == len(A_ ) - 1 UpperCamelCase = get_up_block( A_ , num_layers=self.layers_per_block + 1 , in_channels=A_ , out_channels=A_ , prev_output_channel=A_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=A_ , resnet_groups=A_ , attention_head_dim=A_ , temb_channels=A_ , resnet_time_scale_shift=A_ , ) self.up_blocks.append(A_ ) UpperCamelCase = output_channel # out if norm_type == "spatial": UpperCamelCase = SpatialNorm(block_out_channels[0] , A_ ) else: UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=A_ , eps=1e-6 ) UpperCamelCase = nn.SiLU() UpperCamelCase = nn.Convad(block_out_channels[0] , A_ , 3 , padding=1 ) UpperCamelCase = False def __UpperCamelCase ( self , A_ , A_=None ) -> Dict: """simple docstring""" UpperCamelCase = z UpperCamelCase = self.conv_in(A_ ) UpperCamelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ ): def custom_forward(*A_ ): return module(*A_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , A_ , A_ , use_reentrant=A_ ) UpperCamelCase = sample.to(A_ ) # up for up_block in self.up_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) , A_ , A_ , use_reentrant=A_ ) else: # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , A_ , A_ ) UpperCamelCase = sample.to(A_ ) # up for up_block in self.up_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) , A_ , A_ ) else: # middle UpperCamelCase = self.mid_block(A_ , A_ ) UpperCamelCase = sample.to(A_ ) # up for up_block in self.up_blocks: UpperCamelCase = up_block(A_ , A_ ) # post-process if latent_embeds is None: UpperCamelCase = self.conv_norm_out(A_ ) else: UpperCamelCase = self.conv_norm_out(A_ , A_ ) UpperCamelCase = self.conv_act(A_ ) UpperCamelCase = self.conv_out(A_ ) return sample class lowercase ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_=None , A_="random" , A_=False , A_=True ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase = n_e UpperCamelCase = vq_embed_dim UpperCamelCase = beta UpperCamelCase = legacy UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCamelCase = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) UpperCamelCase = self.used.shape[0] UpperCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCamelCase = self.re_embed UpperCamelCase = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: UpperCamelCase = n_e UpperCamelCase = sane_index_shape def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = inds.shape assert len(A_ ) > 1 UpperCamelCase = inds.reshape(ishape[0] , -1 ) UpperCamelCase = self.used.to(A_ ) UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long() UpperCamelCase = match.argmax(-1 ) UpperCamelCase = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCamelCase = self.unknown_index return new.reshape(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = inds.shape assert len(A_ ) > 1 UpperCamelCase = inds.reshape(ishape[0] , -1 ) UpperCamelCase = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token UpperCamelCase = 0 # simply set to zero UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , A_ ) return back.reshape(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" # reshape z -> (batch, height, width, channel) and flatten UpperCamelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCamelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCamelCase = torch.argmin(torch.cdist(A_ , self.embedding.weight ) , dim=1 ) UpperCamelCase = self.embedding(A_ ).view(z.shape ) UpperCamelCase = None UpperCamelCase = None # compute loss for embedding if not self.legacy: UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCamelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCamelCase = z + (z_q - z).detach() # reshape back to match original input shape UpperCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCamelCase = self.remap_to_used(A_ ) UpperCamelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCamelCase = indices.reshape(shape[0] , -1 ) # add batch axis UpperCamelCase = self.unmap_to_all(A_ ) UpperCamelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCamelCase = self.embedding(A_ ) if shape is not None: UpperCamelCase = z_q.view(A_ ) # reshape back to match original input shape UpperCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_=False ) -> Any: """simple docstring""" UpperCamelCase = parameters UpperCamelCase , UpperCamelCase = torch.chunk(A_ , 2 , dim=1 ) UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCamelCase = deterministic UpperCamelCase = torch.exp(0.5 * self.logvar ) UpperCamelCase = torch.exp(self.logvar ) if self.deterministic: UpperCamelCase = UpperCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self , A_ = None ) -> torch.FloatTensor: """simple docstring""" # make sure sample is on the same device as the parameters and has same dtype UpperCamelCase = randn_tensor( self.mean.shape , generator=A_ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCamelCase = self.mean + self.std * sample return x def __UpperCamelCase ( self , A_=None ) -> Tuple: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self , A_ , A_=[1, 2, 3] ) -> Optional[Any]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCamelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return self.mean
110
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : int = """T5Config""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = jnp.zeros_like(lowerCamelCase) __lowerCAmelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) __lowerCAmelCase = shifted_input_ids.at[:, 0].set(lowerCamelCase) __lowerCAmelCase = jnp.where(shifted_input_ids == -1_0_0, lowerCamelCase, lowerCamelCase) return shifted_input_ids class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[int] = 'mt5' __UpperCamelCase : Union[str, Any] = MTaConfig class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = 'mt5' __UpperCamelCase : Optional[Any] = MTaConfig class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = 'mt5' __UpperCamelCase : List[Any] = MTaConfig
174
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): assert x is not None assert y is not None __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # declaring the array for storing the dp values __lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1)] # noqa: E741 for i in range(1, m + 1): for j in range(1, n + 1): __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCAmelCase = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match) __lowerCAmelCase = '''''' __lowerCAmelCase , __lowerCAmelCase = m, n while i > 0 and j > 0: __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _UpperCAmelCase : List[Any] = """AGGTAB""" _UpperCAmelCase : int = """GXTXAYB""" _UpperCAmelCase : Any = 4 _UpperCAmelCase : List[Any] = """GTAB""" _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
174
1
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A ( __snake_case , unittest.TestCase ): __magic_name__ = BertTokenizer __magic_name__ = BertTokenizerFast __magic_name__ = True __magic_name__ = True __magic_name__ = filter_non_english def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().setUp() A : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Optional[Any] = '''UNwant\u00E9d,running''' A : Optional[Any] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Any = self.tokenizer_class(self.vocab_file ) A : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return A : List[str] = self.get_tokenizer() A : str = self.get_rust_tokenizer() A : List[str] = '''UNwant\u00E9d,running''' A : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = self.get_rust_tokenizer() A : str = tokenizer.encode(SCREAMING_SNAKE_CASE ) A : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # With lower casing A : List[str] = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE ) A : Dict = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = '''UNwant\u00E9d,running''' A : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) A : Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = self.get_rust_tokenizer() A : Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE ) A : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[str] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Union[str, Any] = BasicTokenizer() A : Optional[Any] = '''a\n\'ll !!to?\'d of, can\'t.''' A : Dict = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A : List[str] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE ): A : int = i A : Any = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.get_tokenizer() A : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) A : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) A : List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Dict = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A : Optional[int] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , ) A : Optional[Any] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE , '''do_lower_case''' ) else False A : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = ['''的''', '''人''', '''有'''] A : str = ''''''.join(SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[Any] = True A : List[str] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = False A : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Any = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) A : int = tokenizer_p.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) A : int = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". A : List[str] = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE ) ] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
311
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("""T""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: return (position - 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: return (2 * position) + 1 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: return (2 * position) + 2 class A__ ( Generic[T] ): def __init__( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : list[tuple[T, int]] = [] lowerCAmelCase__ : dict[T, int] = {} lowerCAmelCase__ : int = 0 def __len__( self : List[str] ): '''simple docstring''' return self.elements def __repr__( self : str ): '''simple docstring''' return str(self.heap ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.elements == 0 def _lowerCamelCase ( self : List[Any] , a : T , a : int ): '''simple docstring''' self.heap.append((elem, weight) ) lowerCAmelCase__ : Optional[int] = self.elements self.elements += 1 self._bubble_up(a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase__ , lowerCAmelCase__ : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[0] self._bubble_down(a ) return elem def _lowerCamelCase ( self : Optional[int] , a : T , a : int ): '''simple docstring''' lowerCAmelCase__ : int = self.position_map[elem] lowerCAmelCase__ : Any = (elem, weight) if position > 0: lowerCAmelCase__ : Optional[int] = get_parent_position(a ) lowerCAmelCase__ , lowerCAmelCase__ : str = self.heap[parent_position] if parent_weight > weight: self._bubble_up(a ) else: self._bubble_down(a ) else: self._bubble_down(a ) def _lowerCamelCase ( self : Tuple , a : T ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase__ : Optional[Any] = get_parent_position(a ) lowerCAmelCase__ , lowerCAmelCase__ : int = self.heap[curr_pos] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(a , a ) return self._bubble_up(a ) return None def _lowerCamelCase ( self : Optional[int] , a : T ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.position_map[elem] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.heap[curr_pos] lowerCAmelCase__ : List[Any] = get_child_left_position(a ) lowerCAmelCase__ : int = get_child_right_position(a ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[child_left_position] lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) if child_left_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : str = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) else: return None if child_right_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) return None def _lowerCamelCase ( self : Tuple , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.heap[nodea_pos][0] lowerCAmelCase__ : str = self.heap[nodea_pos][0] lowerCAmelCase__ , lowerCAmelCase__ : Any = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase__ : Tuple = nodea_pos lowerCAmelCase__ : List[str] = nodea_pos class A__ ( Generic[T] ): def __init__( self : str ): '''simple docstring''' lowerCAmelCase__ : dict[T, dict[T, int]] = {} lowerCAmelCase__ : int = 0 def __repr__( self : List[str] ): '''simple docstring''' return str(self.connections ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.nodes def _lowerCamelCase ( self : Optional[int] , a : T ): '''simple docstring''' if node not in self.connections: lowerCAmelCase__ : Optional[Any] = {} self.nodes += 1 def _lowerCamelCase ( self : Tuple , a : T , a : T , a : int ): '''simple docstring''' self.add_node(a ) self.add_node(a ) lowerCAmelCase__ : Optional[Any] = weight lowerCAmelCase__ : Tuple = weight def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , ) -> tuple[dict[T, int], dict[T, T | None]]: lowerCAmelCase__ : dict[T, int] = {node: maxsize for node in graph.connections} lowerCAmelCase__ : dict[T, T | None] = {node: None for node in graph.connections} lowerCAmelCase__ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase__ : Union[str, Any] = priority_queue.extract_min() lowerCAmelCase__ : Optional[int] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE_ , dist[neighbour] ) lowerCAmelCase__ : Any = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase__ : Tuple = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : Optional[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE_ , dist[neighbour] ) lowerCAmelCase__ : List[str] = node return dist, parent
212
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class A__ ( __magic_name__ ): lowercase = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase = Features({'audio': Audio()} ) lowercase = Features({'labels': ClassLabel} ) lowercase = "audio" lowercase = "labels" def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , a ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase__ : Tuple = copy.deepcopy(self ) lowerCAmelCase__ : List[Any] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
212
1
"""simple docstring""" import requests SCREAMING_SNAKE_CASE = "" # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE = "https://api.openweathermap.org/data/2.5/" def _SCREAMING_SNAKE_CASE ( lowercase_ = "Chicago" , lowercase_ = APPID ) -> dict: return requests.get(URL_BASE + "weather" , params=locals() ).json() def _SCREAMING_SNAKE_CASE ( lowercase_ = "Kolkata, India" , lowercase_ = APPID ) -> dict: return requests.get(URL_BASE + "forecast" , params=locals() ).json() def _SCREAMING_SNAKE_CASE ( lowercase_ = 5_5.6_8 , lowercase_ = 1_2.5_7 , lowercase_ = APPID ) -> dict: return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
230
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
1
import datasets from .evaluate import evaluate UpperCAmelCase_ : Optional[Any] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' UpperCAmelCase_ : int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' UpperCAmelCase_ : List[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: a_ : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions} a_ : List[Any] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] a_ : Any = evaluate(dataset=SCREAMING_SNAKE_CASE__ , predictions=SCREAMING_SNAKE_CASE__ ) return score
32
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Union[str, Any] ): """simple docstring""" stooge(snake_case__ , 0 , len(snake_case__ ) - 1 ) return arr def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _snake_case , _snake_case : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _snake_case : Dict = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case__ , snake_case__ , (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case__ , i + t , (snake_case__) ) # Recursively sort first 2/3 elements stooge(snake_case__ , snake_case__ , (h - t) ) if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
64
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = 0 def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(__snake_case , __snake_case) def __snake_case ( self : List[Any]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(__snake_case) / 'preprocessor_config.json' lowerCAmelCase__ = Path(__snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(__snake_case , 'w') , ) json.dump({'model_type': 'clip'} , open(__snake_case , 'w')) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case) self.assertIsInstance(__snake_case , __snake_case) def __snake_case ( self : List[str]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(__snake_case) / 'preprocessor_config.json' lowerCAmelCase__ = Path(__snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(__snake_case , 'w') , ) json.dump({'model_type': 'clip'} , open(__snake_case , 'w')) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case) self.assertIsInstance(__snake_case , __snake_case) def __snake_case ( self : Tuple): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(__snake_case) / 'preprocessor_config.json' lowerCAmelCase__ = Path(__snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(__snake_case , 'w') , ) json.dump({'model_type': 'clip'} , open(__snake_case , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case).to_dict() config_dict.pop('image_processor_type') lowerCAmelCase__ = CLIPImageProcessor(**__snake_case) # save in new folder model_config.save_pretrained(__snake_case) config.save_pretrained(__snake_case) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(__snake_case , __snake_case) def __snake_case ( self : List[Any]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(__snake_case) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(__snake_case , 'w') , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case) self.assertIsInstance(__snake_case , __snake_case) def __snake_case ( self : int): '''simple docstring''' with self.assertRaisesRegex( __snake_case , 'clip-base is not a local folder and is not a valid model identifier'): lowerCAmelCase__ = AutoImageProcessor.from_pretrained('clip-base') def __snake_case ( self : Tuple): '''simple docstring''' with self.assertRaisesRegex( __snake_case , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case , revision='aaaaaa') def __snake_case ( self : str): '''simple docstring''' with self.assertRaisesRegex( __snake_case , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def __snake_case ( self : List[str]): '''simple docstring''' with self.assertRaises(__snake_case): lowerCAmelCase__ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__snake_case) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__snake_case) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def __snake_case ( self : List[str]): '''simple docstring''' try: AutoConfig.register('custom' , __snake_case) AutoImageProcessor.register(__snake_case , __snake_case) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case): AutoImageProcessor.register(__snake_case , __snake_case) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(__snake_case) / 'preprocessor_config.json' lowerCAmelCase__ = Path(__snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(__snake_case , 'w') , ) json.dump({'model_type': 'clip'} , open(__snake_case , 'w')) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(__snake_case) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(__snake_case) self.assertIsInstance(__snake_case , __snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self : Dict): '''simple docstring''' class a_ ( A__ ): '''simple docstring''' UpperCAmelCase_ = True try: AutoConfig.register('custom' , __snake_case) AutoImageProcessor.register(__snake_case , __snake_case) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__snake_case) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__snake_case) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(__snake_case , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
353
def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = len(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): for j in range(i + 1 , lowerCAmelCase__ ): if numbers[j] < numbers[i]: lowerCAmelCase__ , lowerCAmelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
119
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __snake_case :Tuple = logging.get_logger(__name__) __snake_case :Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __snake_case :Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __snake_case ( _UpperCAmelCase ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __a = model_type_to_module_name(_UpperCAmelCase ) __a = importlib.import_module(f'.{module_name}' , '''transformers.models''' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '''__name__''' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __a = importlib.import_module('''transformers''' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ): __a = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_UpperCAmelCase , encoding='''utf-8''' ) as reader: return json.load(_UpperCAmelCase ) class _A : def __init__( self : int): '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( cls : Any , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE) __a = kwargs.pop('''trust_remote_code''' , __SCREAMING_SNAKE_CASE) __a = True __a , __a = FeatureExtractionMixin.get_feature_extractor_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = config_dict.get('''feature_extractor_type''' , __SCREAMING_SNAKE_CASE) __a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): __a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # It could be in `config.feature_extractor_type`` __a = getattr(__SCREAMING_SNAKE_CASE , '''feature_extractor_type''' , __SCREAMING_SNAKE_CASE) if hasattr(__SCREAMING_SNAKE_CASE , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: __a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __a = feature_extractor_class_from_name(__SCREAMING_SNAKE_CASE) __a = feature_extractor_auto_map is not None __a = feature_extractor_class is not None or type(__SCREAMING_SNAKE_CASE) in FEATURE_EXTRACTOR_MAPPING __a = resolve_trust_remote_code( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if has_remote_code and trust_remote_code: __a = get_class_from_dynamic_module( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = kwargs.pop('''code_revision''' , __SCREAMING_SNAKE_CASE) if os.path.isdir(__SCREAMING_SNAKE_CASE): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__SCREAMING_SNAKE_CASE) in FEATURE_EXTRACTOR_MAPPING: __a = FEATURE_EXTRACTOR_MAPPING[type(__SCREAMING_SNAKE_CASE)] return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}') @staticmethod def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
49
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Union[str, Any] = logging.get_logger(__name__) __snake_case :Any = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''switch_transformers''' UpperCamelCase__ : Optional[Any] = ['''past_key_values'''] UpperCamelCase__ : Optional[Any] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str=32_128 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=64 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : List[str]=64 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.01 , __SCREAMING_SNAKE_CASE : Dict="float32" , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : int=128 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : int=1E-6 , __SCREAMING_SNAKE_CASE : Dict=0.0_01 , __SCREAMING_SNAKE_CASE : List[str]=0.0_01 , __SCREAMING_SNAKE_CASE : List[Any]=1.0 , __SCREAMING_SNAKE_CASE : Optional[int]="relu" , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , **__SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' __a = vocab_size __a = d_model __a = d_kv __a = d_ff __a = num_sparse_encoder_layers __a = num_layers __a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __a = self.num_layers // self.num_sparse_encoder_layers else: __a = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __a = self.num_decoder_layers // self.num_sparse_decoder_layers else: __a = self.num_decoder_layers # HACK: this will create 0 sparse layers __a = num_heads __a = num_experts __a = expert_capacity __a = router_bias __a = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}') __a = router_dtype __a = router_ignore_padding_tokens __a = relative_attention_num_buckets __a = relative_attention_max_distance __a = dropout_rate __a = layer_norm_epsilon __a = initializer_factor __a = feed_forward_proj __a = use_cache __a = add_router_probs __a = router_z_loss_coef __a = router_aux_loss_coef __a = self.feed_forward_proj.split('''-''') __a = act_info[-1] __a = act_info[0] == '''gated''' if len(__SCREAMING_SNAKE_CASE) > 1 and act_info[0] != "gated" or len(__SCREAMING_SNAKE_CASE) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": __a = '''gelu_new''' super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
49
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar a_ = TypeVar("""T""") a_ = TypeVar("""U""") class __snake_case ( Generic[T, U] ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = key __A : Tuple = val __A : DoubleLinkedListNode[T, U] | None = None __A : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): '''simple docstring''' return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class __snake_case ( Generic[T, U] ): """simple docstring""" def __init__( self ): '''simple docstring''' __A : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCamelCase , __lowerCamelCase ) __A : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCamelCase , __lowerCamelCase ) __A , __A : int = self.rear, self.head def __repr__( self ): '''simple docstring''' __A : Dict = ['''DoubleLinkedList'''] __A : str = self.head while node.next is not None: rep.append(str(__lowerCamelCase ) ) __A : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __A : Union[str, Any] = node __A : int = previous __A : int = node __A : Tuple = self.rear def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if node.prev is None or node.next is None: return None __A : Dict = node.next __A : str = node.prev __A : List[str] = None __A : List[str] = None return node class __snake_case ( Generic[T, U] ): """simple docstring""" _lowerCamelCase = {} def __init__( self , __lowerCamelCase ): '''simple docstring''' __A : DoubleLinkedList[T, U] = DoubleLinkedList() __A : List[Any] = capacity __A : Optional[Any] = 0 __A : Any = 0 __A : str = 0 __A : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): '''simple docstring''' return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , __lowerCamelCase ): '''simple docstring''' return key in self.cache def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if key in self.cache: self.hits += 1 __A : DoubleLinkedListNode[T, U] = self.cache[key] __A : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__lowerCamelCase ) return node.val self.miss += 1 return None def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __A : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __A : Any = DoubleLinkedListNode(__lowerCamelCase , __lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __A : Tuple = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __A : Optional[Any] = value self.list.add(__lowerCamelCase ) @classmethod def UpperCamelCase__( cls , __lowerCamelCase = 128 ): '''simple docstring''' def cache_decorator_inner(__lowerCamelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*__lowerCamelCase ) -> U: if func not in cls.decorator_function_to_instance_map: __A : List[str] = LRUCache(__lowerCamelCase ) __A : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __A : List[Any] = func(*__lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , __lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__lowerCamelCase , '''cache_info''' , __lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
291
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , **__lowerCamelCase ): '''simple docstring''' super().__init__(**__lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = {} if "candidate_labels" in kwargs: __A : Tuple = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __A : List[str] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This is a photo of {}." ): '''simple docstring''' __A : Optional[int] = load_image(__lowerCamelCase ) __A : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework ) __A : int = candidate_labels __A : int = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] __A : Dict = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) __A : int = [text_inputs] return inputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_inputs.pop('''candidate_labels''' ) __A : str = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCamelCase ): __A : Union[str, Any] = text_inputs[0] else: # Batching case. __A : str = text_inputs[0][0] __A : List[str] = self.model(**__lowerCamelCase , **__lowerCamelCase ) __A : Dict = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_outputs.pop('''candidate_labels''' ) __A : int = model_outputs['''logits'''][0] if self.framework == "pt": __A : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __A : Dict = probs.tolist() if not isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = [scores] elif self.framework == "tf": __A : List[Any] = stable_softmax(__lowerCamelCase , axis=-1 ) __A : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __A : str = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] ) ] return result
291
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ = logging.getLogger(__name__) a_ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__A )} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default=__A , metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) lowerCamelCase__ =field(default=__A , metadata={'help': 'Whether ot not to use whole word mask.'} ) lowerCamelCase__ =field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase__ =field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) lowerCamelCase__ =field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) lowerCamelCase__ =field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCamelCase__ ( _a , _a , _a = False , _a = None , ): def _dataset(_a , _a=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask") return LineByLineWithRefDataset( tokenizer=_a , file_path=_a , block_size=args.block_size , ref_path=_a , ) return LineByLineTextDataset(tokenizer=_a , file_path=_a , block_size=args.block_size) else: return TextDataset( tokenizer=_a , file_path=_a , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_a , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(_a) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file , args.train_ref_file) def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument.") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _a) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name") if model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=_a , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch") SCREAMING_SNAKE_CASE : List[Any] = AutoModelWithLMHead.from_config(_a) model.resize_token_embeddings(len(_a)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling).") if data_args.block_size <= 0: SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: SCREAMING_SNAKE_CASE : Any = min(data_args.block_size , tokenizer.max_len) # Get datasets SCREAMING_SNAKE_CASE : str = ( get_dataset(_a , tokenizer=_a , cache_dir=model_args.cache_dir) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Any = ( get_dataset(_a , tokenizer=_a , evaluate=_a , cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": SCREAMING_SNAKE_CASE : int = DataCollatorForPermutationLanguageModeling( tokenizer=_a , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: SCREAMING_SNAKE_CASE : Dict = DataCollatorForWholeWordMask( tokenizer=_a , mlm_probability=data_args.mlm_probability) else: SCREAMING_SNAKE_CASE : Optional[int] = DataCollatorForLanguageModeling( tokenizer=_a , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability) # Initialize our Trainer SCREAMING_SNAKE_CASE : List[str] = Trainer( model=_a , args=_a , data_collator=_a , train_dataset=_a , eval_dataset=_a , prediction_loss_only=_a , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : int = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=_a) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation SCREAMING_SNAKE_CASE : Any = {} if training_args.do_eval: logger.info("*** Evaluate ***") SCREAMING_SNAKE_CASE : Optional[int] = trainer.evaluate() SCREAMING_SNAKE_CASE : Dict = math.exp(eval_output["eval_loss"]) SCREAMING_SNAKE_CASE : str = {"perplexity": perplexity} SCREAMING_SNAKE_CASE : Dict = os.path.join(training_args.output_dir , "eval_results_lm.txt") if trainer.is_world_master(): with open(_a , "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s" , _a , str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) results.update(_a) return results def lowerCamelCase__ ( _a): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
76
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =int(lowercase ) # Initialize Result SCREAMING_SNAKE_CASE_: str =[] # Traverse through all denomination for denomination in reversed(lowercase ): # Find denominations while int(lowercase ) >= int(lowercase ): total_value -= int(lowercase ) answer.append(lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _UpperCAmelCase = [] _UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) _UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _UpperCAmelCase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] _UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f"""Following is minimal change for {value}: """) _UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
173
0
import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase (lowercase_: int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase () -> Iterator[int]: A__ : List[str] = 2 while True: if is_prime(lowercase_ ): yield num num += 1 def UpperCamelCase (lowercase_: int = 2000000 ) -> int: return sum(takewhile(lambda lowercase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
141
from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCamelCase (lowercase_: int ) -> str: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _a (__magic_name__ ): '''simple docstring''' @staticmethod def __A ( A__ ): A__ : Any = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=A__ , default=A__ , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=A__ , help="""Name of the model to download""" ) download_parser.set_defaults(func=A__ ) def __init__( self , A__ , A__ , A__ , A__ ): A__ : Union[str, Any] = model A__ : Dict = cache A__ : str = force A__ : Tuple = trust_remote_code def __A ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
141
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Optional[int] ={ 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict =['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] =[ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __snake_case : List[str] =logging.get_logger(__name__) # General docstring __snake_case : List[Any] ='MobileNetV1Config' # Base docstring __snake_case : Optional[Any] ='google/mobilenet_v1_1.0_224' __snake_case : Any =[1, 1_0_2_4, 7, 7] # Image classification docstring __snake_case : Tuple ='google/mobilenet_v1_1.0_224' __snake_case : Tuple ='tabby, tabby cat' __snake_case : Optional[Any] =[ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Dict=None): '''simple docstring''' lowerCAmelCase__ : Dict = {} if isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : Any = model.mobilenet_va else: lowerCAmelCase__ : Tuple = model lowerCAmelCase__ : Union[str, Any] = '''MobilenetV1/Conv2d_0/''' lowerCAmelCase__ : Tuple = backbone.conv_stem.convolution.weight lowerCAmelCase__ : int = backbone.conv_stem.normalization.bias lowerCAmelCase__ : Optional[int] = backbone.conv_stem.normalization.weight lowerCAmelCase__ : str = backbone.conv_stem.normalization.running_mean lowerCAmelCase__ : str = backbone.conv_stem.normalization.running_var for i in range(13): lowerCAmelCase__ : Tuple = i + 1 lowerCAmelCase__ : Any = i * 2 lowerCAmelCase__ : Any = backbone.layer[pt_index] lowerCAmelCase__ : List[str] = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowerCAmelCase__ : Optional[int] = pointer.convolution.weight lowerCAmelCase__ : Optional[int] = pointer.normalization.bias lowerCAmelCase__ : Union[str, Any] = pointer.normalization.weight lowerCAmelCase__ : List[Any] = pointer.normalization.running_mean lowerCAmelCase__ : List[Any] = pointer.normalization.running_var lowerCAmelCase__ : Dict = backbone.layer[pt_index + 1] lowerCAmelCase__ : Optional[Any] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowerCAmelCase__ : Tuple = pointer.convolution.weight lowerCAmelCase__ : int = pointer.normalization.bias lowerCAmelCase__ : Union[str, Any] = pointer.normalization.weight lowerCAmelCase__ : Any = pointer.normalization.running_mean lowerCAmelCase__ : str = pointer.normalization.running_var if isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : str = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' lowerCAmelCase__ : Tuple = model.classifier.weight lowerCAmelCase__ : Dict = model.classifier.bias return tf_to_pt_map def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''') raise # Load weights from TF model lowerCAmelCase__ : str = tf.train.list_variables(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""") lowerCAmelCase__ : Dict = tf.train.load_variable(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : List[str] = array # Build TF to PyTorch weights loading map lowerCAmelCase__ : List[Any] = _build_tf_to_pytorch_map(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""") if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""") continue lowerCAmelCase__ : Any = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''') lowerCAmelCase__ : Optional[Any] = np.transpose(lowerCamelCase_ ,(2, 3, 0, 1)) elif "weights" in name: logger.info('''Transposing''') if len(pointer.shape) == 2: # copying into linear layer lowerCAmelCase__ : List[str] = array.squeeze().transpose() else: lowerCAmelCase__ : Tuple = np.transpose(lowerCamelCase_ ,(3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""") logger.info(f"""Initialize PyTorch weight {name} {array.shape}""") lowerCAmelCase__ : str = torch.from_numpy(lowerCamelCase_) tf_weights.pop(lowerCamelCase_ ,lowerCamelCase_) tf_weights.pop(name + '''/RMSProp''' ,lowerCamelCase_) tf_weights.pop(name + '''/RMSProp_1''' ,lowerCamelCase_) tf_weights.pop(name + '''/ExponentialMovingAverage''' ,lowerCamelCase_) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}""") return model def lowerCAmelCase__ ( lowerCamelCase_ : torch.Tensor ,lowerCamelCase_ : nn.Convad): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = features.shape[-2:] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = conv_layer.stride lowerCAmelCase__ , lowerCAmelCase__ : Dict = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase__ : Dict = max(kernel_height - stride_height ,0) else: lowerCAmelCase__ : List[str] = max(kernel_height - (in_height % stride_height) ,0) if in_width % stride_width == 0: lowerCAmelCase__ : List[Any] = max(kernel_width - stride_width ,0) else: lowerCAmelCase__ : Any = max(kernel_width - (in_width % stride_width) ,0) lowerCAmelCase__ : Union[str, Any] = pad_along_width // 2 lowerCAmelCase__ : Optional[Any] = pad_along_width - pad_left lowerCAmelCase__ : List[Any] = pad_along_height // 2 lowerCAmelCase__ : int = pad_along_height - pad_top lowerCAmelCase__ : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase_ ,lowerCamelCase_ ,'''constant''' ,0.0) class lowerCamelCase__ ( nn.Module): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = 1 ,__lowerCamelCase = 1 ,__lowerCamelCase = False ,__lowerCamelCase = True ,__lowerCamelCase = True ,) -> None: """simple docstring""" super().__init__() lowerCAmelCase__ : str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) lowerCAmelCase__ : List[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase__ : Optional[int] = nn.Convad( in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=__lowerCamelCase ,stride=__lowerCamelCase ,padding=__lowerCamelCase ,groups=__lowerCamelCase ,bias=__lowerCamelCase ,padding_mode='''zeros''' ,) if use_normalization: lowerCAmelCase__ : Optional[int] = nn.BatchNormad( num_features=__lowerCamelCase ,eps=config.layer_norm_eps ,momentum=0.9997 ,affine=__lowerCamelCase ,track_running_stats=__lowerCamelCase ,) else: lowerCAmelCase__ : Dict = None if use_activation: if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act ,__lowerCamelCase ): lowerCAmelCase__ : Any = ACTaFN[config.hidden_act] else: lowerCAmelCase__ : List[str] = config.hidden_act else: lowerCAmelCase__ : int = None def lowerCAmelCase__ (self ,__lowerCamelCase ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: lowerCAmelCase__ : str = apply_tf_padding(__lowerCamelCase ,self.convolution ) lowerCAmelCase__ : Tuple = self.convolution(__lowerCamelCase ) if self.normalization is not None: lowerCAmelCase__ : Tuple = self.normalization(__lowerCamelCase ) if self.activation is not None: lowerCAmelCase__ : Union[str, Any] = self.activation(__lowerCamelCase ) return features class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =MobileNetVaConfig snake_case_ =load_tf_weights_in_mobilenet_va snake_case_ ="""mobilenet_v1""" snake_case_ ="""pixel_values""" snake_case_ =False def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None: """simple docstring""" if isinstance(__lowerCamelCase ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __snake_case : Optional[int] =R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : List[Any] =R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , lowerCamelCase__ , ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase = True ) -> int: """simple docstring""" super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Dict = config lowerCAmelCase__ : Dict = 32 lowerCAmelCase__ : List[str] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) lowerCAmelCase__ : Optional[int] = MobileNetVaConvLayer( __lowerCamelCase ,in_channels=config.num_channels ,out_channels=__lowerCamelCase ,kernel_size=3 ,stride=2 ,) lowerCAmelCase__ : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase__ : Union[str, Any] = nn.ModuleList() for i in range(13 ): lowerCAmelCase__ : Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase__ : Optional[int] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase ,in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=3 ,stride=strides[i] ,groups=__lowerCamelCase ,) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase ,in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=1 ,) ) lowerCAmelCase__ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowerCAmelCase__ (self ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" lowerCAmelCase__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowerCAmelCase__ : Optional[Any] = self.conv_stem(__lowerCamelCase ) lowerCAmelCase__ : Any = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase__ : int = layer_module(__lowerCamelCase ) if output_hidden_states: lowerCAmelCase__ : Optional[Any] = all_hidden_states + (hidden_states,) lowerCAmelCase__ : Any = hidden_states if self.pooler is not None: lowerCAmelCase__ : str = torch.flatten(self.pooler(__lowerCamelCase ) ,start_dim=1 ) else: lowerCAmelCase__ : str = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=__lowerCamelCase ,) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCamelCase__ , ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ) -> None: """simple docstring""" super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = config.num_labels lowerCAmelCase__ : Dict = MobileNetVaModel(__lowerCamelCase ) lowerCAmelCase__ : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase__ : str = nn.Dropout(config.classifier_dropout_prob ,inplace=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = nn.Linear(__lowerCamelCase ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowerCAmelCase__ (self ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" lowerCAmelCase__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Union[str, Any] = self.mobilenet_va(__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ) lowerCAmelCase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Optional[int] = self.classifier(self.dropout(__lowerCamelCase ) ) lowerCAmelCase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : Optional[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : int = '''single_label_classification''' else: lowerCAmelCase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ : Dict = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : Optional[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase__ : Tuple = loss_fct(__lowerCamelCase ,__lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : int = CrossEntropyLoss() lowerCAmelCase__ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Optional[int] = BCEWithLogitsLoss() lowerCAmelCase__ : List[Any] = loss_fct(__lowerCamelCase ,__lowerCamelCase ) if not return_dict: lowerCAmelCase__ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states ,)
129
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __snake_case =[ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : bool , UpperCAmelCase__ : str = None , UpperCAmelCase__ : list = None ) -> List[Any]: lowerCAmelCase = None lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) lowerCAmelCase = os.path.abspath('examples' ) for item in os.listdir(lowercase_ ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase = os.path.join(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ) and ".py" in item_path: with self.subTest( tested_script=lowercase_ , feature_script=lowercase_ , tested_section='main()' if parser_only else 'training_function()' , ): lowerCAmelCase = compare_against_test( os.path.join(lowercase_ , lowercase_ ) , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase = '\n'.join(lowercase_ ) if special_strings is not None: for string in special_strings: lowerCAmelCase = diff.replace(lowercase_ , '' ) self.assertEqual(lowercase_ , '' ) def __UpperCAmelCase ( self : List[str] ) -> Any: self.one_complete_example('complete_nlp_example.py' , lowercase_ ) self.one_complete_example('complete_nlp_example.py' , lowercase_ ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) lowerCAmelCase = [ ' ' * 1_6 + '{\n\n', ' ' * 2_0 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 2_0 + '"f1": eval_metric["f1"],\n\n', ' ' * 2_0 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 2_0 + '"epoch": epoch,\n\n', ' ' * 1_6 + '},\n\n', ' ' * 1_6 + 'step=epoch,\n', ' ' * 1_2, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , lowercase_ , lowercase_ , lowercase_ ) self.one_complete_example('complete_cv_example.py' , lowercase_ , lowercase_ , lowercase_ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCAmelCase_ ( _lowerCamelCase ): lowerCamelCase : Union[str, Any] = False @classmethod def __UpperCAmelCase ( cls : List[str] ) -> Tuple: super().setUpClass() lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def __UpperCAmelCase ( cls : Optional[int] ) -> Tuple: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __UpperCAmelCase ( self : List[str] ) -> str: lowerCAmelCase = F'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: lowerCAmelCase = F'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split() lowerCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: lowerCAmelCase = F'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n '''.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowercase_ ) self.assertNotIn('epoch 0:' , lowercase_ ) self.assertIn('epoch 1:' , lowercase_ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase = F'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n '''.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowercase_ ) if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , lowercase_ ) self.assertIn('epoch 1:' , lowercase_ ) else: self.assertIn('epoch 0:' , lowercase_ ) self.assertIn('epoch 1:' , lowercase_ ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: lowerCAmelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowercase_ ) lowerCAmelCase = re.findall('({.+})' , lowercase_ ) lowerCAmelCase = [r for r in results if 'accuracy' in r][-1] lowerCAmelCase = ast.literal_eval(lowercase_ ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: lowerCAmelCase = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Dict ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase = F'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowercase_ , 'tracking' ) ) ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: lowerCAmelCase = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: lowerCAmelCase = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
355
'''simple docstring''' import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase : str = "AAPL" ): lowerCAmelCase = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase ).text , 'html.parser' ) lowerCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
55
0
from __future__ import annotations from typing import TypedDict class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 42 __magic_name__ = 42 def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(UpperCamelCase_ ,UpperCamelCase_ ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(UpperCamelCase_ ) )] def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(UpperCamelCase_ ,UpperCamelCase_ ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) snake_case = all_rotations(UpperCamelCase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation snake_case = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(UpperCamelCase_ ), } return response def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if not isinstance(UpperCamelCase_ ,UpperCamelCase_ ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: snake_case = int(UpperCamelCase_ ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(UpperCamelCase_ ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) snake_case = [''''''] * len(UpperCamelCase_ ) for _ in range(len(UpperCamelCase_ ) ): for i in range(len(UpperCamelCase_ ) ): snake_case = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = "Provide a string that I will generate its BWT transform: " _SCREAMING_SNAKE_CASE : List[Any] = input(entry_msg).strip() _SCREAMING_SNAKE_CASE : List[Any] = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) _SCREAMING_SNAKE_CASE : int = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
127
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" __magic_name__ = XGLMConfig __magic_name__ = {} __magic_name__ = 'gelu' def __init__( self , __snake_case , __snake_case=1_4 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=2 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_labels snake_case = vocab_size snake_case = d_model snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = ffn_dim snake_case = activation_function snake_case = activation_dropout snake_case = attention_dropout snake_case = max_position_embeddings snake_case = initializer_range snake_case = None snake_case = 0 snake_case = 2 snake_case = 1 def a_ ( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def a_ ( self ): snake_case = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = self.get_config() snake_case = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def a_ ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__snake_case , ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __magic_name__ = (TFXGLMForCausalLM,) if is_tf_available() else () __magic_name__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = TFXGLMModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , n_embd=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() @slow def a_ ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = TFXGLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def a_ ( self ): super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self , __snake_case=True ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on snake_case = model.generate(__snake_case , do_sample=__snake_case , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __snake_case ) @slow def a_ ( self ): snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) snake_case = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) snake_case = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): snake_case = model.generate(__snake_case , do_sample=__snake_case , seed=[7, 0] ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=__snake_case ) snake_case = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__snake_case , __snake_case ) @slow def a_ ( self ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = '''left''' # use different length sentences to test batching snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] snake_case = tokenizer(__snake_case , return_tensors='''tf''' , padding=__snake_case ) snake_case = inputs['''input_ids'''] snake_case = model.generate(input_ids=__snake_case , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=__snake_case ) snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , [non_padded_sentence, padded_sentence] )
127
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _A = get_logger(__name__) _A = Path(__file__).parent / 'model_card_template.md' _A = uuida().hex _A = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _A = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Dict, str, None] = None ): __UpperCamelCase =F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if token is None: __UpperCamelCase =HfFolder.get_token() if organization is None: __UpperCamelCase =whoami(SCREAMING_SNAKE_CASE__ )['name'] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(SCREAMING_SNAKE_CASE__ , 'local_rank' ) and args.local_rank not in [-1, 0]: return __UpperCamelCase =args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , 'hub_token' ) else None __UpperCamelCase =get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) __UpperCamelCase =os.path.join(args.output_dir , 'README.md' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash __UpperCamelCase =str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) __UpperCamelCase =re.search(r'snapshots/([^/]+)/' , SCREAMING_SNAKE_CASE__ ) if search is None: return None __UpperCamelCase =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _A = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _A = os.path.join(hf_cache_home, 'diffusers') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if new_cache_dir is None: __UpperCamelCase =DIFFUSERS_CACHE if old_cache_dir is None: __UpperCamelCase =old_diffusers_cache __UpperCamelCase =Path(SCREAMING_SNAKE_CASE__ ).expanduser() __UpperCamelCase =Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __UpperCamelCase =new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _A = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _A = 0 else: with open(cache_version_file) as f: try: _A = int(f.read()) except ValueError: _A = 0 if cache_version < 1: _A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _A = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if variant is not None: __UpperCamelCase =weights_name.split('.' ) __UpperCamelCase =splits[:-1] + [variant] + splits[-1:] __UpperCamelCase ='.'.join(SCREAMING_SNAKE_CASE__ ) return weights_name def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , *, SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , ): __UpperCamelCase =str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('0.20.0' ) ): try: __UpperCamelCase =hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual __UpperCamelCase =hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
117
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "The column name of the images in the files."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "A folder containing the training data."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _a ( self ) -> Optional[int]: __UpperCamelCase ={} if self.train_dir is not None: __UpperCamelCase =self.train_dir if self.validation_dir is not None: __UpperCamelCase =self.validation_dir __UpperCamelCase =data_files if data_files else None @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str = field( default=A_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) UpperCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase__ : str = field(default=A_ , metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase__ : float = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : float = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCamelCase =training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __UpperCamelCase =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __UpperCamelCase =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCamelCase =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: __UpperCamelCase =ds['train'].train_test_split(data_args.train_val_split ) __UpperCamelCase =split['train'] __UpperCamelCase =split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __UpperCamelCase =ViTMAEConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: __UpperCamelCase =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __UpperCamelCase =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: __UpperCamelCase =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =ViTImageProcessor() # create model if model_args.model_name_or_path: __UpperCamelCase =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __UpperCamelCase =ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: __UpperCamelCase =ds['train'].column_names else: __UpperCamelCase =ds['validation'].column_names if data_args.image_column_name is not None: __UpperCamelCase =data_args.image_column_name elif "image" in column_names: __UpperCamelCase ='image' elif "img" in column_names: __UpperCamelCase ='img' else: __UpperCamelCase =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __UpperCamelCase =image_processor.size['shortest_edge'] else: __UpperCamelCase =(image_processor.size['height'], image_processor.size['width']) __UpperCamelCase =Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(SCREAMING_SNAKE_CASE__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =[transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __UpperCamelCase =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __UpperCamelCase =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Compute absolute learning rate __UpperCamelCase =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __UpperCamelCase =training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer __UpperCamelCase =Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: __UpperCamelCase =None if training_args.resume_from_checkpoint is not None: __UpperCamelCase =training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCamelCase =last_checkpoint __UpperCamelCase =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCamelCase =trainer.evaluate() trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub __UpperCamelCase ={ 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
117
1
"""simple docstring""" import requests _SCREAMING_SNAKE_CASE : Tuple = '' # <-- Put your OpenWeatherMap appid here! _SCREAMING_SNAKE_CASE : Tuple = 'https://api.openweathermap.org/data/2.5/' def lowerCamelCase__ ( _lowerCamelCase : str = "Chicago" , _lowerCamelCase : str = APPID ) -> dict: return requests.get(URL_BASE + 'weather' , params=locals() ).json() def lowerCamelCase__ ( _lowerCamelCase : str = "Kolkata, India" , _lowerCamelCase : str = APPID ) -> dict: return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def lowerCamelCase__ ( _lowerCamelCase : float = 55.68 , _lowerCamelCase : float = 12.57 , _lowerCamelCase : str = APPID ) -> dict: return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _SCREAMING_SNAKE_CASE : Optional[Any] = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
183
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : List[str] , **UpperCamelCase : Any ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Tuple = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(UpperCamelCase ) self.assertGreater(UpperCamelCase , 0 ) self.assertEqual( UpperCamelCase , [ { """score""": ANY(UpperCamelCase ), """label""": ANY(UpperCamelCase ), """box""": {"""xmin""": ANY(UpperCamelCase ), """ymin""": ANY(UpperCamelCase ), """xmax""": ANY(UpperCamelCase ), """ymax""": ANY(UpperCamelCase )}, } for i in range(UpperCamelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass @require_torch def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Tuple = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : int = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : List[str] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass @require_torch @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Union[str, Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[str] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
115
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class snake_case__ ( __lowercase ): """simple docstring""" lowerCamelCase = (CMStochasticIterativeScheduler,) lowerCamelCase = 10 def lowerCAmelCase ( self : int , **UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" snake_case : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**UpperCAmelCase__ ) return config def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case : Dict = 10 snake_case : Any = self.get_scheduler_config() snake_case : Dict = self.scheduler_classes[0](**UpperCAmelCase__ ) scheduler.set_timesteps(UpperCAmelCase__ ) snake_case : Union[str, Any] = scheduler.timesteps[0] snake_case : Optional[Any] = scheduler.timesteps[1] snake_case : int = self.dummy_sample snake_case : Optional[Any] = 0.1 * sample snake_case : List[Any] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample snake_case : Optional[Any] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase__ ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" snake_case : Any = self.scheduler_classes[0] snake_case : Optional[int] = self.get_scheduler_config() snake_case : Union[str, Any] = scheduler_class(**UpperCAmelCase__ ) snake_case : List[Any] = 1 scheduler.set_timesteps(UpperCAmelCase__ ) snake_case : Tuple = scheduler.timesteps snake_case : Optional[int] = torch.manual_seed(0 ) snake_case : Union[str, Any] = self.dummy_model() snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase__ ): # 1. scale model input snake_case : Any = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # 2. predict noise residual snake_case : Union[str, Any] = model(UpperCAmelCase__ , UpperCAmelCase__ ) # 3. predict previous sample x_t-1 snake_case : Tuple = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample snake_case : List[str] = pred_prev_sample snake_case : List[Any] = torch.sum(torch.abs(UpperCAmelCase__ ) ) snake_case : int = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" snake_case : Dict = self.scheduler_classes[0] snake_case : int = self.get_scheduler_config() snake_case : Optional[Any] = scheduler_class(**UpperCAmelCase__ ) snake_case : List[Any] = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) snake_case : Any = scheduler.timesteps snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : Union[str, Any] = self.dummy_model() snake_case : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case : str = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # 2. predict noise residual snake_case : Tuple = model(UpperCAmelCase__ , UpperCAmelCase__ ) # 3. predict previous sample x_t-1 snake_case : List[str] = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample snake_case : List[Any] = pred_prev_sample snake_case : str = torch.sum(torch.abs(UpperCAmelCase__ ) ) snake_case : Optional[Any] = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case : Union[str, Any] = self.scheduler_classes[0] snake_case : str = self.get_scheduler_config() snake_case : Optional[Any] = scheduler_class(**UpperCAmelCase__ ) snake_case : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase__ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" snake_case : int = self.scheduler_classes[0] snake_case : str = self.get_scheduler_config() snake_case : Union[str, Any] = scheduler_class(**UpperCAmelCase__ ) snake_case : Any = [39, 30, 12, 1, 0] snake_case : Union[str, Any] = len(UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ , timesteps=UpperCAmelCase__ ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" snake_case : Union[str, Any] = self.scheduler_classes[0] snake_case : int = self.get_scheduler_config() snake_case : List[str] = scheduler_class(**UpperCAmelCase__ ) snake_case : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ )
361
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class snake_case__ : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : MutableSequence[float] ) -> None: """simple docstring""" if len(UpperCamelCase__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) snake_case : list[float] = list(UpperCamelCase__ ) snake_case : int = degree def __add__( self : int , UpperCamelCase__ : Polynomial ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: snake_case : Tuple = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCamelCase__ ) else: snake_case : List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCamelCase__ ) def __sub__( self : Tuple , UpperCamelCase__ : Polynomial ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] , UpperCamelCase__ : Polynomial ) -> Polynomial: """simple docstring""" snake_case : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : int | float ) -> int | float: """simple docstring""" snake_case : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Dict ) -> str: """simple docstring""" snake_case : List[Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCamelCase__ ) return polynomial def __repr__( self : List[str] ) -> str: """simple docstring""" return self.__str__() def lowerCAmelCase ( self : Any ) -> Polynomial: """simple docstring""" snake_case : list[float] = [0] * self.degree for i in range(self.degree ): snake_case : Dict = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCamelCase__ ) def lowerCAmelCase ( self : int , UpperCamelCase__ : int | float = 0 ) -> Polynomial: """simple docstring""" snake_case : list[float] = [0] * (self.degree + 2) snake_case : Union[str, Any] = constant for i in range(self.degree + 1 ): snake_case : Optional[int] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCamelCase__ ) def __eq__( self : Any , UpperCamelCase__ : object ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Union[str, Any] , UpperCamelCase__ : object ) -> bool: """simple docstring""" return not self.__eq__(UpperCamelCase__ )
83
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''''' __lowerCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __lowerCAmelCase = None # compression type in fsspec. ex: "gzip" __lowerCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self : Optional[Any] , _lowerCAmelCase : str = "" , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[dict] = None , **_lowerCAmelCase : Dict ): super().__init__(self , **_lowerCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode A = fsspec.open( _lowerCAmelCase , mode="""rb""" , protocol=_lowerCAmelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) A = os.path.basename(self.file.path.split("""::""" )[0] ) A = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) A = None @classmethod def A (cls : Union[str, Any] , _lowerCAmelCase : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCAmelCase ).lstrip("""/""" ) def A (self : Union[str, Any] ): if self.dir_cache is None: A = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} A = {f["""name"""]: f} def A (self : Any , _lowerCAmelCase : str ): return self.file.open().read() def A (self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=None , **_lowerCAmelCase : Any , ): A = self._strip_protocol(_lowerCAmelCase ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''bz2''' __lowerCAmelCase = '''bz2''' __lowerCAmelCase = '''.bz2''' class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''gzip''' __lowerCAmelCase = '''gzip''' __lowerCAmelCase = '''.gz''' class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''lz4''' __lowerCAmelCase = '''lz4''' __lowerCAmelCase = '''.lz4''' class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''xz''' __lowerCAmelCase = '''xz''' __lowerCAmelCase = '''.xz''' class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''zstd''' __lowerCAmelCase = '''zstd''' __lowerCAmelCase = '''.zst''' def __init__(self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[dict] = None , _lowerCAmelCase : int = DEFAULT_BLOCK_SIZE , **_lowerCAmelCase : List[Any] , ): super().__init__( fo=_lowerCAmelCase , mode=_lowerCAmelCase , target_protocol=_lowerCAmelCase , target_options=_lowerCAmelCase , block_size=_lowerCAmelCase , **_lowerCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 A = self.file.__enter__ class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : Dict ): A = file_ def __enter__(self : Dict ): self._file.__enter__() return self def __exit__(self : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[Any] ): self._file.__exit__(*_lowerCAmelCase , **_lowerCAmelCase ) def __iter__(self : Dict ): return iter(self._file ) def A (self : Optional[Any] ): return next(self._file ) def __getattr__(self : Union[str, Any] , _lowerCAmelCase : Any ): return getattr(self._file , _lowerCAmelCase ) def fixed_enter(*_lowerCAmelCase : Tuple , **_lowerCAmelCase : Any ): return WrappedFile(_enter(*_lowerCAmelCase , **_lowerCAmelCase ) ) A = fixed_enter
258
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCamelCase : int = 10 def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" for i in range(UpperCAmelCase , UpperCAmelCase ): if array[i] == target: return i return -1 def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" A = 0 A = len(UpperCAmelCase ) while left <= right: if right - left < precision: return lin_search(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A = (left + right) // 3 + 1 A = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A = one_third - 1 elif array[two_third] < target: A = two_third + 1 else: A = one_third + 1 A = two_third - 1 else: return -1 def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A = (left + right) // 3 + 1 A = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCAmelCase , one_third - 1 , UpperCAmelCase , UpperCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCAmelCase , UpperCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : str = input('Enter numbers separated by comma:\n').strip() _lowerCamelCase : str = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCamelCase : Optional[int] = int(input('Enter the number to be found in the list:\n').strip()) _lowerCamelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCamelCase : Union[str, Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"Iterative search: {target} found at positions: {resulta}") print(f"Recursive search: {target} found at positions: {resulta}") else: print('Not found')
258
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_UpperCamelCase , "_dynamo" ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , "forward" ) __lowerCAmelCase = model.__dict__.pop("_original_forward" , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , "__wrapped__" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , "_converted_to_transformer_engine" , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def _lowerCamelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCamelCase ( **_UpperCamelCase ): '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not hasattr(_UpperCamelCase , "__qualname__" ) and not hasattr(_UpperCamelCase , "__name__" ): __lowerCAmelCase = getattr(_UpperCamelCase , "__class__" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_UpperCamelCase , "__name__" ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def _lowerCamelCase ( _UpperCamelCase = None ): '''simple docstring''' if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
259
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = {} __lowerCAmelCase = 2 while True: __lowerCAmelCase = factor_map.pop(_UpperCamelCase , _UpperCamelCase ) if factor: __lowerCAmelCase = factor + prime while x in factor_map: x += factor __lowerCAmelCase = factor else: __lowerCAmelCase = prime yield prime prime += 1 def _lowerCamelCase ( _UpperCamelCase = 1e10 ): '''simple docstring''' __lowerCAmelCase = sieve() __lowerCAmelCase = 1 while True: __lowerCAmelCase = next(_UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
259
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCamelCase : Tuple =logging.getLogger(__name__) class __a ( UpperCAmelCase__ ): _lowerCAmelCase : Union[str, Any] = '''token-classification''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if type(__lowercase ) == dict: UpperCamelCase__ : Optional[int] = Namespace(**__lowercase ) UpperCamelCase__ : Any = import_module("tasks" ) try: UpperCamelCase__ : str = getattr(__lowercase , hparams.task_type ) UpperCamelCase__ : List[str] = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) UpperCamelCase__ : str = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase__ : Any = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels ) , self.mode ) def __lowercase ( self : Dict , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return self.model(**__lowercase ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ : str = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ : Dict = self(**__lowercase ) UpperCamelCase__ : Dict = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : List[str] = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ : Union[str, Any] = self._feature_file(__lowercase ) if os.path.exists(__lowercase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , __lowercase ) UpperCamelCase__ : Optional[int] = torch.load(__lowercase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCamelCase__ : List[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase ) UpperCamelCase__ : List[str] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , __lowercase ) torch.save(__lowercase , __lowercase ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' UpperCamelCase__ : int = self._feature_file(__lowercase ) logger.info("Loading features from cached file %s" , __lowercase ) UpperCamelCase__ : Union[str, Any] = torch.load(__lowercase ) UpperCamelCase__ : str = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase__ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase__ : Any = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase__ : List[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase ) , batch_size=__lowercase ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' """Compute validation""" "" UpperCamelCase__ : Dict = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ : Dict = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ : Dict = self(**__lowercase ) UpperCamelCase__ , UpperCamelCase__ : str = outputs[:2] UpperCamelCase__ : Dict = logits.detach().cpu().numpy() UpperCamelCase__ : Any = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Dict = torch.stack([x["val_loss"] for x in outputs] ).mean() UpperCamelCase__ : Dict = np.concatenate([x["pred"] for x in outputs] , axis=0 ) UpperCamelCase__ : List[Any] = np.argmax(__lowercase , axis=2 ) UpperCamelCase__ : Any = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCamelCase__ : int = dict(enumerate(self.labels ) ) UpperCamelCase__ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ : int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase__ : Tuple = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(__lowercase , __lowercase ), "precision": precision_score(__lowercase , __lowercase ), "recall": recall_score(__lowercase , __lowercase ), "f1": fa_score(__lowercase , __lowercase ), } UpperCamelCase__ : Union[str, Any] = dict(results.items() ) UpperCamelCase__ : Union[str, Any] = results return ret, preds_list, out_label_list def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = self._eval_end(__lowercase ) UpperCamelCase__ : int = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self._eval_end(__lowercase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ : int = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowercase ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(__lowercase , __lowercase ) parser.add_argument( "--task_type" , default="NER" , type=__lowercase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=__lowercase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=__lowercase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=__lowercase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": lowerCamelCase : List[str] =argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCamelCase : Optional[int] =NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCamelCase : Union[str, Any] =parser.parse_args() lowerCamelCase : int =NERTransformer(args) lowerCamelCase : Optional[int] =generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCamelCase : int =sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) lowerCamelCase : int =model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
189
import functools def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if not isinstance(_A , _A ) or not all(isinstance(_A , _A ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_A ) != 3 or not all(isinstance(_A , _A ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_A ) == 0: return 0 if min(_A ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_A ) >= 366: raise ValueError("All days elements should be less than 366" ) snake_case_ = set(_A ) @functools.cache def dynamic_programming(_A ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
187
0
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
import math def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = n while left <= right: UpperCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ = mid - 1 else: UpperCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=24 , A_=2 , A_=6 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=None , A_=1000 , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Dict = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : str = type_vocab_size UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : int = num_labels UpperCamelCase : Optional[int] = scope UpperCamelCase : int = range_bbox def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase : Union[str, Any] = bbox[i, j, 3] UpperCamelCase : int = bbox[i, j, 1] UpperCamelCase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase : List[str] = bbox[i, j, 2] UpperCamelCase : Optional[int] = bbox[i, j, 0] UpperCamelCase : Optional[Any] = t UpperCamelCase : Dict = None if self.use_input_mask: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase : str = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Dict = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = LiltModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = model(A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase : Optional[int] = model(A_ , bbox=A_ , token_type_ids=A_ ) UpperCamelCase : Any = model(A_ , bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = self.num_labels UpperCamelCase : Dict = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Dict = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[str] = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Tuple = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Dict = False _UpperCAmelCase :Union[str, Any] = False def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' return True def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = LiltModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Dict = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(A_ ) UpperCamelCase : Tuple = torch.tensor([[1, 2]] , device=A_ ) UpperCamelCase : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[int] = model(input_ids=A_ , bbox=A_ ) UpperCamelCase : List[str] = torch.Size([1, 2, 768] ) UpperCamelCase : Any = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=A_ , ) self.assertTrue(outputs.last_hidden_state.shape , A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A_ , atol=1e-3 ) )
52
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """poolformer""" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=1_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3 , lowerCAmelCase__=4.0 , lowerCAmelCase__=[2, 2, 6, 2] , lowerCAmelCase__=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[2, 1, 1, 1] , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=True , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = stride SCREAMING_SNAKE_CASE_ : List[Any] = padding SCREAMING_SNAKE_CASE_ : Union[str, Any] = pool_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = mlp_ratio SCREAMING_SNAKE_CASE_ : Dict = depths SCREAMING_SNAKE_CASE_ : List[Any] = patch_sizes SCREAMING_SNAKE_CASE_ : List[Any] = strides SCREAMING_SNAKE_CASE_ : int = num_encoder_blocks SCREAMING_SNAKE_CASE_ : List[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : str = use_layer_scale SCREAMING_SNAKE_CASE_ : List[str] = layer_scale_init_value SCREAMING_SNAKE_CASE_ : Tuple = initializer_range super().__init__(**lowerCAmelCase__ ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 2E-3
355
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( A__, A__, A__, A__, A__ ): # Load configuration defined in the metadata file with open(A__ ) as metadata_file: SCREAMING_SNAKE_CASE_ : List[str] = json.load(A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = LukeConfig(use_entity_aware_attention=A__, **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(A__, map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_original_entity_vocab(A__ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE_ : str = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE_ : Any = AddedToken('<ent>', lstrip=A__, rstrip=A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken('<ent2>', lstrip=A__, rstrip=A__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(A__ ) with open(os.path.join(A__, 'tokenizer_config.json' ), 'r' ) as f: SCREAMING_SNAKE_CASE_ : str = json.load(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = 'MLukeTokenizer' with open(os.path.join(A__, 'tokenizer_config.json' ), 'w' ) as f: json.dump(A__, A__ ) with open(os.path.join(A__, MLukeTokenizer.vocab_files_names['entity_vocab_file'] ), 'w' ) as f: json.dump(A__, A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = MLukeTokenizer.from_pretrained(A__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE_ : str = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE_ : str = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE_ : int = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : List[str] = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE_ : Tuple = state_dict[bias_name] SCREAMING_SNAKE_CASE_ : Any = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE_ : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' SCREAMING_SNAKE_CASE_ : Tuple = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE_ : Dict = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE_ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE_ : Union[str, Any] = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE_ : List[str] = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE_ : str = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE_ : Tuple = LukeForMaskedLM(config=A__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE_ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE_ : str = state_dict[key] else: SCREAMING_SNAKE_CASE_ : Dict = state_dict[key] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.load_state_dict(A__, strict=A__ ) if set(A__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(A__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE_ : List[str] = MLukeTokenizer.from_pretrained(A__, task='entity_classification' ) SCREAMING_SNAKE_CASE_ : Any = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE_ : Dict = (0, 9) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(A__, entity_spans=[span], return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : List[Any] = model(**A__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE_ : List[str] = torch.Size((1, 3_3, 7_6_8) ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], A__, atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE_ : Dict = torch.Size((1, 1, 7_6_8) ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], A__, atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE_ : Optional[int] = MLukeTokenizer.from_pretrained(A__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE_ : Tuple = (2_4, 3_0) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(A__, entity_spans=[span], return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = model(**A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE_ : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A__ ) SCREAMING_SNAKE_CASE_ : int = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE_ : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(A__ ) ) model.save_pretrained(A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Tuple = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE_ : int = [json.loads(A__ ) for line in open(A__ )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} for entry in data: SCREAMING_SNAKE_CASE_ : List[Any] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE_ : List[Any] = entity_id break SCREAMING_SNAKE_CASE_ : int = F'''{language}:{entity_name}''' SCREAMING_SNAKE_CASE_ : Optional[int] = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase__ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowerCAmelCase__ : List[Any] =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
162
0
def __magic_name__ ( A : int, A : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) a = str(bin(A ) ) binary_number += "0" * shift_amount return binary_number def __magic_name__ ( A : int, A : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) a = str(bin(A ) )[2:] if shift_amount >= len(A ): return "0b0" a = binary_number[: len(A ) - shift_amount] return "0b" + shifted_binary_number def __magic_name__ ( A : int, A : int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number a = "0" + str(bin(A ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number a = len(bin(A )[3:] ) # Find 2's complement of number a = bin(abs(A ) - (1 << binary_number_length) )[3:] a = ( "1" + "0" * (binary_number_length - len(A )) + binary_number ) if shift_amount >= len(A ): return "0b" + binary_number[0] * len(A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
107
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __magic_name__ ( A : Union[str, Any], A : str, A : Optional[int]=None, A : List[str]=None ): '''simple docstring''' if attention_mask is None: a = tf.cast(tf.math.not_equal(A, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = OPTConfig SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[str] = """gelu""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : int=4 , __lowerCamelCase : Any=4 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=20 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=16 , ) -> Any: a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = embed_dim a = word_embed_proj_dim a = False def __UpperCAmelCase ( self : str ) -> int: a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__lowerCamelCase , **self.config_updates , ) a = prepare_opt_inputs_dict(__lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[str]: a = TFOPTModel(config=__lowerCamelCase ) a = inputs_dict["input_ids"] a = input_ids[:1, :] a = inputs_dict["attention_mask"][:1, :] a = 1 # first forward pass a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) @require_tf class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = 10 def __UpperCAmelCase ( self : Tuple ) -> List[str]: a = TFOPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__lowerCamelCase : Tuple , __lowerCamelCase : int ): if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings a = model_class(config=__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __lowerCamelCase ) # check that weights remain the same after resizing a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __lowerCamelCase ) a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' return tf.constant(A, dtype=tf.intaa ) @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 99 def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) a = input_ids.shape[0] a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = TFOPTModel.from_pretrained("facebook/opt-350m" ) a = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a = tf.not_equal(__lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): a = model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ).last_hidden_state a = (1, 11, 5_12) self.assertEqual(output.shape , __lowerCamelCase ) a = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-3 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = xla_generate(__lowerCamelCase , __lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-2 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: super().setUp() a = "facebook/opt-350m" def __UpperCAmelCase ( self : Any ) -> Tuple: a = TFOPTForCausalLM.from_pretrained(self.path_model ) a = GPTaTokenizer.from_pretrained(self.path_model ) a = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) a = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: a = "facebook/opt-125m" a = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> Dict: a = "facebook/opt-350m" a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) a = "left" # use different length sentences to test batching a = [ "Hello, my dog is a little", "Today, I", ] a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase ) a = inputs["input_ids"] a = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs["attention_mask"] ) a = tokenizer(sentences[0] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase ) a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) a = tokenizer(sentences[1] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) a = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: a = "facebook/opt-350m" a = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
107
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a__ : Union[str, Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a__ : Any = concatenate_datasets a__ : List[str] = DownloadConfig a__ : int = DownloadManager a__ : List[str] = DownloadMode a__ : Union[str, Any] = DownloadConfig a__ : Any = DownloadMode a__ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCamelCase ={ "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowerCamelCase ={ "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowerCamelCase ={ "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _lowerCamelCase ={ "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } _lowerCamelCase ={ "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } _lowerCamelCase ={ "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } _lowerCamelCase ={ "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _lowerCamelCase ={ "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _lowerCamelCase ={ "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = DPRContextEncoderTokenizer class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = DPRQuestionEncoderTokenizer _lowerCamelCase =collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _lowerCamelCase =collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _lowerCamelCase =R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(lowerCamelCase_ ) class a_ : """simple docstring""" def __call__( self : Any ,snake_case : str ,snake_case : Optional[str] = None ,snake_case : Optional[str] = None ,snake_case : Union[bool, str] = False ,snake_case : Union[bool, str] = False ,snake_case : Optional[int] = None ,snake_case : Optional[Union[str, TensorType]] = None ,snake_case : Optional[bool] = None ,**snake_case : int ,): if titles is None and texts is None: return super().__call__( snake_case ,padding=snake_case ,truncation=snake_case ,max_length=snake_case ,return_tensors=snake_case ,return_attention_mask=snake_case ,**snake_case ,) elif titles is None or texts is None: SCREAMING_SNAKE_CASE =titles if texts is None else texts return super().__call__( snake_case ,snake_case ,padding=snake_case ,truncation=snake_case ,max_length=snake_case ,return_tensors=snake_case ,return_attention_mask=snake_case ,**snake_case ,) SCREAMING_SNAKE_CASE =titles if not isinstance(snake_case ,snake_case ) else [titles] SCREAMING_SNAKE_CASE =texts if not isinstance(snake_case ,snake_case ) else [texts] SCREAMING_SNAKE_CASE =len(snake_case ) SCREAMING_SNAKE_CASE =questions if not isinstance(snake_case ,snake_case ) else [questions] * n_passages assert len(snake_case ) == len( snake_case ), f'There should be as many titles than texts but got {len(snake_case )} titles and {len(snake_case )} texts.' SCREAMING_SNAKE_CASE =super().__call__(snake_case ,snake_case ,padding=snake_case ,truncation=snake_case )['input_ids'] SCREAMING_SNAKE_CASE =super().__call__(snake_case ,add_special_tokens=snake_case ,padding=snake_case ,truncation=snake_case )['input_ids'] SCREAMING_SNAKE_CASE ={ 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case ,snake_case ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE =attention_mask return self.pad(snake_case ,padding=snake_case ,max_length=snake_case ,return_tensors=snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : BatchEncoding ,snake_case : DPRReaderOutput ,snake_case : int = 16 ,snake_case : int = 64 ,snake_case : int = 4 ,): SCREAMING_SNAKE_CASE =reader_input['input_ids'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =reader_output[:3] SCREAMING_SNAKE_CASE =len(snake_case ) SCREAMING_SNAKE_CASE =sorted(range(snake_case ) ,reverse=snake_case ,key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE =[] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE =sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE =sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE =len(snake_case ) SCREAMING_SNAKE_CASE =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=snake_case ,top_spans=snake_case ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=snake_case ,start_index=snake_case ,end_index=snake_case ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCAmelCase ( self : Optional[int] ,snake_case : List[int] ,snake_case : List[int] ,snake_case : int ,snake_case : int ,): SCREAMING_SNAKE_CASE =[] for start_index, start_score in enumerate(snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE =sorted(snake_case ,key=lambda snake_case : x[1] ,reverse=snake_case ) SCREAMING_SNAKE_CASE =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' SCREAMING_SNAKE_CASE =end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase_ ) class a_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = ['input_ids', 'attention_mask'] __UpperCAmelCase = DPRReaderTokenizer
334
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
1
def lowerCamelCase_ ( _a : str ): '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def lowerCamelCase_ ( _a : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = credit_card_number UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Tuple = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit UpperCAmelCase_ : Dict = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCAmelCase_ : Optional[Any] = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase_ ( _a : str ): '''simple docstring''' UpperCAmelCase_ : int = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(lowerCAmelCase__ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(lowerCAmelCase__ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
360
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase_ = TypeVar('''T''') UpperCamelCase_ = TypeVar('''U''') class _snake_case ( Generic[T, U] ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: T | None ,lowerCamelCase_: U | None ) -> Optional[int]: UpperCAmelCase_ : Any = key UpperCAmelCase_ : List[str] = val UpperCAmelCase_ : DoubleLinkedListNode[T, U] | None = None UpperCAmelCase_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self: Optional[Any] ) -> str: return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class _snake_case ( Generic[T, U] ): '''simple docstring''' def __init__( self: Tuple ) -> None: UpperCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.rear, self.head def __repr__( self: Tuple ) -> str: UpperCAmelCase_ : List[str] = ["""DoubleLinkedList"""] UpperCAmelCase_ : Optional[Any] = self.head while node.next is not None: rep.append(str(lowerCamelCase_ ) ) UpperCAmelCase_ : str = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase_ ) def A__ ( self: Tuple ,lowerCamelCase_: DoubleLinkedListNode[T, U] ) -> None: UpperCAmelCase_ : str = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase_ : Any = node UpperCAmelCase_ : Tuple = previous UpperCAmelCase_ : List[Any] = node UpperCAmelCase_ : List[str] = self.rear def A__ ( self: str ,lowerCamelCase_: DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None UpperCAmelCase_ : str = node.next UpperCAmelCase_ : Optional[int] = node.prev UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : int = None return node class _snake_case ( Generic[T, U] ): '''simple docstring''' A__ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self: Any ,lowerCamelCase_: int ) -> Union[str, Any]: UpperCAmelCase_ : DoubleLinkedList[T, U] = DoubleLinkedList() UpperCAmelCase_ : Optional[Any] = capacity UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self: Any ) -> str: return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self: Union[str, Any] ,lowerCamelCase_: T ) -> bool: return key in self.cache def A__ ( self: Any ,lowerCamelCase_: T ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCAmelCase_ : DoubleLinkedListNode[T, U] = self.cache[key] UpperCAmelCase_ : Any = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase_ ) return node.val self.miss += 1 return None def A__ ( self: Optional[Any] ,lowerCamelCase_: T ,lowerCamelCase_: U ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase_ : Tuple = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase_ : Tuple = DoubleLinkedListNode(lowerCamelCase_ ,lowerCamelCase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase_ : Tuple = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase_ : int = value self.list.add(lowerCamelCase_ ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(lowerCamelCase_: Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase_: T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase_ : Union[str, Any] = LRUCache(lowerCamelCase_ ) UpperCAmelCase_ : Any = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase_ : Optional[Any] = func(*lowerCamelCase_ ) cls.decorator_function_to_instance_map[func].put(args[0] ,lowerCamelCase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase_ ,"""cache_info""" ,lowerCamelCase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
59
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __A = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __A = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]="[UNK]" , UpperCAmelCase : Tuple="[SEP]" , UpperCAmelCase : List[str]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): __lowerCamelCase : str = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) __lowerCamelCase : Any = do_lower_case __lowerCamelCase : List[Any] = strip_accents __lowerCamelCase : Optional[Any] = tokenize_chinese_chars __lowerCamelCase : int = normalizer_class(**UpperCAmelCase ) __lowerCamelCase : List[Any] = do_lower_case def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Dict , **UpperCAmelCase : int ): __lowerCamelCase : Optional[int] = PaddingStrategy.MAX_LENGTH __lowerCamelCase : List[Any] = text __lowerCamelCase : Optional[int] = kwargs.pop("text_pair" , UpperCAmelCase ) __lowerCamelCase : List[Any] = kwargs.pop("return_tensors" , UpperCAmelCase ) __lowerCamelCase : Dict = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: __lowerCamelCase : List[str] = batch_text_pair[idx] else: __lowerCamelCase : Optional[int] = None __lowerCamelCase : List[str] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = encoded_candidates.get("input_ids" ) __lowerCamelCase : Optional[int] = encoded_candidates.get("attention_mask" ) __lowerCamelCase : int = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ): __lowerCamelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): __lowerCamelCase : Any = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
135
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase : Tuple = test_metrics @require_cpu def snake_case_ ( self ) -> Dict: debug_launcher(self.test_metrics.main, num_processes=1 ) @require_cpu def snake_case_ ( self ) -> Optional[int]: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case_ ( self ) -> Union[str, Any]: self.test_metrics.main() @require_multi_gpu def snake_case_ ( self ) -> Union[str, Any]: print(F"""Found {torch.cuda.device_count()} devices.""" ) UpperCamelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=os.environ.copy() )
103
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=4, ) -> Dict: UpperCamelCase : Optional[int] = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[int] = seq_length UpperCamelCase : Any = is_training UpperCamelCase : Tuple = use_attention_mask UpperCamelCase : Dict = use_token_type_ids UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : Any = vocab_size UpperCamelCase : Any = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : int = type_vocab_size UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : Tuple = num_choices def snake_case_ ( self ) -> Tuple: UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Dict = None if self.use_attention_mask: UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : int = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase : Optional[int] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = config_and_inputs UpperCamelCase : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def snake_case_ ( self ) -> List[str]: UpperCamelCase : int = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = config_and_inputs UpperCamelCase : Dict = True UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : int = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case_ ( self ) -> List[str]: for model_class_name in self.all_model_classes: UpperCamelCase : List[str] = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Dict: UpperCamelCase : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : List[Any] = [1, 11, 5_0265] self.assertEqual(list(output.shape ), SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. UpperCamelCase : Optional[int] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. UpperCamelCase : Any = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
1
'''simple docstring''' _lowercase : Tuple = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
93
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Optional[int] = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : List[str] = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : str = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('''No input value was provided''' ) lowercase_ : Optional[int] = '''-''' if number.startswith('''-''' ) else '''''' lowercase_ : Union[str, Any] = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
93
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCamelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCamelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCamelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCamelCase , default=0 , help="cuda_id." , ) __UpperCamelCase : Optional[int] = parser.parse_args() return args def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str) -> int: '''simple docstring''' if not len(_lowerCamelCase) == rows * cols: raise ValueError("The specified number of rows and columns are not correct.") __UpperCamelCase : Optional[Any] = imgs[0].size __UpperCamelCase : Union[str, Any] = Image.new("RGB" , size=(cols * w, rows * h)) __UpperCamelCase : Any = grid.size for i, img in enumerate(_lowerCamelCase): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h)) return grid def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : str="robotic cat with wings" , _lowerCamelCase : Union[str, Any]=7.5 , _lowerCamelCase : Any=50 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Optional[int]=42 , ) -> Tuple: '''simple docstring''' __UpperCamelCase : Tuple = torch.Generator(pipeline.device).manual_seed(_lowerCamelCase) __UpperCamelCase : List[Any] = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images __UpperCamelCase : str = int(math.sqrt(_lowerCamelCase)) __UpperCamelCase : Optional[Any] = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows) return grid, images lowercase : int = parse_args() # Load models and create wrapper for stable diffusion lowercase : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowercase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowercase : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowercase : int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowercase : str = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase : List[Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowercase : List[str] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowercase : List[Any] = unet.to(torch.device('cuda', args.cuda_id)) lowercase : int = pipeline.to(unet.device) lowercase : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowercase : Any = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
363
import random def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : bool = False) -> dict: '''simple docstring''' __UpperCamelCase : dict = {i: [] for i in range(_lowerCamelCase)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase): for j in range(i + 1 , _lowerCamelCase): if random.random() < probability: graph[i].append(_lowerCamelCase) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase) return graph def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> dict: '''simple docstring''' return { i: [j for j in range(_lowerCamelCase) if i != j] for i in range(_lowerCamelCase) } if __name__ == "__main__": import doctest doctest.testmod()
151
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : str ) -> bool: '''simple docstring''' UpperCAmelCase_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase ( )-> int: lowerCAmelCase_ : int = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowerCAmelCase_ : Dict = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go lowerCAmelCase_ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ : List[Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
262
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __lowerCAmelCase : Tuple =False @skip_mps class _A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[Any] = StableDiffusionAttendAndExcitePipeline snake_case__ : Optional[Any] = False snake_case__ : Dict = TEXT_TO_IMAGE_PARAMS snake_case__ : int = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def A__ ( cls ): """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(__lowerCAmelCase ) @classmethod def A__ ( cls ): """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , ) lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase = CLIPTextModel(__lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = lowercase = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = pipe(**__lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowercase = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def A__ ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def A__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def A__ ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A__ ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def A__ ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=5E-4 ) def A__ ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _A ( unittest.TestCase ): @classmethod def A__ ( cls ): """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(__lowerCAmelCase ) @classmethod def A__ ( cls ): """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = torch.manual_seed(51 ) lowercase = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowercase = """a painting of an elephant with glasses""" lowercase = [5, 7] lowercase = pipe( prompt=__lowerCAmelCase , token_indices=__lowerCAmelCase , guidance_scale=7.5 , generator=__lowerCAmelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-1
32
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: # Initialise PyTorch model __lowerCamelCase = LxmertConfig.from_json_file(UpperCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = LxmertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
67
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str]=13 ,lowerCamelCase__ : Dict=7 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=99 ,lowerCamelCase__ : int=32 ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Any=37 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=512 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : int=4 ,): '''simple docstring''' _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : Optional[int] = use_attention_mask _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : str = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : str = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : Dict = initializer_range _UpperCamelCase : List[Any] = num_choices def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_attention_mask: _UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Any = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=lowerCamelCase__ ,) return config, input_ids, attention_mask def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase : Dict = model_class_name.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase : Dict = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Any = (1, 11, 768) self.assertEqual(output.shape ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,lowerCamelCase__ ,atol=1E-4 ) )
83
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a__: Optional[Any] = logging.get_logger(__name__) a__: Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } a__: Tuple = {'allegro/herbert-base-cased': 514} a__: List[str] = {} class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = HerbertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase="<s>",__lowerCamelCase="<unk>",__lowerCamelCase="<pad>",__lowerCamelCase="<mask>",__lowerCamelCase="</s>",**__lowerCamelCase,): super().__init__( _SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE,tokenizer_file=_SCREAMING_SNAKE_CASE,cls_token=_SCREAMING_SNAKE_CASE,unk_token=_SCREAMING_SNAKE_CASE,pad_token=_SCREAMING_SNAKE_CASE,mask_token=_SCREAMING_SNAKE_CASE,sep_token=_SCREAMING_SNAKE_CASE,**_SCREAMING_SNAKE_CASE,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.cls_token_id] A__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE,token_ids_a=_SCREAMING_SNAKE_CASE,already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE,name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
368
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int: A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
39
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[str] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Optional[int] = "poolformer" def __init__( self : List[str] , A : int=3 , A : List[Any]=16 , A : str=16 , A : List[Any]=3 , A : int=4.0 , A : str=[2, 2, 6, 2] , A : Tuple=[64, 1_28, 3_20, 5_12] , A : int=[7, 3, 3, 3] , A : str=[4, 2, 2, 2] , A : Union[str, Any]=[2, 1, 1, 1] , A : List[str]=4 , A : List[str]=0.0 , A : Any="gelu" , A : List[str]=True , A : Union[str, Any]=1e-5 , A : str=0.02 , **A : List[Any] , ) -> Dict: lowercase_ : List[str] = num_channels lowercase_ : List[Any] = patch_size lowercase_ : Tuple = stride lowercase_ : Tuple = padding lowercase_ : List[str] = pool_size lowercase_ : List[str] = hidden_sizes lowercase_ : str = mlp_ratio lowercase_ : Optional[Any] = depths lowercase_ : Optional[int] = patch_sizes lowercase_ : str = strides lowercase_ : Union[str, Any] = num_encoder_blocks lowercase_ : Optional[Any] = drop_path_rate lowercase_ : int = hidden_act lowercase_ : List[str] = use_layer_scale lowercase_ : Dict = layer_scale_init_value lowercase_ : List[str] = initializer_range super().__init__(**__UpperCamelCase ) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = version.parse("1.11" ) @property def A ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : Tuple ) -> float: return 2e-3
33
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase ( _SCREAMING_SNAKE_CASE : Features ): '''simple docstring''' _UpperCAmelCase = np.inf def set_batch_size(_SCREAMING_SNAKE_CASE : FeatureType ) -> None: nonlocal batch_size if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : NestedDataStructureLike[PathLike] , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : int , )->Union[str, Any]: super().__init__( __UpperCamelCase , split=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = path_or_paths if isinstance(__UpperCamelCase , __UpperCamelCase ) else {self.split: path_or_paths} _UpperCAmelCase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] _UpperCAmelCase = Parquet( cache_dir=__UpperCamelCase , data_files=__UpperCamelCase , features=__UpperCamelCase , hash=__UpperCamelCase , **__UpperCamelCase , ) def lowercase__ ( self : Union[str, Any] )->Dict: # Build iterable dataset if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Dataset , __UpperCamelCase : Union[PathLike, BinaryIO] , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Tuple , )->Optional[int]: _UpperCAmelCase = dataset _UpperCAmelCase = path_or_buf _UpperCAmelCase = batch_size or get_writer_batch_size(dataset.features ) _UpperCAmelCase = parquet_writer_kwargs def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: _UpperCAmelCase = self._write(file_obj=__UpperCamelCase , batch_size=__UpperCamelCase , **self.parquet_writer_kwargs ) else: _UpperCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=__UpperCamelCase , **self.parquet_writer_kwargs ) return written def lowercase__ ( self : int , __UpperCamelCase : BinaryIO , __UpperCamelCase : int , **__UpperCamelCase : int )->int: _UpperCAmelCase = 0 _UpperCAmelCase = parquet_writer_kwargs.pop('''path_or_buf''' , __UpperCamelCase ) _UpperCAmelCase = self.dataset.features.arrow_schema _UpperCAmelCase = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase , **__UpperCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __UpperCamelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): _UpperCAmelCase = query_table( table=self.dataset._data , key=slice(__UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__UpperCamelCase ) written += batch.nbytes writer.close() return written
260
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"vocab_file": "spiece.model"} _UpperCAmelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _UpperCAmelCase : Optional[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Any = 2 _UpperCAmelCase : Optional[Any] = 3 _UpperCAmelCase : Dict = 4 class __lowerCAmelCase ( __lowercase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = '''left''' def __init__( self: int , _lowerCAmelCase: str , _lowerCAmelCase: int=False , _lowerCAmelCase: int=True , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Any="<s>" , _lowerCAmelCase: List[str]="</s>" , _lowerCAmelCase: int="<unk>" , _lowerCAmelCase: Dict="<sep>" , _lowerCAmelCase: str="<pad>" , _lowerCAmelCase: Tuple="<cls>" , _lowerCAmelCase: Optional[Any]="<mask>" , _lowerCAmelCase: List[str]=["<eop>", "<eod>"] , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Dict , ): lowercase :Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase :Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :Tuple = 3 lowercase :int = do_lower_case lowercase :Optional[int] = remove_space lowercase :Optional[int] = keep_accents lowercase :List[Any] = vocab_file lowercase :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self: Tuple ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Tuple ): lowercase :Optional[Any] = self.__dict__.copy() lowercase :List[Any] = None return state def __setstate__( self: Union[str, Any] , _lowerCAmelCase: Optional[int] ): lowercase :Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :int = {} lowercase :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: str ): if self.remove_space: lowercase :Optional[int] = """ """.join(inputs.strip().split() ) else: lowercase :List[str] = inputs lowercase :Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowercase :int = unicodedata.normalize("NFKD" , _lowerCAmelCase ) lowercase :int = """""".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: lowercase :Optional[Any] = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: str ): lowercase :List[Any] = self.preprocess_text(_lowerCAmelCase ) lowercase :Dict = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) lowercase :Optional[Any] = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowercase :Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase :List[str] = cur_pieces[1:] else: lowercase :Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: str ): return self.sp_model.PieceToId(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Optional[int] ): return self.sp_model.IdToPiece(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: Optional[Any] ): lowercase :Optional[int] = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = None , _lowerCAmelCase: bool = True , **_lowerCAmelCase: Optional[int] , ): lowercase :Union[str, Any] = kwargs.pop("use_source_tokenizer" , _lowerCAmelCase ) lowercase :Any = self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase :Dict = [] lowercase :Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) lowercase :Optional[int] = [] sub_texts.append(_lowerCAmelCase ) else: current_sub_text.append(_lowerCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase :Tuple = """""".join(_lowerCAmelCase ) lowercase :Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase :Dict = self.clean_up_tokenization(_lowerCAmelCase ) return clean_text else: return text def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :Union[str, Any] = [self.sep_token_id] lowercase :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :Any = [self.sep_token_id] lowercase :Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowercase :int = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
363
def UpperCAmelCase__ ( ): lowercase :List[str] = 0 for i in range(1, 1001 ): total += i**i return str(lowerCamelCase )[-10:] if __name__ == "__main__": print(solution())
158
0
"""simple docstring""" import numpy as np from transformers import Pipeline def __A ( a_ :str) -> int: __a : int = np.max(A__ , axis=-1 , keepdims=A__) __a : Any = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=A__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : List[str] = {} if "second_text" in kwargs: __a : List[str] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): return self.tokenizer(_UpperCAmelCase , text_pair=_UpperCAmelCase , return_tensors=self.framework ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model(**_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Any = model_outputs.logits[0].numpy() __a : List[Any] = softmax(_UpperCAmelCase ) __a : Optional[Any] = np.argmax(_UpperCAmelCase ) __a : List[Any] = self.model.config.idalabel[best_class] __a : str = probabilities[best_class].item() __a : Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
160
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __lowerCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(features=lowerCAmelCase ) _lowercase =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' import torch if isinstance(lowerCAmelCase , lowerCAmelCase ) and column: if all( isinstance(lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase )) ): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase ={} if isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase ={'dtype': torch.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image ): _lowercase =np.asarray(lowerCAmelCase ) return torch.tensor(lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase , '__array__' ) and not isinstance(lowerCAmelCase , torch.Tensor ): _lowercase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_row(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_row(lowerCAmelCase ) return self.recursive_tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> "torch.Tensor": '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_column(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0] ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) _lowercase =self._consolidate(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_batch(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_batch(lowerCAmelCase ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) for column_name in batch: _lowercase =self._consolidate(batch[column_name] ) return batch
205
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowercase ) class lowercase_ ( __lowercase ): UpperCamelCase_ : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCamelCase_ : ClassVar[Features] = Features({"image": Image()} ) UpperCamelCase_ : ClassVar[Features] = Features({"labels": ClassLabel} ) UpperCamelCase_ : str = "image" UpperCamelCase_ : str = "labels" def UpperCamelCase_ ( self : Dict , A__ : List[str] ) -> List[str]: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _snake_case = copy.deepcopy(self ) _snake_case = self.label_schema.copy() _snake_case = features[self.label_column] _snake_case = label_schema return task_template @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
278
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , A__ : int , A__ : List[str]=7 , A__ : Tuple=3 , A__ : List[str]=10 , A__ : Optional[int]=18 , A__ : int=30 , A__ : Tuple=400 , A__ : Dict=True , A__ : str=None , A__ : str=True , A__ : List[str]=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : List[Any]=None , ) -> int: _snake_case = size if size is not None else {'''shortest_edge''': 18} _snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = num_frames _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = crop_size def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[int] ) -> Optional[Any]: _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''image_mean''' ) ) self.assertTrue(hasattr(A__ , '''image_std''' ) ) self.assertTrue(hasattr(A__ , '''do_normalize''' ) ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) def UpperCamelCase_ ( self : int ) -> List[Any]: _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Any ) -> List[str]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Optional[Any] ) -> int: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
278
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : str=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :List[str] = OmegaConf.load(SCREAMING_SNAKE_CASE__ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE__ ) ) ) return config def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=None ) -> str: """simple docstring""" if conf_path is None: UpperCamelCase :List[Any] = '''./model_checkpoints/vqgan_only.yaml''' UpperCamelCase :Optional[int] = load_config(SCREAMING_SNAKE_CASE__ , display=SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = VQModel(**config.model.params ) if ckpt_path is None: UpperCamelCase :Dict = '''./model_checkpoints/vqgan_only.pt''' UpperCamelCase :Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) if ".ckpt" in ckpt_path: UpperCamelCase :Optional[int] = sd['''state_dict'''] model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) del sd return model def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCamelCase :Dict = model.encode(SCREAMING_SNAKE_CASE__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCamelCase :Union[str, Any] = model.decode(SCREAMING_SNAKE_CASE__ ) return xrec def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Any=False ) -> Tuple: """simple docstring""" UpperCamelCase :Optional[Any] = string.rsplit(""".""" , 1 ) if reload: UpperCamelCase :Optional[Any] = importlib.import_module(SCREAMING_SNAKE_CASE__ ) importlib.reload(SCREAMING_SNAKE_CASE__ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE__ , package=SCREAMING_SNAKE_CASE__ ) , cls ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : List[Any]=True , __magic_name__ : List[str]=True ) -> Optional[Any]: """simple docstring""" UpperCamelCase :str = instantiate_from_config(SCREAMING_SNAKE_CASE__ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ) -> str: """simple docstring""" if ckpt: UpperCamelCase :Dict = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) UpperCamelCase :Union[str, Any] = pl_sd['''global_step'''] print(f"""loaded model from global step {global_step}.""" ) else: UpperCamelCase :Optional[int] = {'''state_dict''': None} UpperCamelCase :List[str] = None UpperCamelCase :Union[str, Any] = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=SCREAMING_SNAKE_CASE__ , eval_mode=SCREAMING_SNAKE_CASE__ )['''model'''] return model, global_step
38
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
0
"""simple docstring""" import json import sys def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" with open(__snake_case, encoding='''utf-8''' ) as f: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__snake_case ): _UpperCamelCase = results[benchmark_name] _UpperCamelCase = benchmark_name.split('''/''' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) _UpperCamelCase = '''| metric |''' _UpperCamelCase = '''|--------|''' _UpperCamelCase = '''| new / old (diff) |''' for metric_name in sorted(__snake_case ): _UpperCamelCase = benchmark_res[metric_name] _UpperCamelCase = metric_vals['''new'''] _UpperCamelCase = metric_vals.get('''old''', __snake_case ) _UpperCamelCase = metric_vals.get('''diff''', __snake_case ) _UpperCamelCase = F''' {new_val:f}''' if isinstance(__snake_case, (int, float) ) else '''None''' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__snake_case, (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__snake_case, (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__snake_case ) ) if __name__ == "__main__": _a = sys.argv[1] _a = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
100
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-roberta-xl' def __init__( self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
100
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Dict ): # load base model lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase = load_file(lowerCamelCase ) lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase = pipeline.text_encoder else: lowerCAmelCase = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase = pipeline.unet # find the target layer lowerCAmelCase = layer_infos.pop(0 ) while len(lowerCamelCase ) > -1: try: lowerCAmelCase = curr_layer.__getattr__(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = layer_infos.pop(0 ) elif len(lowerCamelCase ) == 0: break except Exception: if len(lowerCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase = layer_infos.pop(0 ) lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(lowerCamelCase ) else: pair_keys.append(lowerCamelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowerCamelCase , lowerCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowerCamelCase , lowerCamelCase ) # update visited list for item in pair_keys: visited.append(lowerCamelCase ) return pipeline if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.7_5, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") __snake_case =parser.parse_args() __snake_case =args.base_model_path __snake_case =args.checkpoint_path __snake_case =args.dump_path __snake_case =args.lora_prefix_unet __snake_case =args.lora_prefix_text_encoder __snake_case =args.alpha __snake_case =convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __snake_case =pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
4
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase__ ( UpperCamelCase_ , UpperCamelCase_): @register_to_config def __init__( self : str , UpperCamelCase__ : int = 768 , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(1 , UpperCamelCase__ ) ) def __A ( self : List[str] , UpperCamelCase__ : Optional[Union[str, torch.device]] = None , UpperCamelCase__ : Optional[torch.dtype] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(self.mean.to(UpperCamelCase__ ).to(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(self.std.to(UpperCamelCase__ ).to(UpperCamelCase__ ) ) return self def __A ( self : Optional[Any] , UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : Dict , UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (embeds * self.std) + self.mean return embeds
353
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A ( _lowercase ): return (data["data"], data["target"]) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowercase , _lowercase ) # Predict target for test data SCREAMING_SNAKE_CASE : Optional[int] = xgb.predict(_lowercase ) SCREAMING_SNAKE_CASE : Dict = predictions.reshape(len(_lowercase ) , 1 ) return predictions def A ( ): SCREAMING_SNAKE_CASE : str = fetch_california_housing() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = data_handling(_lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = train_test_split( _lowercase , _lowercase , test_size=0.25 , random_state=1 ) SCREAMING_SNAKE_CASE : Any = xgboost(_lowercase , _lowercase , _lowercase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowercase , _lowercase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowercase , _lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
258
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( lowercase_ ): '''simple docstring''' __UpperCamelCase : int = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Tuple = '''Pix2StructImageProcessor''' __UpperCamelCase : Optional[int] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[int] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = 2_0_4_8 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Dict , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: _A: int = self.tokenizer _A: int = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _A: Optional[int] = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , max_patches=lowerCAmelCase_ , **lowerCAmelCase_ ) else: # add pixel_values and bbox _A: str = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , max_patches=lowerCAmelCase_ , header_text=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and not self.image_processor.is_vqa: _A: List[str] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if "attention_mask" in text_encoding: _A: str = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: _A: List[Any] = text_encoding.pop('''input_ids''' ) else: _A: Tuple = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : str , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Any = self.tokenizer.model_input_names _A: str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
121
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: int , UpperCamelCase: Union[str, Any]=13 , UpperCamelCase: List[Any]=7 , UpperCamelCase: Any=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: str=True , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[Any]=32 , UpperCamelCase: Tuple=5 , UpperCamelCase: Optional[int]=4 , UpperCamelCase: int=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Tuple=5_12 , UpperCamelCase: List[str]=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: List[str]=False , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]="None" , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=4 , UpperCamelCase: List[str]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.get_config() A__ = 3_00 return config def UpperCamelCase ( self: List[Any] , UpperCamelCase: str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase ( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = DebertaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: str ): """simple docstring""" A__ = self.num_labels A__ = DebertaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int ): """simple docstring""" A__ = self.num_labels A__ = DebertaForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Tuple , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = DebertaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DebertaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) A__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
363
"""simple docstring""" from typing import Any class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = data A__ = None class a : """simple docstring""" def __init__( self: List[str] ): """simple docstring""" A__ = None def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.head while temp is not None: print(temp.data , end=""" """ ) A__ = temp.next print() def UpperCamelCase ( self: str , UpperCamelCase: Any ): """simple docstring""" A__ = Node(UpperCamelCase ) A__ = self.head A__ = new_node def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" if node_data_a == node_data_a: return else: A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next if node_a is None or node_a is None: return A__ , A__ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
69
0
def _UpperCamelCase ( lowercase__ = 10 , lowercase__ = 1000 , lowercase__ = True ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def _UpperCamelCase ( lowercase__ , lowercase__ ): return int((number_a + number_a) / 2 ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(lowercase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) __SCREAMING_SNAKE_CASE : Dict = lower __SCREAMING_SNAKE_CASE : Union[str, Any] = higher __SCREAMING_SNAKE_CASE : List[Any] = [] while True: __SCREAMING_SNAKE_CASE : Dict = get_avg(lowercase__ , lowercase__ ) last_numbers.append(lowercase__ ) if answer(lowercase__ ) == "low": __SCREAMING_SNAKE_CASE : Optional[Any] = number elif answer(lowercase__ ) == "high": __SCREAMING_SNAKE_CASE : Dict = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter lower value : ''' ).strip() ) __SCREAMING_SNAKE_CASE : Dict = int(input('''Enter high value : ''' ).strip() ) __SCREAMING_SNAKE_CASE : List[Any] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": main()
9
import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase = n - 1 lowercase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase = 0 while count < prec: lowercase = random.randint(2 , n - 1 ) lowercase = bin_exp_mod(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if b != 1: lowercase = True for _ in range(lowerCAmelCase__ ): if b == n - 1: lowercase = False break lowercase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase__ :Tuple = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
101
0
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm _A = 20_48 _A = 40_96 _A = 42 _A = os.environ.pop("""PROCESS_TRAIN""", """false""") _A = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def a__ ( lowerCAmelCase ) -> Optional[Any]: def choose_first(lowerCAmelCase , lowerCAmelCase=False ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: UpperCAmelCase__ : Any = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase__ : Union[str, Any] = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a UpperCAmelCase__ : Union[str, Any] = {"""id""": example["""id"""]} UpperCAmelCase__ : Any = example["""annotations"""] UpperCAmelCase__ : List[Any] = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase__ : Tuple = ["""yes"""] if 1 in yes_no_answer else ["""no"""] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Optional[Any] = ["""<cls>"""] else: UpperCAmelCase__ : Union[str, Any] = ["""short"""] UpperCAmelCase__ : Optional[Any] = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available UpperCAmelCase__ : Dict = ["""long"""] UpperCAmelCase__ : str = choose_first(annotation["""long_answer"""] , is_long_answer=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [] answer.update(_lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase__ : List[Any] = True else: UpperCAmelCase__ : int = False UpperCAmelCase__ : Any = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def a__ ( lowerCAmelCase , lowerCAmelCase=False ) -> List[str]: UpperCAmelCase__ : List[Any] = _get_single_answer(_lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ : Optional[Any] = example["""document"""]["""tokens"""] UpperCAmelCase__ : Union[str, Any] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(_lowerCamelCase ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase__ : Union[str, Any] = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase__ : str = example["""document"""]["""tokens"""] UpperCAmelCase__ : Any = answer["""start_token"""] UpperCAmelCase__ : Optional[int] = answer["""end_token"""] UpperCAmelCase__ : int = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase__ : Dict = """ """.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase__ : str = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] UpperCAmelCase__ : Union[str, Any] = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] UpperCAmelCase__ : Dict = """ """.join([old[i] for i in range(len(_lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , _lowerCamelCase , end="""\n""" ) print("""Old:""" , _lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(_lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=20_48 , lowerCAmelCase=40_96 , lowerCAmelCase=True ) -> Dict: UpperCAmelCase__ : List[Any] = get_context_and_ans(_lowerCamelCase , assertion=_lowerCamelCase ) UpperCAmelCase__ : Dict = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase__ : List[Any] = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids UpperCAmelCase__ : Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[int] = input_ids[:q_len] UpperCAmelCase__ : Dict = range(_lowerCamelCase , len(_lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase__ : Dict = i + max_length - q_len UpperCAmelCase__ : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(_lowerCamelCase ), "end_token": [-1_00] * len(_lowerCamelCase ), "category": category, }, } UpperCAmelCase__ : Optional[int] = out["""context"""].split() UpperCAmelCase__ : Optional[int] = splitted_context[answer["""end_token"""]] UpperCAmelCase__ : Any = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_lowerCamelCase , ).input_ids ) UpperCAmelCase__ : Tuple = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase__ : Tuple = len(tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase__ : Union[str, Any] = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive UpperCAmelCase__ : Optional[int] = answer["""start_token"""] UpperCAmelCase__ : List[Any] = answer["""end_token"""] if assertion: UpperCAmelCase__ : Any = tokenizer.decode(_lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , _lowerCamelCase , end="""\n\n""" ) if len(_lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase__ : List[Any] = input_ids[:q_len] UpperCAmelCase__ : Tuple = range(_lowerCamelCase , len(_lowerCamelCase ) , max_length - doc_stride ) UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Tuple = [] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase__ : Dict = i + max_length - q_len UpperCAmelCase__ : Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase__ : str = start_token - i + q_len UpperCAmelCase__ : int = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: UpperCAmelCase__ : Optional[Any] = -1_00 UpperCAmelCase__ : Optional[Any] = -1_00 answers_category.append("""null""" ) UpperCAmelCase__ : List[str] = inputs[-1][start_token : end_token + 1] answers_start_token.append(_lowerCamelCase ) answers_end_token.append(_lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(_lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(_lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=20_48 , lowerCAmelCase=40_96 , lowerCAmelCase=False ) -> int: UpperCAmelCase__ : Union[str, Any] = get_strided_contexts_and_ans( _lowerCamelCase , _lowerCamelCase , doc_stride=_lowerCamelCase , max_length=_lowerCamelCase , assertion=_lowerCamelCase , ) return example def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: with jsonlines.open(_lowerCamelCase , """a""" ) as writer: for example in tqdm(_lowerCamelCase , total=len(_lowerCamelCase ) , desc="""Saving samples ... """ ): UpperCAmelCase__ : int = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _A = load_dataset("""natural_questions""") _A = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") _A = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] _A = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } _A = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _A = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) _A = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
363
"""simple docstring""" _A = range(2, 20 + 1) _A = [10**k for k in range(ks[-1] + 1)] _A = {} def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[str] = sum(a_i[j] for j in range(lowerCAmelCase , len(lowerCAmelCase ) ) ) UpperCAmelCase__ : str = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase ) , lowerCAmelCase ) ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = 0, 0 UpperCAmelCase__ : Optional[Any] = n - i UpperCAmelCase__ : Union[str, Any] = memo.get(lowerCAmelCase ) if sub_memo is not None: UpperCAmelCase__ : Any = sub_memo.get(lowerCAmelCase ) if jumps is not None and len(lowerCAmelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase__ : Optional[int] = -1 for _k in range(len(lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase__ : str = _k break if max_jump >= 0: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase__ : Any = diff + c for j in range(min(lowerCAmelCase , len(lowerCAmelCase ) ) ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = divmod(lowerCAmelCase , 10 ) if new_c > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase__ : int = [] else: UpperCAmelCase__ : Union[str, Any] = {c: []} UpperCAmelCase__ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = next_term(lowerCAmelCase , k - 1 , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase__ , UpperCAmelCase__ : Tuple = compute(lowerCAmelCase , lowerCAmelCase , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped UpperCAmelCase__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase__ : Any = 0 while j < len(lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: if i >= n: return 0, i if k > len(lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase__ : Tuple = i UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = 0, 0, 0 for j in range(len(lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase__ : Dict = ds_c + ds_b diff += addend UpperCAmelCase__ : Tuple = 0 for j in range(lowerCAmelCase ): UpperCAmelCase__ : Tuple = a_i[j] + addend UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return diff, i - start_i def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: for j in range(lowerCAmelCase , len(lowerCAmelCase ) ): UpperCAmelCase__ : Optional[Any] = digits[j] + addend if s >= 10: UpperCAmelCase__ , UpperCAmelCase__ : Dict = divmod(lowerCAmelCase , 10 ) UpperCAmelCase__ : Any = addend // 10 + quotient else: UpperCAmelCase__ : Optional[Any] = s UpperCAmelCase__ : Tuple = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) digits.append(lowerCAmelCase ) def a__ ( lowerCAmelCase = 10**15 ) -> int: UpperCAmelCase__ : Optional[int] = [1] UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Dict = 0 while True: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = next_term(lowerCAmelCase , 20 , i + dn , lowerCAmelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase__ : Optional[int] = 0 for j in range(len(lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
166
0
import string import numpy def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> int: return b if a == 0 else greatest_common_divisor(b % a , __UpperCAmelCase) class __snake_case : '''simple docstring''' lowerCAmelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase__ = numpy.vectorize(lambda __lowerCamelCase : x % 36 ) lowerCAmelCase__ = numpy.vectorize(__lowerCamelCase ) def __init__( self : List[Any] , A : Union[str, Any] ): __snake_case: Union[str, Any] = self.modulus(A ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __snake_case: Optional[Any] = encrypt_key.shape[0] def UpperCAmelCase__ ( self : List[str] , A : Optional[Any] ): return self.key_string.index(A ) def UpperCAmelCase__ ( self : str , A : Tuple ): return self.key_string[round(A )] def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __snake_case: str = det % len(self.key_string ) __snake_case: List[Any] = len(self.key_string ) if greatest_common_divisor(A , len(self.key_string ) ) != 1: __snake_case: Dict = ( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(A ) def UpperCAmelCase__ ( self : List[Any] , A : int ): __snake_case: Any = [char for char in text.upper() if char in self.key_string] __snake_case: Tuple = chars[-1] while len(A ) % self.break_key != 0: chars.append(A ) return "".join(A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : List[str] ): __snake_case: int = self.process_text(text.upper() ) __snake_case: List[Any] = '''''' for i in range(0 , len(A ) - self.break_key + 1 , self.break_key ): __snake_case: Tuple = text[i : i + self.break_key] __snake_case: str = [self.replace_letters(A ) for char in batch] __snake_case: Dict = numpy.array([vec] ).T __snake_case: Tuple = self.modulus(self.encrypt_key.dot(A ) ).T.tolist()[ 0 ] __snake_case: Dict = ''''''.join( self.replace_digits(A ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase__ ( self : Any ): __snake_case: int = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __snake_case: List[Any] = det % len(self.key_string ) __snake_case: Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __snake_case: Any = i break __snake_case: Optional[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(A ) ) def UpperCAmelCase__ ( self : Optional[int] , A : int ): __snake_case: Union[str, Any] = self.make_decrypt_key() __snake_case: Tuple = self.process_text(text.upper() ) __snake_case: Dict = '''''' for i in range(0 , len(A ) - self.break_key + 1 , self.break_key ): __snake_case: Optional[Any] = text[i : i + self.break_key] __snake_case: Tuple = [self.replace_letters(A ) for char in batch] __snake_case: List[Any] = numpy.array([vec] ).T __snake_case: int = self.modulus(decrypt_key.dot(A ) ).T.tolist()[0] __snake_case: Any = ''''''.join( self.replace_digits(A ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A__ ( ) -> None: __snake_case: Dict = int(input("""Enter the order of the encryption key: """)) __snake_case: List[Any] = [] print("""Enter each row of the encryption key with space separated integers""") for _ in range(__UpperCAmelCase): __snake_case: List[Any] = [int(__UpperCAmelCase) for x in input().split()] hill_matrix.append(__UpperCAmelCase) __snake_case: Optional[Any] = HillCipher(numpy.array(__UpperCAmelCase)) print("""Would you like to encrypt or decrypt some text? (1 or 2)""") __snake_case: Union[str, Any] = input("""\n1. Encrypt\n2. Decrypt\n""") if option == "1": __snake_case: List[str] = input("""What text would you like to encrypt?: """) print("""Your encrypted text is:""") print(hc.encrypt(__UpperCAmelCase)) elif option == "2": __snake_case: List[Any] = input("""What text would you like to decrypt?: """) print("""Your decrypted text is:""") print(hc.decrypt(__UpperCAmelCase)) if __name__ == "__main__": import doctest doctest.testmod() main()
111
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : str = ["pixel_values"] def __init__( self, __magic_name__ = True, __magic_name__ = 32, __magic_name__=PILImageResampling.BILINEAR, __magic_name__ = True, **__magic_name__, ) -> None: """simple docstring""" UpperCamelCase__ : int = do_resize UpperCamelCase__ : Tuple = do_rescale UpperCamelCase__ : Any = size_divisor UpperCamelCase__ : List[Any] = resample super().__init__(**__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = None, **__magic_name__ ) -> np.ndarray: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[Any] = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase__ : Any = height // size_divisor * size_divisor UpperCamelCase__ : Optional[int] = width // size_divisor * size_divisor UpperCamelCase__ : str = resize(__magic_name__, (new_h, new_w), resample=__magic_name__, data_format=__magic_name__, **__magic_name__ ) return image def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ = None, **__magic_name__ ) -> np.ndarray: """simple docstring""" return rescale(image=__magic_name__, scale=__magic_name__, data_format=__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, __magic_name__=None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = ChannelDimension.FIRST, **__magic_name__, ) -> BatchFeature: """simple docstring""" UpperCamelCase__ : str = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Any = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase__ : str = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCamelCase__ : Union[str, Any] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Optional[Any] = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: UpperCamelCase__ : str = [self.resize(__magic_name__, size_divisor=__magic_name__, resample=__magic_name__ ) for image in images] if do_rescale: UpperCamelCase__ : List[Any] = [self.rescale(__magic_name__, scale=1 / 255 ) for image in images] UpperCamelCase__ : Optional[Any] = [to_channel_dimension_format(__magic_name__, __magic_name__ ) for image in images] UpperCamelCase__ : Tuple = {'''pixel_values''': images} return BatchFeature(data=__magic_name__, tensor_type=__magic_name__ )
201
0
def snake_case ( snake_case__ :str) -> list: if n_term == "": return [] _A = [] for temp in range(int(snake_case__)): series.append(F'''1/{temp + 1}''' if series else """1""") return series if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
81
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = ShapEPipeline lowerCamelCase__ : Union[str, Any] = ['prompt'] lowerCamelCase__ : Optional[Any] = ['prompt'] lowerCamelCase__ : str = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ : List[Any] = False @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: return 8 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def SCREAMING_SNAKE_CASE ( self : int ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """num_attention_heads""": 2, """attention_head_dim""": 1_6, """embedding_dim""": self.time_input_dim, """num_embeddings""": 3_2, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } SCREAMING_SNAKE_CASE__ = PriorTransformer(**__UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """param_shapes""": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 1_2, """background""": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ = ShapERenderer(**__UpperCAmelCase ) return model def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.dummy_prior SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_renderer SCREAMING_SNAKE_CASE__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_0_2_4 , prediction_type="""sample""" , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=0 ) -> Any: if str(__UpperCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 3_2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = output.images[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) SCREAMING_SNAKE_CASE__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = torch_device == """cpu""" SCREAMING_SNAKE_CASE__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) SCREAMING_SNAKE_CASE__ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) SCREAMING_SNAKE_CASE__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( """a shark""" , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="""np""" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
165
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
a__: Tuple = 9.8_06_65 def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float = g )->Dict: if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
193
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase__ : def __init__( self ): """simple docstring""" lowercase_ : int = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = probability def _snake_case ( self ): """simple docstring""" return list(self.connections ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = 0 lowercase_ : Tuple = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = Counter(graph.get_nodes() ) lowercase_ : Any = start for _ in range(__SCREAMING_SNAKE_CASE ): lowercase_ : int = graph.transition(__SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
93
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = 3_2 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=3_2 , size=3_2) torch.manual_seed(0) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase_ , projection_dim=lowerCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase_) lowercase_ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""") torch.manual_seed(0) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") torch.manual_seed(0) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) lowercase_ = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase_ , layers_per_block=1 , upcast_attention=lowerCAmelCase_ , use_linear_projection=lowerCAmelCase_ , ) torch.manual_seed(0) lowercase_ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : List[str]=True): """simple docstring""" if str(lowerCAmelCase_).startswith("""mps"""): lowercase_ = torch.manual_seed(lowerCAmelCase_) else: lowercase_ = torch.Generator(device=lowerCAmelCase_).manual_seed(lowerCAmelCase_) lowercase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(lowerCAmelCase_)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**lowerCAmelCase_) lowercase_ = sd_pipe.to(lowerCAmelCase_) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = self.get_dummy_inputs(lowerCAmelCase_) inputs.update({"""image_embeds""": None}) lowercase_ = sd_pipe(**lowerCAmelCase_).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase_) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase_) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowerCAmelCase_ , """anime turle""" , generator=lowerCAmelCase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowerCAmelCase_ , """anime turle""" , generator=lowerCAmelCase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) lowercase_ = pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( lowerCAmelCase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
from functools import lru_cache @lru_cache def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' if num < 0: raise ValueError("Number should not be negative.") return 1 if num in (0, 1) else num * factorial(num - 1) if __name__ == "__main__": import doctest doctest.testmod()
232
from __future__ import annotations import math lowercase : Any = '2020.9.26' lowercase : Union[str, Any] = 'xcodz-dot, cclaus, dhruvmanila' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int)) for val in locals().values()): __UpperCamelCase : str = F'Input values must either be float or int: {list(locals().values())}' raise TypeError(_lowerCamelCase) __UpperCamelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCamelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("Axis must be a str") __UpperCamelCase : str = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int)) for val in input_variables.values()): __UpperCamelCase : Dict = ( "Input values except axis must either be float or int: " F'{list(input_variables.values())}' ) raise TypeError(_lowerCamelCase) __UpperCamelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCamelCase : Tuple = x * math.cos(_lowerCamelCase) - y * math.sin(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = y * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z elif axis == "x": __UpperCamelCase : Dict = y * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + y * math.sin(_lowerCamelCase) __UpperCamelCase : List[str] = x elif axis == "y": __UpperCamelCase : Any = x * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Dict = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }")
232
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = np.full((len(lowerCAmelCase__ ), sequence_length, 2) , lowerCAmelCase__ ) else: _a = np.full((len(lowerCAmelCase__ ), sequence_length) , lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] return out_tensor.tolist() def _A (lowerCAmelCase__ :Any ) -> Union[str, Any]: '''simple docstring''' _a = ord(lowerCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _a = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('P' ): return True return False @dataclass class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 _lowerCAmelCase = True _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = -1_0_0 _lowerCAmelCase = "pt" def __UpperCAmelCase ( self , __magic_name__ ) -> Any: import torch _a = 'label' if 'label' in features[0].keys() else 'labels' _a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _a = self.tokenizer.pad( __magic_name__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch _a = torch.tensor(batch['entity_ids'] ).shape[1] _a = self.tokenizer.padding_side if padding_side == "right": _a = [ list(__magic_name__ ) + [self.label_pad_token_id] * (sequence_length - len(__magic_name__ )) for label in labels ] else: _a = [ [self.label_pad_token_id] * (sequence_length - len(__magic_name__ )) + list(__magic_name__ ) for label in labels ] _a = [feature['ner_tags'] for feature in features] _a = padding_tensor(__magic_name__ , -1 , __magic_name__ , __magic_name__ ) _a = [feature['original_entity_spans'] for feature in features] _a = padding_tensor(__magic_name__ , (-1, -1) , __magic_name__ , __magic_name__ ) _a = {k: torch.tensor(__magic_name__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
104
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a_ : Optional[Any] = TypeVar("T") def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (position - 1) // 2 def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (2 * position) + 1 def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (2 * position) + 2 class a ( Generic[T] ): def __init__( self ) -> None: _a = [] _a = {} _a = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def __UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _a = self.elements self.elements += 1 self._bubble_up(__magic_name__ ) def __UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _a , _a = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _a , _a = self.heap[0] self._bubble_down(__magic_name__ ) return elem def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Update the weight of the given key _a = self.position_map[elem] _a = (elem, weight) if position > 0: _a = get_parent_position(__magic_name__ ) _a , _a = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__magic_name__ ) else: self._bubble_down(__magic_name__ ) else: self._bubble_down(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _a = self.position_map[elem] if curr_pos == 0: return None _a = get_parent_position(__magic_name__ ) _a , _a = self.heap[curr_pos] _a , _a = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_up(__magic_name__ ) return None def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _a = self.position_map[elem] _a , _a = self.heap[curr_pos] _a = get_child_left_position(__magic_name__ ) _a = get_child_right_position(__magic_name__ ) if child_left_position < self.elements and child_right_position < self.elements: _a , _a = self.heap[child_left_position] _a , _a = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) if child_left_position < self.elements: _a , _a = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) else: return None if child_right_position < self.elements: _a , _a = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) return None def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Swap the nodes at the given positions _a = self.heap[nodea_pos][0] _a = self.heap[nodea_pos][0] _a , _a = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _a = nodea_pos _a = nodea_pos class a ( Generic[T] ): def __init__( self ) -> None: _a = {} _a = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _a = {} self.nodes += 1 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__magic_name__ ) self.add_node(__magic_name__ ) _a = weight _a = weight def _A (lowerCAmelCase__ :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' _a = {node: maxsize for node in graph.connections} _a = {node: None for node in graph.connections} _a = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization _a = priority_queue.extract_min() _a = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _a = node # running prim's algorithm while not priority_queue.is_empty(): _a = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _a = node return dist, parent
104
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = XLMProphetNetTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = XLMProphetNetTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = "[PAD]" lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase ) , 1012 ) def SCREAMING_SNAKE_CASE_( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = XLMProphetNetTokenizer(lowercase , keep_accents=lowercase ) lowerCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = "Hello World!" lowerCamelCase_ = [35389, 6672, 49, 2] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> str: # fmt: off lowerCamelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
19
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CodeGenTokenizer lowercase__ = CodeGenTokenizerFast lowercase__ = True lowercase__ = {"add_prefix_space": True} lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _snake_case : Tuple = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : List[Any] = {"""unk_token""": """<unk>"""} _snake_case : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def UpperCamelCase_ ( self: Any, **a_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Any, **a_: str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = """lower newer""" _snake_case : Tuple = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) _snake_case : Optional[Any] = """lower newer""" _snake_case : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : int = tokenizer.tokenize(a_, add_prefix_space=a_ ) self.assertListEqual(a_, a_ ) _snake_case : str = tokens + [tokenizer.unk_token] _snake_case : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : int = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer(add_prefix_space=a_ ) _snake_case : Dict = """lower newer""" # Testing tokenization _snake_case : Dict = tokenizer.tokenize(a_, add_prefix_space=a_ ) _snake_case : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids without special tokens _snake_case : Optional[Any] = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : Tuple = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids with special tokens _snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=a_ ) _snake_case : int = tokenizer.encode(a_, add_prefix_space=a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) # Testing the unknown token _snake_case : Tuple = tokens + [rust_tokenizer.unk_token] _snake_case : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: Dict, *a_: Dict, **a_: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int, a_: List[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) # Simple input _snake_case : Any = """This is a simple input""" _snake_case : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Optional[int] = ("""This is a simple input""", """This is a pair""") _snake_case : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) # Pair input self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="""<pad>""" ) # Simple input _snake_case : List[Any] = """This is a simple input""" _snake_case : int = ["""This is a simple input looooooooong""", """This is a simple input"""] _snake_case : Any = ("""This is a simple input""", """This is a pair""") _snake_case : str = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _snake_case : str = tokenizer.pad_token_id _snake_case : Optional[int] = tokenizer(a_, padding="""max_length""", max_length=30, return_tensors="""np""" ) _snake_case : Dict = tokenizer(a_, padding=a_, truncate=a_, return_tensors="""np""" ) _snake_case : Tuple = tokenizer(*a_, padding="""max_length""", max_length=60, return_tensors="""np""" ) _snake_case : Optional[Any] = tokenizer(a_, padding=a_, truncate=a_, return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1], 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1], 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1], 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1], 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = """$$$""" _snake_case : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=a_, add_bos_token=a_ ) _snake_case : str = """This is a simple input""" _snake_case : int = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Union[str, Any] = tokenizer.bos_token_id _snake_case : Tuple = tokenizer(a_ ) _snake_case : Optional[Any] = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0], a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case : Optional[int] = tokenizer.decode(out_s.input_ids ) _snake_case : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[int] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _snake_case : Dict = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _snake_case : Union[str, Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _snake_case : Optional[Any] = tokenizer.encode(a_ ) _snake_case : Dict = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _snake_case : Optional[Any] = tokenizer.decode(a_, truncate_before_pattern=a_ ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass
64
0
from math import asin, atan, cos, radians, sin, sqrt, tan snake_case : Optional[Any] = 6378137.0 snake_case : str = 6356752.314245 snake_case : int = 6_37_81_37 def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): a__ = (AXIS_A - AXIS_B) / AXIS_A a__ = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) a__ = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) a__ = radians(__lowerCAmelCase ) a__ = radians(__lowerCAmelCase ) # Equation a__ = sin((phi_a - phi_a) / 2 ) a__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda a__ = sqrt(sin_sq_phi + (cos(__lowerCAmelCase ) * cos(__lowerCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
109
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
109
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , _a ): super().__init__() __a = model __a = 2 __a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __UpperCAmelCase ( self ): pass def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Optional[int]: # load longformer model from model identifier __a = LongformerModel.from_pretrained(lowerCAmelCase__ ) __a = LightningModel(lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __a = LongformerForQuestionAnswering.from_pretrained(lowerCAmelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCAmelCase__ ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
45
"""simple docstring""" lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowercase ( lowerCAmelCase__ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(lowerCAmelCase__ ) __a = ''''''.join(bin(lowerCAmelCase__ )[2:].zfill(8 ) for byte in data ) __a = len(lowerCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later __a = b'''=''' * ((6 - len(lowerCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase__ ) % 6) else: __a = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase__ ) , 6 ) ).encode() + padding ) def lowercase ( lowerCAmelCase__ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(lowerCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: __a = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) __a = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __a = encoded_data[:-padding] __a = ''''''.join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __a = ''''''.join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) __a = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase__ ) , 8 ) ] return bytes(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: A__ = [True] * limit A__ = False A__ = False A__ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): A__ = i * 2 while index < limit: A__ = False A__ = index + i A__ = [2] for i in range(3 , lowercase_ , 2 ): if is_prime[i]: primes.append(lowercase_ ) return primes def _SCREAMING_SNAKE_CASE ( lowercase_ = 1_00_00_00 ) -> int: A__ = prime_sieve(lowercase_ ) A__ = 0 A__ = 0 for i in range(len(lowercase_ ) ): for j in range(i + length , len(lowercase_ ) ): A__ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: A__ = j - i A__ = sol return largest if __name__ == "__main__": print(f'{solution() = }')
230
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCAmelCase_ ( A_ ): lowercase__ = '''lilt''' def __init__( self : List[str] , snake_case_ : Any=30_522 , snake_case_ : Optional[Any]=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : Any=3_072 , snake_case_ : List[str]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Any=512 , snake_case_ : Optional[Any]=2 , snake_case_ : List[str]=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : Any="absolute" , snake_case_ : str=None , snake_case_ : int=4 , snake_case_ : int=1_024 , **snake_case_ : Tuple , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = classifier_dropout A__ = channel_shrink_ratio A__ = max_ad_position_embeddings
230
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a ( lowercase__ ): __lowerCAmelCase : Dict = (DDPMScheduler,) def __lowerCamelCase ( self :Tuple ,**__lowercase :Union[str, Any] ): snake_case__ : str = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCamelCase ( self :int ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Optional[int] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ ,beta_end=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Optional[int] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Dict ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Optional[Any] ): self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ ,prediction_type=SCREAMING_SNAKE_CASE__ ,sample_max_value=SCREAMING_SNAKE_CASE__ ,) def __lowerCamelCase ( self :int ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Dict ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[Any] = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config() snake_case__ : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case__ : List[str] = len(SCREAMING_SNAKE_CASE__ ) snake_case__ : List[str] = self.dummy_model() snake_case__ : List[str] = self.dummy_sample_deter snake_case__ : str = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual snake_case__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 snake_case__ : int = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ : List[Any] = pred_prev_sample snake_case__ : List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : Dict = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case__ : str = len(SCREAMING_SNAKE_CASE__ ) snake_case__ : Optional[Any] = self.dummy_model() snake_case__ : Any = self.dummy_sample_deter snake_case__ : Any = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual snake_case__ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 snake_case__ : Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ : Optional[Any] = pred_prev_sample snake_case__ : List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case__ : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __lowerCamelCase ( self :Any ): snake_case__ : Union[str, Any] = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case__ : Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) snake_case__ : Any = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE__ ): if i == len(SCREAMING_SNAKE_CASE__ ) - 1: snake_case__ : Union[str, Any] = -1 else: snake_case__ : Union[str, Any] = timesteps[i + 1] snake_case__ : str = scheduler.previous_timestep(SCREAMING_SNAKE_CASE__ ) snake_case__ : Any = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case__ : Optional[int] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(SCREAMING_SNAKE_CASE__ ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : int = self.get_scheduler_config() snake_case__ : int = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case__ : Optional[int] = [1_0_0, 8_7, 5_0, 1, 0] snake_case__ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ ,timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self :str ): snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : List[Any] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case__ : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE__ ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
230
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Optional[int] = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mask2former''' snake_case__ : Any = ['''swin'''] snake_case__ : str = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 6 , SCREAMING_SNAKE_CASE__ : int = 1_0 , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 2_5_5 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 2.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : int = 1_2_5_4_4 , SCREAMING_SNAKE_CASE__ : float = 3.0 , SCREAMING_SNAKE_CASE__ : float = 0.75 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 1_6, 3_2] , SCREAMING_SNAKE_CASE__ : bool = None , **SCREAMING_SNAKE_CASE__ : int , ) -> List[Any]: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) a_ : Dict = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Any = backbone_config.pop('model_type' ) a_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] a_ : List[str] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) a_ : Dict = backbone_config a_ : List[str] = feature_size a_ : List[str] = mask_feature_size a_ : int = hidden_dim a_ : Dict = encoder_feedforward_dim a_ : str = activation_function a_ : List[str] = encoder_layers a_ : List[str] = decoder_layers a_ : Dict = num_attention_heads a_ : str = dropout a_ : Tuple = dim_feedforward a_ : List[str] = pre_norm a_ : Optional[int] = enforce_input_projection a_ : Any = common_stride a_ : Optional[int] = ignore_value a_ : int = num_queries a_ : Tuple = no_object_weight a_ : Dict = class_weight a_ : Optional[int] = mask_weight a_ : Optional[int] = dice_weight a_ : str = train_num_points a_ : List[str] = oversample_ratio a_ : List[Any] = importance_sample_ratio a_ : Any = init_std a_ : Union[str, Any] = init_xavier_std a_ : Union[str, Any] = use_auxiliary_loss a_ : Dict = feature_strides a_ : List[str] = output_auxiliary_logits a_ : Dict = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, any]: a_ : Optional[int] = copy.deepcopy(self.__dict__ ) a_ : List[Any] = self.backbone_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
32
0
'''simple docstring''' import os def UpperCAmelCase_ (__a : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(__a ) , __a ) ) as input_file: _a : List[str] = [ [int(__a ) for element in line.split(',' )] for line in input_file.readlines() ] _a : List[str] = len(__a ) _a : Union[str, Any] = len(matrix[0] ) _a : str = [[-1 for _ in range(__a )] for _ in range(__a )] for i in range(__a ): _a : Optional[Any] = matrix[i][0] for j in range(1 , __a ): for i in range(__a ): _a : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __a ): _a : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _a : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
1
"""simple docstring""" from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = text, pattern snake_case = len(__UpperCamelCase ), len(__UpperCamelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def snake_case ( self , lowerCAmelCase ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case ( self ): """simple docstring""" snake_case = [] for i in range(self.textLen - self.patLen + 1 ): snake_case = self.mismatch_in_text(__UpperCamelCase ) if mismatch_index == -1: positions.append(__UpperCamelCase ) else: snake_case = self.match_in_pattern(self.text[mismatch_index] ) snake_case = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE__ = "ABAABA" SCREAMING_SNAKE_CASE__ = "AB" SCREAMING_SNAKE_CASE__ = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE__ = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
150
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 0.9 ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Optional[int] = size if size is not None else {'shortest_edge': 224} lowercase_ : Union[str, Any] = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : Optional[int] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : List[str] = do_resize lowercase_ : List[Any] = size lowercase_ : int = crop_pct lowercase_ : Dict = resample lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : List[Any] = do_rescale lowercase_ : Tuple = rescale_factor lowercase_ : Tuple = do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Any = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase_ : Union[str, Any] = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase_ : Tuple = int(size['height'] / crop_pct ) else: lowercase_ : Dict = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) lowercase_ : int = get_resize_output_image_size(__UpperCamelCase ,size=__UpperCamelCase ,default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: lowercase_ : Optional[int] = get_resize_output_image_size(__UpperCamelCase ,size=size['shortest_edge'] ,default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: lowercase_ : Dict = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) return resize(__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : List[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCamelCase ,size=(size['height'], size['width']) ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' return rescale(__UpperCamelCase ,scale=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct lowercase_ : List[str] = resample if resample is not None else self.resample lowercase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : List[str] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: lowercase_ : str = [self.resize(image=__UpperCamelCase ,size=__UpperCamelCase ,crop_pct=__UpperCamelCase ,resample=__UpperCamelCase ) for image in images] if do_center_crop: lowercase_ : str = [self.center_crop(image=__UpperCamelCase ,size=__UpperCamelCase ) for image in images] if do_rescale: lowercase_ : Any = [self.rescale(image=__UpperCamelCase ,scale=__UpperCamelCase ) for image in images] if do_normalize: lowercase_ : int = [self.normalize(image=__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ) for image in images] lowercase_ : Dict = [to_channel_dimension_format(__UpperCamelCase ,__UpperCamelCase ) for image in images] lowercase_ : Any = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase )
213
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowerCAmelCase ( ) -> Union[str, Any]: __A : Optional[int] = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__snake_case , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__snake_case , default=5 ) parser.add_argument('--batch_size' , type=__snake_case , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__snake_case , default=1 ) parser.add_argument('--freeze' , type=__snake_case , default=__snake_case ) parser.add_argument('--learning_rate' , type=__snake_case , default=5e-4 ) parser.add_argument('--seed' , type=__snake_case , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__snake_case , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__snake_case , default=10 ) parser.add_argument('--weight_decay' , type=__snake_case , default=0.01 ) parser.add_argument('--output_dir' , type=__snake_case , default='./results' ) return parser.parse_args() lowercase__ : Tuple = load('''accuracy''') def _lowerCAmelCase ( __snake_case : int ) -> Any: __A ,__A : List[Any] = eval_pred __A : Dict = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : int = trainer def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' if control.should_evaluate: __A : str = deepcopy(_UpperCAmelCase) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train') return control_copy def _lowerCAmelCase ( ) -> str: __A : List[Any] = get_args() set_seed(args.seed ) __A : Union[str, Any] = load_dataset('codeparrot/codecomplex' , split='train' ) __A : Optional[int] = dataset.train_test_split(test_size=0.2 ) __A : Union[str, Any] = train_test['test'].train_test_split(test_size=0.5 ) __A : Optional[Any] = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) __A : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) __A : Tuple = tokenizer.eos_token __A : Dict = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __A : Optional[int] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __A : Optional[Any] = False __A : Dict = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__snake_case : Optional[Any] ): __A : Optional[Any] = tokenizer(example['src'] , truncation=__snake_case , max_length=10_24 ) __A : str = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __A : str = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation['train'].column_names , ) __A : str = DataCollatorWithPadding(tokenizer=__snake_case ) __A : str = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) __A : Tuple = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print('Training...' ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
190
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ : List[Any] = '''bert-base-cased''' lowercase__ : Union[str, Any] = '''google/pegasus-xsum''' lowercase__ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase__ : Optional[Any] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase__ : str = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[str] = '''sshleifer/bart-tiny-random''' lowercase__ : List[str] = '''sshleifer/tiny-mbart''' lowercase__ : str = '''sshleifer/tiny-marian-en-de''' def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> str: __A : Any = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , f'{split}.source' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , f'{split}.target' ) , __snake_case ) return tmp_dir class SCREAMING_SNAKE_CASE (a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : int = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : str = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Dict = 4 __A : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A ,__A : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __A : List[str] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , ) __A : Any = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A : Optional[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : Tuple = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : Any = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Optional[int] = 4 __A : Any = LegacySeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=_UpperCAmelCase , ) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __A : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __A : List[str] = tmp_dir.joinpath('train.source').open().readlines() __A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_UpperCAmelCase , _UpperCAmelCase , 128 , _UpperCAmelCase) __A : Dict = {x.name for x in tmp_dir.iterdir()} __A : Dict = {x.name for x in save_dir.iterdir()} __A : str = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_UpperCAmelCase) < len(_UpperCAmelCase) assert len(_UpperCAmelCase) == 1 assert len(packed_examples[0]) == sum(len(_UpperCAmelCase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A ,__A ,__A : List[Any] = self._get_dataset(max_len=64) __A : Union[str, Any] = 64 __A : List[Any] = ds.make_dynamic_sampler(_UpperCAmelCase , required_batch_size_multiple=_UpperCAmelCase) __A : Union[str, Any] = [len(_UpperCAmelCase) for x in batch_sampler] assert len(set(_UpperCAmelCase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_UpperCAmelCase) == len(_UpperCAmelCase) # no dropped or added examples __A : List[Any] = DataLoader(_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Optional[int] = [] __A : Tuple = [] for batch in data_loader: __A : Optional[int] = batch['input_ids'].shape __A : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A : Tuple = np.product(batch['input_ids'].shape) num_src_per_batch.append(_UpperCAmelCase) if num_src_tokens > (max_tokens * 1.1): failures.append(_UpperCAmelCase) assert num_src_per_batch[0] == max(_UpperCAmelCase) if failures: raise AssertionError(F'too many tokens in {len(_UpperCAmelCase)} batches') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Optional[int] = self._get_dataset(max_len=512) __A : Optional[int] = 2 __A : Dict = ds.make_sortish_sampler(_UpperCAmelCase , shuffle=_UpperCAmelCase) __A : Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCAmelCase) __A : str = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids"): return [batch[k].eq(_UpperCAmelCase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_UpperCAmelCase , k='labels')) < sum(count_pad_tokens(_UpperCAmelCase , k='labels')) assert sum(count_pad_tokens(_UpperCAmelCase)) < sum(count_pad_tokens(_UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=1000 , _UpperCAmelCase=128): '''simple docstring''' if os.getenv('USE_REAL_DATA' , _UpperCAmelCase): __A : Dict = 'examples/seq2seq/wmt_en_ro' __A : Any = max_len * 2 * 64 if not Path(_UpperCAmelCase).joinpath('train.len').exists(): save_len_file(_UpperCAmelCase , _UpperCAmelCase) else: __A : int = 'examples/seq2seq/test_data/wmt_en_ro' __A : Any = max_len * 4 save_len_file(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , n_obs=_UpperCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Tuple = self._get_dataset() __A : Optional[int] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCAmelCase)) __A : List[str] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCAmelCase)) assert idsa.intersection(_UpperCAmelCase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) if tok_name == MBART_TINY: __A : Dict = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A : Any = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_UpperCAmelCase) == 1 if tok_name == BART_TINY else len(_UpperCAmelCase) == 0
190
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class snake_case__ (unittest.TestCase ): """simple docstring""" __lowerCAmelCase :int = MODEL_FOR_CAUSAL_LM_MAPPING __lowerCAmelCase :Dict = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output a__ : Union[str, Any] = text_generator("""This is a test""" , do_sample=__lowercase ) self.assertEqual( __lowercase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) a__ : Dict = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __lowercase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) a__ : List[str] = text_generator("""This is a test""" , do_sample=__lowercase , num_return_sequences=2 , return_tensors=__lowercase ) self.assertEqual( __lowercase , [ {"""generated_token_ids""": ANY(__lowercase )}, {"""generated_token_ids""": ANY(__lowercase )}, ] , ) a__ : List[Any] = text_generator.model.config.eos_token_id a__ : List[str] = """<pad>""" a__ : int = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowercase , ) self.assertEqual( __lowercase , [ [ {"""generated_token_ids""": ANY(__lowercase )}, {"""generated_token_ids""": ANY(__lowercase )}, ], [ {"""generated_token_ids""": ANY(__lowercase )}, {"""generated_token_ids""": ANY(__lowercase )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[int] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output a__ : Dict = text_generator("""This is a test""" , do_sample=__lowercase ) self.assertEqual( __lowercase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) a__ : int = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__lowercase ) self.assertEqual( __lowercase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" a__ : Any = TextGenerationPipeline(model=__lowercase , tokenizer=__lowercase ) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[Any] = """Hello I believe in""" a__ : Optional[Any] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) a__ : Tuple = text_generator(__lowercase ) self.assertEqual( __lowercase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) a__ : Any = text_generator(__lowercase , stop_sequence=""" fe""" ) self.assertEqual(__lowercase , [{"""generated_text""": """Hello I believe in fe"""}] ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : Optional[int] = text_generator.model a__ : List[str] = text_generator.tokenizer a__ : Optional[Any] = text_generator("""This is a test""" ) self.assertEqual(__lowercase , [{"""generated_text""": ANY(__lowercase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) a__ : Tuple = text_generator("""This is a test""" , return_full_text=__lowercase ) self.assertEqual(__lowercase , [{"""generated_text""": ANY(__lowercase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) a__ : List[str] = pipeline(task="""text-generation""" , model=__lowercase , tokenizer=__lowercase , return_full_text=__lowercase ) a__ : Tuple = text_generator("""This is a test""" ) self.assertEqual(__lowercase , [{"""generated_text""": ANY(__lowercase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) a__ : str = text_generator("""This is a test""" , return_full_text=__lowercase ) self.assertEqual(__lowercase , [{"""generated_text""": ANY(__lowercase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) a__ : Union[str, Any] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__lowercase ) self.assertEqual( __lowercase , [ [{"""generated_text""": ANY(__lowercase )}, {"""generated_text""": ANY(__lowercase )}], [{"""generated_text""": ANY(__lowercase )}, {"""generated_text""": ANY(__lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: a__ : List[str] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__lowercase ) self.assertEqual( __lowercase , [ [{"""generated_text""": ANY(__lowercase )}, {"""generated_text""": ANY(__lowercase )}], [{"""generated_text""": ANY(__lowercase )}, {"""generated_text""": ANY(__lowercase )}], ] , ) with self.assertRaises(__lowercase ): a__ : Any = text_generator("""test""" , return_full_text=__lowercase , return_text=__lowercase ) with self.assertRaises(__lowercase ): a__ : str = text_generator("""test""" , return_full_text=__lowercase , return_tensors=__lowercase ) with self.assertRaises(__lowercase ): a__ : Any = text_generator("""test""" , return_text=__lowercase , return_tensors=__lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): a__ : List[Any] = text_generator("""""" ) self.assertEqual(__lowercase , [{"""generated_text""": ANY(__lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): a__ : Tuple = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. a__ : Tuple = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0 ) a__ : Any = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(__lowercase ): text_generator( """This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" import torch # Classic `model_kwargs` a__ : Optional[Any] = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) a__ : Optional[int] = pipe("""This is a test""" ) self.assertEqual( __lowercase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) a__ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) a__ : Dict = pipe("""This is a test""" ) self.assertEqual( __lowercase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 a__ : Tuple = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) a__ : int = pipe("""This is a test""" ) self.assertEqual( __lowercase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" import torch a__ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" import torch a__ : List[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__lowercase , top_p=0.5 ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = """Hello world""" a__ : str = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": a__ : Dict = logging.get_logger("""transformers.generation.tf_utils""" ) else: a__ : Dict = logging.get_logger("""transformers.generation.utils""" ) a__ : Optional[Any] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__lowercase ) as cl: a__ : Any = text_generator(__lowercase , max_length=1_0 , max_new_tokens=1 ) self.assertIn(__lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__lowercase ) as cl: a__ : int = text_generator(__lowercase , max_new_tokens=1 ) self.assertNotIn(__lowercase , cl.out ) with CaptureLogger(__lowercase ) as cl: a__ : List[str] = text_generator(__lowercase , max_length=1_0 ) self.assertNotIn(__lowercase , cl.out )
170
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True _lowercase : str =[num for num in range(3, 10_0001, 2) if not is_prime(num)] def lowerCAmelCase_ ( _lowercase : int) -> list[int]: """simple docstring""" if not isinstance(_lowercase , _lowercase): raise ValueError("""n must be an integer""") if n <= 0: raise ValueError("""n must be >= 0""") a__ : int = [] for num in range(len(_lowercase)): a__ : Any = 0 while 2 * i * i <= odd_composites[num]: a__ : Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(_lowercase): break i += 1 else: list_nums.append(odd_composites[num]) if len(_lowercase) == n: return list_nums return [] def lowerCAmelCase_ ( ) -> int: """simple docstring""" return compute_nums(1)[0] if __name__ == "__main__": print(f'{solution() = }')
170
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _A ( ): """simple docstring""" __lowercase =9 __lowercase =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowercase =kruskal(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCAmelCase ) == sorted(_lowerCAmelCase )
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =SwinConfig(image_size=192 ) if "base" in model_name: __lowercase =6 __lowercase =128 __lowercase =(2, 2, 18, 2) __lowercase =(4, 8, 16, 32) elif "large" in model_name: __lowercase =12 __lowercase =192 __lowercase =(2, 2, 18, 2) __lowercase =(6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) __lowercase =window_size __lowercase =embed_dim __lowercase =depths __lowercase =num_heads return config def _A ( _lowerCAmelCase ): """simple docstring""" if "encoder.mask_token" in name: __lowercase =name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: __lowercase =name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: __lowercase =name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: __lowercase =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __lowercase =name.replace('attn' , 'attention.self' ) if "norm1" in name: __lowercase =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __lowercase =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __lowercase =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __lowercase =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __lowercase ='layernorm.weight' if name == "encoder.norm.bias": __lowercase ='layernorm.bias' if "decoder" in name: pass else: __lowercase ='swin.' + name return name def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): __lowercase =orig_state_dict.pop(_lowerCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: __lowercase =key.split('.' ) __lowercase =int(key_split[2] ) __lowercase =int(key_split[4] ) __lowercase =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase =val[:dim, :] __lowercase =val[ dim : dim * 2, : ] __lowercase =val[-dim:, :] else: __lowercase =val[ :dim ] __lowercase =val[ dim : dim * 2 ] __lowercase =val[ -dim: ] else: __lowercase =val return orig_state_dict def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =torch.load(_lowerCAmelCase , map_location='cpu' )['model'] __lowercase =get_swin_config(_lowerCAmelCase ) __lowercase =SwinForMaskedImageModeling(_lowerCAmelCase ) model.eval() __lowercase =convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =ViTImageProcessor(size={'height': 192, 'width': 192} ) __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) __lowercase =image_processor(images=_lowerCAmelCase , return_tensors='pt' ) with torch.no_grad(): __lowercase =model(**_lowerCAmelCase ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
48
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
268
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCamelCase_ : def __init__( self : str ) -> Dict: UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : int = "" UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 256 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = 0 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: UpperCAmelCase_ : Dict = cva.imread(lowerCAmelCase_ , 0 ) UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.img ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCAmelCase_ : List[Any] = np.sum(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[Any] = x[i] / self.k self.sk += prk UpperCAmelCase_ : Optional[Any] = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase_ : Any = int(last % last ) UpperCAmelCase_ : List[str] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase_ : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase_ : Any = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase_ : Tuple = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase_ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowerCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
268
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="attention" ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = UpperCamelCase = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> Tuple: '''simple docstring''' if split_mlp_wi: UpperCamelCase = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCamelCase = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCamelCase = (wi_a, wi_a) else: UpperCamelCase = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCamelCase = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def lowercase( UpperCamelCase_ , *, UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ) -> List[Any]: '''simple docstring''' UpperCamelCase = traverse_util.flatten_dict(variables["""target"""] ) UpperCamelCase = {"""/""".join(UpperCamelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , UpperCamelCase_ ) UpperCamelCase = collections.OrderedDict() # Shared embeddings. UpperCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCamelCase_ ): # Block i, layer 0 (Self Attention). UpperCamelCase = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , """encoder""" , """pre_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , """encoder""" , """attention""" ) UpperCamelCase = layer_norm UpperCamelCase = k.T UpperCamelCase = o.T UpperCamelCase = q.T UpperCamelCase = v.T # Block i, layer 1 (MLP). UpperCamelCase = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , """encoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , """encoder""" , UpperCamelCase_ ) UpperCamelCase = layer_norm if split_mlp_wi: UpperCamelCase = wi[0].T UpperCamelCase = wi[1].T else: UpperCamelCase = wi.T UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase = tax_relpos_bias_lookup( UpperCamelCase_ , UpperCamelCase_ , """encoder""" ).T UpperCamelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: UpperCamelCase = tax_relpos_bias_lookup( UpperCamelCase_ , 0 , """encoder""" ).T UpperCamelCase = tax_relpos_bias_lookup( UpperCamelCase_ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(UpperCamelCase_ ): # Block i, layer 0 (Self Attention). UpperCamelCase = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" , """self_attention""" ) UpperCamelCase = layer_norm UpperCamelCase = k.T UpperCamelCase = o.T UpperCamelCase = q.T UpperCamelCase = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" , """encoder_decoder_attention""" ) UpperCamelCase = layer_norm UpperCamelCase = k.T UpperCamelCase = o.T UpperCamelCase = q.T UpperCamelCase = v.T # Block i, layer 2 (MLP). UpperCamelCase = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" , UpperCamelCase_ ) UpperCamelCase = layer_norm if split_mlp_wi: UpperCamelCase = wi[0].T UpperCamelCase = wi[1].T else: UpperCamelCase = wi.T UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase = tax_relpos_bias_lookup(UpperCamelCase_ , UpperCamelCase_ , """decoder""" ).T UpperCamelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase = old["""decoder/logits_dense/kernel"""].T return new def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCamelCase = state_dict["""shared.weight"""] return state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = checkpoints.load_tax_checkpoint(UpperCamelCase_ ) UpperCamelCase = convert_tax_to_pytorch( UpperCamelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCamelCase_ , scalable_attention=UpperCamelCase_ ) UpperCamelCase = make_state_dict(UpperCamelCase_ , UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = False , ) -> List[str]: '''simple docstring''' UpperCamelCase = MTaConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase = UMTaEncoderModel(UpperCamelCase_ ) else: UpperCamelCase = UMTaForConditionalGeneration(UpperCamelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase_ ) print("""Done""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
368
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # TODO: upload to AWS _SCREAMING_SNAKE_CASE = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """retribert""" def __init__( self : Optional[Any] , lowerCamelCase_ : Any=3_0522 , lowerCamelCase_ : List[Any]=768 , lowerCamelCase_ : List[str]=8 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : str=3072 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=512 , lowerCamelCase_ : str=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=1E-12 , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=128 , lowerCamelCase_ : Optional[Any]=0 , **lowerCamelCase_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = share_encoders UpperCamelCase = projection_dim
165
0
'''simple docstring''' from __future__ import annotations def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> list[str]: if nth_term == "": return [""] __lowerCamelCase : Any = int(__UpperCamelCase ) __lowerCamelCase : Dict = int(__UpperCamelCase ) __lowerCamelCase : Any = [] for temp in range(int(__UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 ,int(__UpperCamelCase ) )}' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = int(input('Enter the last number (nth term) of the P-Series')) _UpperCamelCase = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
208
'''simple docstring''' import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE__ = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE__ = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' SCREAMING_SNAKE_CASE__ = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} UpperCamelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] UpperCamelCase = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
321
0
'''simple docstring''' def _a ( _lowercase : list[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [] if len(_lowercase ) == 1: return [nums.copy()] for _ in range(len(_lowercase ) ): __UpperCAmelCase : Any = nums.pop(0 ) __UpperCAmelCase : int = permute(_lowercase ) for perm in permutations: perm.append(_lowercase ) result.extend(_lowercase ) nums.append(_lowercase ) return result def _a ( _lowercase : Dict ): '''simple docstring''' def backtrack(_lowercase : Union[str, Any] ): if start == len(_lowercase ) - 1: output.append(nums[:] ) else: for i in range(_lowercase , len(_lowercase ) ): __UpperCAmelCase : int = nums[i], nums[start] backtrack(start + 1 ) __UpperCAmelCase : int = nums[i], nums[start] # backtrack __UpperCAmelCase : List[Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCAmelCase :Union[str, Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
369
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionXLImgaImgPipeline SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : Any ) -> Any: torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=snake_case , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __UpperCAmelCase : int = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __UpperCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) __UpperCAmelCase : Tuple = CLIPTextModel(snake_case ) __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=snake_case ) __UpperCAmelCase : Optional[Any] = CLIPTextModelWithProjection(snake_case ) __UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=snake_case ) __UpperCAmelCase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase__ ( self : Dict , snake_case : Optional[int] , snake_case : List[str]=0 ) -> List[str]: __UpperCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) __UpperCAmelCase : Optional[Any] = image / 2 + 0.5 if str(snake_case ).startswith('''mps''' ): __UpperCAmelCase : List[str] = torch.manual_seed(snake_case ) else: __UpperCAmelCase : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) __UpperCAmelCase : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[Any] = self.get_dummy_components() __UpperCAmelCase : Any = StableDiffusionXLImgaImgPipeline(**snake_case ) __UpperCAmelCase : Union[str, Any] = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : Optional[int] = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : int = sd_pipe(**snake_case ).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Any = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Any ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: pass def lowerCamelCase__ ( self : Optional[int] ) -> int: __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : List[Any] = StableDiffusionXLImgaImgPipeline(**snake_case ) __UpperCAmelCase : Tuple = sd_pipe.to(snake_case ) __UpperCAmelCase : Tuple = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) # forward without prompt embeds __UpperCAmelCase : Tuple = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : Optional[Any] = 3 * ['''this is a negative prompt'''] __UpperCAmelCase : Optional[int] = negative_prompt __UpperCAmelCase : Tuple = 3 * [inputs['''prompt''']] __UpperCAmelCase : Optional[Any] = sd_pipe(**snake_case ) __UpperCAmelCase : int = output.images[0, -3:, -3:, -1] # forward with prompt embeds __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : Tuple = 3 * ['''this is a negative prompt'''] __UpperCAmelCase : str = 3 * [inputs.pop('''prompt''' )] ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = sd_pipe.encode_prompt(snake_case , negative_prompt=snake_case ) __UpperCAmelCase : Dict = sd_pipe( **snake_case , prompt_embeds=snake_case , negative_prompt_embeds=snake_case , pooled_prompt_embeds=snake_case , negative_pooled_prompt_embeds=snake_case , ) __UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int , snake_case : Any , snake_case : str="cpu" , snake_case : Tuple=torch.floataa , snake_case : List[str]=0 ) -> Tuple: __UpperCAmelCase : Optional[Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) __UpperCAmelCase : int = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) __UpperCAmelCase : str = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) __UpperCAmelCase : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase : str = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : str = self.get_inputs(snake_case ) __UpperCAmelCase : Dict = pipe(**snake_case ).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Tuple = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
240
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : str ={ """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class UpperCAmelCase ( lowercase_ ): __lowercase = """nllb-moe""" __lowercase = ["""past_key_values"""] __lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Optional[Any] , lowercase_ :Union[str, Any]=12_81_12 , lowercase_ :str=10_24 , lowercase_ :Union[str, Any]=12 , lowercase_ :Union[str, Any]=40_96 , lowercase_ :Union[str, Any]=16 , lowercase_ :Tuple=12 , lowercase_ :Union[str, Any]=40_96 , lowercase_ :List[str]=16 , lowercase_ :int=0.0_5 , lowercase_ :Any=0.0_5 , lowercase_ :Optional[Any]=True , lowercase_ :Tuple=True , lowercase_ :Optional[int]="relu" , lowercase_ :Optional[int]=10_24 , lowercase_ :str=0.1 , lowercase_ :Optional[Any]=0.1 , lowercase_ :List[Any]=0.0 , lowercase_ :Dict=0.0_2 , lowercase_ :Union[str, Any]=2 , lowercase_ :Optional[Any]=True , lowercase_ :int=False , lowercase_ :List[Any]="float32" , lowercase_ :List[Any]=False , lowercase_ :Optional[Any]=1_28 , lowercase_ :List[Any]=64 , lowercase_ :Dict=4 , lowercase_ :int=4 , lowercase_ :Dict=0.0_0_1 , lowercase_ :List[Any]=0.0_0_1 , lowercase_ :List[Any]="all" , lowercase_ :Optional[int]=False , lowercase_ :List[str]=False , lowercase_ :List[str]=1.0 , lowercase_ :List[Any]=0.2 , lowercase_ :List[Any]=1 , lowercase_ :List[str]=0 , lowercase_ :str=2 , lowercase_ :Tuple=False , **lowercase_ :Optional[int] , )-> int: A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True A__ = router_z_loss_coef A__ = router_aux_loss_coef A__ = decoder_sparse_step A__ = encoder_sparse_step A__ = num_experts A__ = expert_capacity A__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) A__ = router_dtype A__ = router_ignore_padding_tokens A__ = batch_prioritized_routing A__ = second_expert_policy A__ = normalize_router_prob_before_dropping A__ = moe_eval_capacity_token_fraction A__ = moe_token_dropout A__ = output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
237
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = "cpu" , lowerCAmelCase__ : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase_ : Any = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase_ : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Dict = src_path torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
224
0
from manim import * class UpperCamelCase__ ( __lowercase ): def lowerCAmelCase (self : List[str] ): __a : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) __a : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a : Optional[int] = Rectangle(height=0.25 , width=0.25 ) __a : Tuple = [mem.copy() for i in range(6 )] __a : Dict = [mem.copy() for i in range(6 )] __a : str = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Optional[int] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Dict = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) __a : str = Text('''CPU''' , font_size=2_4 ) __a : Union[str, Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) __a : List[Any] = [mem.copy() for i in range(4 )] __a : List[Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : List[Any] = Text('''GPU''' , font_size=2_4 ) __a : Union[str, Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) __a : str = [mem.copy() for i in range(6 )] __a : Optional[Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Tuple = Text('''Model''' , font_size=2_4 ) __a : Dict = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) __a : List[str] = [] __a : Any = [] for i, rect in enumerate(snake_case_ ): __a : Dict = fill.copy().set_fill(snake_case_ , opacity=0.8 ) target.move_to(snake_case_ ) model_arr.append(snake_case_ ) __a : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ ) __a : List[str] = [meta_mem.copy() for i in range(6 )] __a : Union[str, Any] = [meta_mem.copy() for i in range(6 )] __a : Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Tuple = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) __a : int = Text('''Disk''' , font_size=2_4 ) __a : Any = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) disk.move_to([-4, -1.25, 0] ) self.add(snake_case_ , snake_case_ ) __a : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) __a : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=1_8 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case_ ) __a : Optional[int] = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ ) ) __a : Any = Square(0.3 ) input.set_fill(snake_case_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , snake_case_ , buff=0.5 ) self.play(Write(snake_case_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=snake_case_ , buff=0.02 ) self.play(MoveToTarget(snake_case_ ) ) self.play(FadeOut(snake_case_ ) ) __a : Dict = Arrow(start=snake_case_ , end=snake_case_ , color=snake_case_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , snake_case_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __a : Optional[Any] = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) ) __a : Any = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(snake_case_ ) , Circumscribe(model_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_cpu_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __a : List[Any] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , snake_case_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __a : List[Any] = AnimationGroup( FadeOut(snake_case_ , run_time=0.5 ) , MoveToTarget(snake_case_ , run_time=0.5 ) , FadeIn(snake_case_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(snake_case_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __a : int = 0.7 self.play( Circumscribe(model_arr[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_arr[i + 1] , color=snake_case_ , **snake_case_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(cpu_left_col_base[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __a : Any = a_c __a : Dict = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(snake_case_ ) , FadeOut(snake_case_ , run_time=0.5 ) , ) __a : List[str] = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) , MoveToTarget(snake_case_ ) ) self.wait()
353
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.read() __a , __a : Optional[int] = REPLACE_PATTERNS[pattern] __a : List[Any] = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : Any = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[int] = '''🤗 Transformers currently provides the following architectures''' __a : int = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.readlines() # Find the start of the list. __a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : Optional[int] = f.read() __a : str = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=False ): __a : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : Union[str, Any] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : List[str] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Tuple = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): __a : Dict = get_version() __a : str = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Any = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCAmelCase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , *_a , _a=None , _a=None , **_a ): super().__init__(*_snake_case , **_snake_case ) __a = eval_examples __a = post_process_function def __UpperCAmelCase ( self , _a = None , _a=None , _a = None , _a = "eval" , **_a , ): __a = gen_kwargs.copy() __a = ( gen_kwargs['max_length'] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) __a = ( gen_kwargs['num_beams'] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) __a = gen_kwargs __a = self.eval_dataset if eval_dataset is None else eval_dataset __a = self.get_eval_dataloader(_snake_case ) __a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( _snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_snake_case , metric_key_prefix=_snake_case , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _snake_case , _snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __a = self.post_process_function(_snake_case , _snake_case , _snake_case ) __a = self.compute_metrics(_snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __a = metrics.pop(_snake_case ) metrics.update(output.metrics ) else: __a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __a = self.callback_handler.on_evaluate(self.args , self.state , self.control , _snake_case ) return metrics def __UpperCAmelCase ( self , _a , _a , _a=None , _a = "test" , **_a ): __a = gen_kwargs.copy() __a = self.get_test_dataloader(_snake_case ) # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( _snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_snake_case , metric_key_prefix=_snake_case , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _snake_case , _snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __a = self.post_process_function(_snake_case , _snake_case , _snake_case , '''predict''' ) __a = self.compute_metrics(_snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __a = metrics.pop(_snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_snake_case )
45
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ :Optional[Any] = logging.getLogger(__name__) def lowercase_ (A : List[Any] , A : List[Any] ): # save results if os.path.exists(A ): if os.path.exists(os.path.join(A , 'config.json' ) ) and os.path.isfile( os.path.join(A , 'config.json' ) ): os.remove(os.path.join(A , 'config.json' ) ) if os.path.exists(os.path.join(A , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(A , 'pytorch_model.bin' ) ): os.remove(os.path.join(A , 'pytorch_model.bin' ) ) else: os.makedirs(A ) model.save_pretrained(A ) def lowercase_ (A : Any , A : Optional[Any]=False ): snake_case__ : str = 2 if unlogit: snake_case__ : Dict = torch.pow(A , A ) snake_case__ : Any = p * torch.log(A ) snake_case__ : Tuple = 0 return -plogp.sum(dim=-1 ) def lowercase_ (A : List[str] ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(A ) ) ) ) for row in range(len(A ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowercase_ (A : Tuple , A : Optional[Any] , A : str , A : int=True , A : Optional[int]=True , A : Any=None , A : int=False ): snake_case__ , snake_case__ : Optional[Any] = model.config.num_hidden_layers, model.config.num_attention_heads snake_case__ : int = torch.zeros(A , A ).to(args.device ) snake_case__ : Any = torch.zeros(A , A ).to(args.device ) if head_mask is None: snake_case__ : Dict = torch.ones(A , A ).to(args.device ) head_mask.requires_grad_(requires_grad=A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: snake_case__ : Optional[int] = None snake_case__ : List[Any] = 0.0 snake_case__ : str = 0.0 for step, inputs in enumerate(tqdm(A , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): snake_case__ : Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) ((snake_case__) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) snake_case__ : Union[str, Any] = model(A , labels=A , head_mask=A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) snake_case__ , snake_case__ , snake_case__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A ): snake_case__ : Optional[Any] = entropy(attn.detach() , A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: snake_case__ : Union[str, Any] = 2 snake_case__ : List[Any] = torch.pow(torch.pow(A , A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: snake_case__ : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(A ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(A ) logger.info('Head ranked by importance scores' ) snake_case__ : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) snake_case__ : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) snake_case__ : str = head_ranks.view_as(A ) print_ad_tensor(A ) return attn_entropy, head_importance, total_loss def lowercase_ (A : Optional[int] , A : Dict , A : Optional[int] ): snake_case__ , snake_case__ , snake_case__ : Any = compute_heads_importance(A , A , A , compute_entropy=A ) snake_case__ : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , A , original_score * args.masking_threshold ) snake_case__ : Optional[Any] = torch.ones_like(A ) snake_case__ : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) snake_case__ : Dict = original_score while current_score >= original_score * args.masking_threshold: snake_case__ : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads snake_case__ : List[Any] = float('Inf' ) snake_case__ : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(A ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads snake_case__ : int = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) snake_case__ : int = new_head_mask.view(-1 ) snake_case__ : int = 0.0 snake_case__ : Union[str, Any] = new_head_mask.view_as(A ) snake_case__ : List[str] = new_head_mask.clone().detach() print_ad_tensor(A ) # Compute metric and head importance again snake_case__ , snake_case__ , snake_case__ : Any = compute_heads_importance( A , A , A , compute_entropy=A , head_mask=A ) snake_case__ : Dict = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(A ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ (A : List[str] , A : Tuple , A : Optional[Any] , A : int ): snake_case__ : Any = datetime.now() snake_case__ , snake_case__ , snake_case__ : str = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A ) snake_case__ : Tuple = 1 / loss snake_case__ : Dict = datetime.now() - before_time snake_case__ : Union[str, Any] = sum(p.numel() for p in model.parameters() ) snake_case__ : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A ) ) } for k, v in heads_to_prune.items(): if isinstance(A , A ): snake_case__ : Any = [ v, ] assert sum(len(A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A ) snake_case__ : Dict = sum(p.numel() for p in model.parameters() ) snake_case__ : Tuple = datetime.now() snake_case__ , snake_case__ , snake_case__ : Dict = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A , actually_pruned=A , ) snake_case__ : Any = 1 / loss snake_case__ : int = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , A , A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , A , A ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(A , args.output_dir ) def lowercase_ (): snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=A , type=A , required=A , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=A , type=A , required=A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=A , type=A , required=A , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=A , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=A , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=A , type=A , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=A , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=A , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=A , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=A , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=A , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=A , help='Batch size.' ) parser.add_argument('--seed' , type=A , default=4_2 ) parser.add_argument('--local_rank' , type=A , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=A , default='' , help='Can be used for distant debugging.' ) snake_case__ : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: snake_case__ : List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) snake_case__ : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) snake_case__ : int = torch.device('cuda' , args.local_rank ) snake_case__ : List[str] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) snake_case__ : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: snake_case__ : List[str] = nn.parallel.DistributedDataParallel( A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A ) elif args.n_gpu > 1: snake_case__ : Optional[int] = nn.DataParallel(A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A ) torch.save(A , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , A ) # Prepare dataset snake_case__ : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) snake_case__ : List[str] = (torch.from_numpy(A ),) snake_case__ : int = TensorDataset(*A ) snake_case__ : Union[str, Any] = RandomSampler(A ) snake_case__ : Any = DataLoader(A , sampler=A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A , A , A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: snake_case__ : Dict = mask_heads(A , A , A ) prune_heads(A , A , A , A ) if __name__ == "__main__": main()
277
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 16 ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ = DatasetDict( { '''train''': dataset['''train'''].select(__a ), '''validation''': dataset['''train'''].select(__a ), '''test''': dataset['''validation'''], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''test'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ = [] # Download the dataset UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase_ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config['lr'] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(__a ) # New Code # # Create our folds: UpperCAmelCase_ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase_ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__a ): UpperCAmelCase_ = get_fold_dataloaders( __a , __a , __a , __a , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __a ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase_ = [] for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.logits UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__a , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase_ = torch.cat(__a , dim=0 ) UpperCAmelCase_ = torch.stack(__a , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase_ = metric.compute(predictions=__a , references=__a ) accelerator.print('''Average test metrics from all folds:''' , __a ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=__a , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__a , __a ) if __name__ == "__main__": main()
350
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __a = logging.getLogger() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class __a( _a ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : int = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'''run_glue_deebert.py''' ) with patch.object(_SCREAMING_SNAKE_CASE ,'''argv''' ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_SCREAMING_SNAKE_CASE ,0.6_66 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE )
235
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : List[str] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> int: '''simple docstring''' UpperCAmelCase : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[int] = np.random.RandomState(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs() UpperCAmelCase : Union[str, Any] = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) UpperCAmelCase : Union[str, Any] = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs() UpperCAmelCase : Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : List[Any] = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # warmup pass to apply optimizations UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs() ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs() UpperCAmelCase : Tuple = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : Optional[int] = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.get_dummy_inputs() UpperCAmelCase : Any = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : int = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() UpperCAmelCase : List[Any] = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : List[Any] = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : str = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : Dict = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = ort.SessionOptions() UpperCAmelCase : str = False return options def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default UpperCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = """A fantasy landscape, trending on artstation""" UpperCAmelCase : str = np.random.RandomState(0 ) UpperCAmelCase : str = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase : Any = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase : int = init_image.resize((768, 512) ) UpperCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = """A fantasy landscape, trending on artstation""" UpperCAmelCase : List[str] = np.random.RandomState(0 ) UpperCAmelCase : Any = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) UpperCAmelCase : List[str] = output.images UpperCAmelCase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
109
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *UpperCamelCase : str , UpperCamelCase : Optional[Union[Dict, Any]] = None , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=2 ): from .. import __version__ UpperCAmelCase : Tuple = take_from UpperCAmelCase : Optional[Any] = () if not isinstance(args[0] , UpperCamelCase ): UpperCAmelCase : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase ).base_version ) >= version.parse(UpperCamelCase ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) UpperCAmelCase : Optional[int] = None if isinstance(UpperCamelCase , UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase ),) UpperCAmelCase : List[str] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCamelCase , UpperCamelCase ): values += (getattr(UpperCamelCase , UpperCamelCase ),) UpperCAmelCase : List[Any] = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: UpperCAmelCase : int = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: UpperCAmelCase : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , UpperCamelCase , stacklevel=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) > 0: UpperCAmelCase : Optional[int] = inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase : Union[str, Any] = call_frame.filename UpperCAmelCase : List[Any] = call_frame.lineno UpperCAmelCase : List[str] = call_frame.function UpperCAmelCase , UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCamelCase ) == 0: return elif len(UpperCamelCase ) == 1: return values[0] return values
109
1
from __future__ import annotations def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __a , __a =array[indexa], array[indexa] def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if length > 1: __a =int(length / 2 ) for i in range(_snake_case , low + middle ): comp_and_swap(_snake_case , _snake_case , i + middle , _snake_case ) bitonic_merge(_snake_case , _snake_case , _snake_case , _snake_case ) bitonic_merge(_snake_case , low + middle , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if length > 1: __a =int(length / 2 ) bitonic_sort(_snake_case , _snake_case , _snake_case , 1 ) bitonic_sort(_snake_case , low + middle , _snake_case , 0 ) bitonic_merge(_snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": _lowerCAmelCase : Tuple = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : Optional[int] = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _lowerCamelCase : Optional[int] = False class lowercase ( unittest.TestCase): pass @nightly @require_torch_gpu class lowercase ( unittest.TestCase): def a_ ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Dict ): """simple docstring""" A_ : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Union[str, Any] = '''A painting of a squirrel eating a burger ''' A_ : str = torch.manual_seed(0 ) A_ : int = pipe( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCamelCase ) A_ : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : int = generator.manual_seed(0 ) A_ : Union[str, Any] = pipe( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def a_ ( self : Tuple ): """simple docstring""" A_ : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Optional[Any] = '''A painting of a squirrel eating a burger ''' A_ : List[Any] = torch.manual_seed(0 ) A_ : Any = pipe( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images A_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A_ : Any = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase): def a_ ( self : List[str] ): """simple docstring""" A_ : Tuple = tempfile.mkdtemp() # fmt: off A_ : List[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A_ : Tuple = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] A_ : Tuple = {'''unk_token''': '''<unk>'''} A_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) A_ : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } A_ : str = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def a_ ( self : Any , **_lowerCamelCase : Dict ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : Dict , **_lowerCamelCase : Optional[int] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : List[str] , **_lowerCamelCase : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : List[str] ): """simple docstring""" A_ : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A_ : Dict = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ): """simple docstring""" A_ : int = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[Any] = self.get_image_processor() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : List[str] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : Optional[int] = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : int = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : int = processor(text=_lowerCamelCase ) A_ : Any = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : Tuple = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : Optional[Any] = self.prepare_image_inputs() A_ : Dict = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : Any = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Tuple = self.prepare_image_inputs() A_ : Optional[int] = processor(images=_lowerCamelCase , visual_prompt=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : List[str] = processor.batch_decode(_lowerCamelCase ) A_ : str = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
167
1
'''simple docstring''' def __UpperCAmelCase ( a_: list[int] ): if not numbers: return 0 if not isinstance(a_, (list, tuple) ) or not all( isinstance(a_, a_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) _UpperCAmelCase : Any = numbers[0] for i in range(1, len(a_ ) ): # update the maximum and minimum subarray products _UpperCAmelCase : int = numbers[i] if number < 0: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = min_till_now, max_till_now _UpperCAmelCase : str = max(a_, max_till_now * number ) _UpperCAmelCase : List[str] = min(a_, min_till_now * number ) # update the maximum product found till now _UpperCAmelCase : int = max(a_, a_ ) return max_prod
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
import os def UpperCAmelCase_ ( __snake_case = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as input_file: _lowercase =[ [int(__snake_case ) for element in line.split(''',''' )] for line in input_file.readlines() ] _lowercase =len(__snake_case ) _lowercase =len(matrix[0] ) _lowercase =[[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): _lowercase =matrix[i][0] for j in range(1 , __snake_case ): for i in range(__snake_case ): _lowercase =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __snake_case ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: __magic_name__ : int = data __magic_name__ : Dict = previous __magic_name__ : str = next_node def __str__( self ) -> str: return F'{self.data}' def __magic_name__ ( self ) -> int: return self.data def __magic_name__ ( self ) -> Optional[int]: return self.next def __magic_name__ ( self ) -> Any: return self.previous class snake_case__ : def __init__( self , lowerCAmelCase__ ) -> int: __magic_name__ : Tuple = head def __iter__( self ) -> Union[str, Any]: return self def __magic_name__ ( self ) -> Dict: if not self.current: raise StopIteration else: __magic_name__ : Union[str, Any] = self.current.get_data() __magic_name__ : Any = self.current.get_next() return value class snake_case__ : def __init__( self ) -> Tuple: __magic_name__ : Tuple = None # First node in list __magic_name__ : List[Any] = None # Last node in list def __str__( self ) -> List[Any]: __magic_name__ : Any = self.head __magic_name__ : List[Any] = [] while current is not None: nodes.append(current.get_data() ) __magic_name__ : Optional[Any] = current.get_next() return " ".join(str(lowerCAmelCase__ ) for node in nodes ) def __contains__( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : int = self.head while current: if current.get_data() == value: return True __magic_name__ : int = current.get_next() return False def __iter__( self ) -> int: return LinkedListIterator(self.head ) def __magic_name__ ( self ) -> List[str]: if self.head: return self.head.get_data() return None def __magic_name__ ( self ) -> Tuple: if self.tail: return self.tail.get_data() return None def __magic_name__ ( self , lowerCAmelCase__ ) -> None: if self.head is None: __magic_name__ : Any = node __magic_name__ : Tuple = node else: self.insert_before_node(self.head , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: if self.head is None: self.set_head(lowerCAmelCase__ ) else: self.insert_after_node(self.tail , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[Any] = Node(lowerCAmelCase__ ) if self.head is None: self.set_head(lowerCAmelCase__ ) else: self.set_tail(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = node __magic_name__ : Tuple = node.previous if node.get_previous() is None: __magic_name__ : Any = node_to_insert else: __magic_name__ : List[str] = node_to_insert __magic_name__ : List[Any] = node_to_insert def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : int = node __magic_name__ : Union[str, Any] = node.next if node.get_next() is None: __magic_name__ : Tuple = node_to_insert else: __magic_name__ : int = node_to_insert __magic_name__ : Optional[int] = node_to_insert def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Any = 1 __magic_name__ : List[Any] = Node(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.head while node: if current_position == position: self.insert_before_node(lowerCAmelCase__ , lowerCAmelCase__ ) return current_position += 1 __magic_name__ : List[str] = node.next self.insert_after_node(self.tail , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Node: __magic_name__ : Optional[int] = self.head while node: if node.get_data() == item: return node __magic_name__ : List[str] = node.get_next() raise Exception("""Node not found""" ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: if (node := self.get_node(lowerCAmelCase__ )) is not None: if node == self.head: __magic_name__ : List[Any] = self.head.get_next() if node == self.tail: __magic_name__ : Dict = self.tail.get_previous() self.remove_node_pointers(lowerCAmelCase__ ) @staticmethod def __magic_name__ ( lowerCAmelCase__ ) -> None: if node.get_next(): __magic_name__ : Optional[Any] = node.previous if node.get_previous(): __magic_name__ : Dict = node.next __magic_name__ : Dict = None __magic_name__ : Optional[int] = None def __magic_name__ ( self ) -> List[str]: return self.head is None def UpperCamelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
138
__magic_name__: List[Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __magic_name__: Dict = [{"type": "code", "content": INSTALL_CONTENT}] __magic_name__: Optional[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
138
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A=None , __A=True , __A=None , **__A ) -> Tuple: lowerCAmelCase_ :int = parent lowerCAmelCase_ :Dict = config_class lowerCAmelCase_ :Union[str, Any] = has_text_modality lowerCAmelCase_ :Dict = kwargs lowerCAmelCase_ :Optional[Any] = common_properties def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Any = self.config_class(**self.inputs_dict ) lowerCAmelCase_ :Any = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__A , __A ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(__A ): try: setattr(__A , __A , __A ) self.parent.assertEqual( getattr(__A , __A ) , __A , msg=f"""`{name} value {idx} expected, but was {getattr(__A , __A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__A ): try: lowerCAmelCase_ :Dict = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__A , __A ) , __A , msg=f"""`{name} value {idx} expected, but was {getattr(__A , __A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = self.config_class(**self.inputs_dict ) lowerCAmelCase_ :Tuple = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __A ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :Optional[int] = os.path.join(__A , """config.json""" ) config_first.to_json_file(__A ) lowerCAmelCase_ :Optional[Any] = self.config_class.from_json_file(__A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__A ) lowerCAmelCase_ :List[Any] = self.config_class.from_pretrained(__A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[int] = self.config_class(**self.inputs_dict ) lowerCAmelCase_ :str = """test""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :List[str] = os.path.join(__A , __A ) config_first.save_pretrained(__A ) lowerCAmelCase_ :Tuple = self.config_class.from_pretrained(__A , subfolder=__A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Any = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCAmelCase_ :int = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowerCAmelCase ( self ) -> Any: if self.config_class.is_composition: return lowerCAmelCase_ :Dict = self.config_class() self.parent.assertIsNotNone(__A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :str = copy.deepcopy(__A ) lowerCAmelCase_ :str = self.config_class(**__A ) lowerCAmelCase_ :Union[str, Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(__A , __A ) != value: wrong_values.append((key, getattr(__A , __A ), value) ) if len(__A ) > 0: lowerCAmelCase_ :Optional[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def __lowerCAmelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
84
'''simple docstring''' a__ : Union[str, Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a__ : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a__ : Optional[Any] = True a__ : Optional[Any] = False def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCamelCase__ = chain(next_number(__A ) ) UpperCamelCase__ = number_chain while number < 10000000: UpperCamelCase__ = number_chain number *= 10 return number_chain def _UpperCamelCase ( __A = 10000000 ) -> int: '''simple docstring''' for i in range(1 , __A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__A ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
80
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=13 , _lowerCAmelCase : Union[str, Any]=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Union[str, Any]=4 , ): A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def A (self : str ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A (self : int ): A = self.prepare_config_and_inputs() A = config_and_inputs A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def A (self : Any ): A = FlaxRoFormerModelTester(self ) @slow def A (self : Dict ): for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_SCREAMING_SNAKE_CASE ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : List[Any] ): A = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) A = jnp.array([[0, 1, 2, 3, 4, 5]] ) A = model(_SCREAMING_SNAKE_CASE )[0] A = 5_0000 A = (1, 6, vocab_size) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) A = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
360
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _a = datasets.utils.logging.get_logger(__name__) @dataclass class A_ ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None _lowercase : str = "utf-8" _lowercase : Optional[str] = None _lowercase : Optional[str] = None _lowercase : bool = True # deprecated _lowercase : Optional[int] = None # deprecated _lowercase : int = 1_0 << 2_0 # 10MB _lowercase : Optional[bool] = None class A_ ( datasets.ArrowBasedBuilder ): _lowercase : Union[str, Any] = JsonConfig def UpperCAmelCase ( self : str ) -> str: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) __lowerCAmelCase: Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> str: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __lowerCAmelCase: str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase , (str, list, tuple) ): __lowerCAmelCase: List[Any] = data_files if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Dict = [files] __lowerCAmelCase: str = [dl_manager.iter_files(UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __lowerCAmelCase: int = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Dict = [files] __lowerCAmelCase: Optional[int] = [dl_manager.iter_files(UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __lowerCAmelCase: Optional[Any] = self.config.features.arrow_schema.field(UpperCAmelCase ).type __lowerCAmelCase: int = pa_table.append_column(UpperCAmelCase , pa.array([None] * len(UpperCAmelCase ) , type=UpperCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase: Union[str, Any] = table_cast(UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Optional[Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCAmelCase: Any = json.load(UpperCAmelCase ) # We keep only the field we are interested in __lowerCAmelCase: List[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase , (list, tuple) ): __lowerCAmelCase: Any = set().union(*[row.keys() for row in dataset] ) __lowerCAmelCase: int = {col: [row.get(UpperCAmelCase ) for row in dataset] for col in keys} else: __lowerCAmelCase: List[Any] = dataset __lowerCAmelCase: Optional[Any] = pa.Table.from_pydict(UpperCAmelCase ) yield file_idx, self._cast_table(UpperCAmelCase ) # If the file has one json object per line else: with open(UpperCAmelCase , 'rb' ) as f: __lowerCAmelCase: Any = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __lowerCAmelCase: Any = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) __lowerCAmelCase: str = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __lowerCAmelCase: Optional[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __lowerCAmelCase: Tuple = batch.decode(self.config.encoding , errors=UpperCAmelCase ).encode('utf-8' ) try: while True: try: __lowerCAmelCase: Any = paj.read_json( io.BytesIO(UpperCAmelCase ) , read_options=paj.ReadOptions(block_size=UpperCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(UpperCAmelCase ) or block_size > len(UpperCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(UpperCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCAmelCase: Optional[int] = json.load(UpperCAmelCase ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase , UpperCAmelCase ): # list is the only sequence type supported in JSON try: __lowerCAmelCase: str = set().union(*[row.keys() for row in dataset] ) __lowerCAmelCase: Optional[int] = {col: [row.get(UpperCAmelCase ) for row in dataset] for col in keys} __lowerCAmelCase: Dict = pa.Table.from_pydict(UpperCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(UpperCAmelCase ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase ) batch_idx += 1
322
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase : Optional[int] = get_tests_dir('''fixtures''') class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down snake_case_ : Optional[Any] = mock.Mock() snake_case_ : Any = 500 snake_case_ : Tuple = {} snake_case_ : int = HTTPError snake_case_ : Tuple = {} # Download this model to make sure it's in the cache. snake_case_ : str = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: snake_case_ : Any = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self ) -> Dict: # This test is for deprecated behavior and can be removed in v5 snake_case_ : List[Any] = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def _lowerCAmelCase ( self ) -> str: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ : Optional[int] = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) snake_case_ : int = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCAmelCase ( cls ) -> str: snake_case_ : str = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def _lowerCAmelCase ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def _lowerCAmelCase ( self ) -> int: snake_case_ : Dict = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) snake_case_ : str = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="test-image-processor" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) snake_case_ : List[str] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : int = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) snake_case_ : Optional[Any] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="valid_org/test-image-processor-org" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) snake_case_ : Dict = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self ) -> Dict: CustomImageProcessor.register_for_auto_class() snake_case_ : List[Any] = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) snake_case_ : List[str] = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
36
def lowerCAmelCase__ ( _a : float , _a : float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
36
1
'''simple docstring''' import math import sys import cva import numpy as np def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =math.sqrt(snake_case__ ) _SCREAMING_SNAKE_CASE =1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =np.zeros((kernel_size, kernel_size) ) for i in range(0 , snake_case__ ): for j in range(0 , snake_case__ ): _SCREAMING_SNAKE_CASE =math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case__ , snake_case__ ) def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =np.zeros(img.shape ) _SCREAMING_SNAKE_CASE =get_gauss_kernel(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _SCREAMING_SNAKE_CASE =get_slice(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE =img_s - img_s[kernel_size // 2, kernel_size // 2] _SCREAMING_SNAKE_CASE =vec_gaussian(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE =np.multiply(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE =np.multiply(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE =np.sum(snake_case__ ) / np.sum(snake_case__ ) _SCREAMING_SNAKE_CASE =val return imga def _lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =args[1] if args[1:] else '../image_data/lena.jpg' _SCREAMING_SNAKE_CASE =float(args[2] ) if args[2:] else 1.0 _SCREAMING_SNAKE_CASE =float(args[3] ) if args[3:] else 1.0 if args[4:]: _SCREAMING_SNAKE_CASE =int(args[4] ) _SCREAMING_SNAKE_CASE =kernel_size + abs(kernel_size % 2 - 1 ) else: _SCREAMING_SNAKE_CASE =5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase : Optional[Any] = parse_args(sys.argv) lowerCamelCase : Optional[Any] = cva.imread(filename, 0) cva.imshow("input image", img) lowerCamelCase : str = img / 2_5_5 lowerCamelCase : Union[str, Any] = out.astype("float32") lowerCamelCase : Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase : List[Any] = out * 2_5_5 lowerCamelCase : List[Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
47
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : List[Any] = "▁" A_ : str = {"vocab_file": "sentencepiece.bpe.model"} A_ : Union[str, Any] = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } A_ : List[str] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'attention_mask'] def __init__( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , __UpperCAmelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[str] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : int ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
165
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( __a :List[str] ) -> Tuple: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( __a :int ) -> Optional[int]: """simple docstring""" A__ = create_tensor(__a ) A__ = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( __a :Any ) -> Any: """simple docstring""" A__ = [state.process_index] A__ = gather_object(__a ) assert len(__a ) == state.num_processes, F'{gathered_obj}, {len(__a )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( __a :List[str] ) -> List[str]: """simple docstring""" A__ = create_tensor(__a ) A__ = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( __a :Any ) -> Any: """simple docstring""" if state.is_main_process: A__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: A__ = torch.arange(state.num_processes ).to(state.device ) A__ = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( __a :Union[str, Any] ) -> str: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """sum""" ) A__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :List[Any] ) -> List[str]: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """mean""" ) A__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" main() def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(__a ) state.print("""testing gather_object""" ) test_gather_object(__a ) state.print("""testing broadcast""" ) test_broadcast(__a ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__a ) state.print("""testing reduce_sum""" ) test_reduce_sum(__a ) state.print("""testing reduce_mean""" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
276
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : List[str] = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = '''time_series_transformer''' __lowerCamelCase : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "student_t" , __lowerCAmelCase : str = "nll" , __lowerCAmelCase : int = 1 , __lowerCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase : Optional[Union[str, bool]] = "mean" , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "gelu" , __lowerCAmelCase : int = 64 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : int = 1_00 , __lowerCAmelCase : float = 0.0_2 , __lowerCAmelCase : Optional[Any]=True , **__lowerCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" A__ = prediction_length A__ = context_length or prediction_length A__ = distribution_output A__ = loss A__ = input_size A__ = num_time_features A__ = lags_sequence A__ = scaling A__ = num_dynamic_real_features A__ = num_static_real_features A__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A__ = cardinality else: A__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A__ = embedding_dimension else: A__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ = num_parallel_samples # Transformer architecture configuration A__ = input_size * len(__lowerCAmelCase ) + self._number_of_features A__ = d_model A__ = encoder_attention_heads A__ = decoder_attention_heads A__ = encoder_ffn_dim A__ = decoder_ffn_dim A__ = encoder_layers A__ = decoder_layers A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = activation_function A__ = init_std A__ = use_cache super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def a_ ( self : List[Any] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
276
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=2 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=36 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=6 , UpperCamelCase__=6 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=1000 , ) -> str: lowerCamelCase : int = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : Dict = image_size lowerCamelCase : Union[str, Any] = patch_size lowerCamelCase : Dict = is_training lowerCamelCase : List[str] = use_input_mask lowerCamelCase : int = use_token_type_ids lowerCamelCase : Dict = use_labels lowerCamelCase : Union[str, Any] = vocab_size lowerCamelCase : List[Any] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : int = intermediate_size lowerCamelCase : List[str] = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[Any] = max_position_embeddings lowerCamelCase : Dict = type_vocab_size lowerCamelCase : str = type_sequence_label_size lowerCamelCase : Tuple = initializer_range lowerCamelCase : Dict = coordinate_size lowerCamelCase : Tuple = shape_size lowerCamelCase : List[Any] = num_labels lowerCamelCase : Tuple = num_choices lowerCamelCase : int = scope lowerCamelCase : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase : Dict = text_seq_length lowerCamelCase : List[Any] = (image_size // patch_size) ** 2 + 1 lowerCamelCase : Union[str, Any] = self.text_seq_length + self.image_seq_length def _lowercase ( self ) -> int: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowerCamelCase : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase : Dict = bbox[i, j, 3] lowerCamelCase : Optional[int] = bbox[i, j, 1] lowerCamelCase : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase : List[str] = bbox[i, j, 2] lowerCamelCase : Optional[int] = bbox[i, j, 0] lowerCamelCase : Tuple = tmp_coordinate lowerCamelCase : Union[str, Any] = tf.constant(UpperCamelCase__ ) lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Optional[int] = None if self.use_input_mask: lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase : Optional[int] = None if self.use_token_type_ids: lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase : str = None lowerCamelCase : Optional[int] = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : Optional[int] = TFLayoutLMvaModel(config=UpperCamelCase__ ) # text + image lowerCamelCase : Any = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , training=UpperCamelCase__ , ) lowerCamelCase : Any = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase : Dict = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase : Union[str, Any] = model({"pixel_values": pixel_values} , training=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : str = self.num_labels lowerCamelCase : Optional[Any] = TFLayoutLMvaForSequenceClassification(config=UpperCamelCase__ ) lowerCamelCase : str = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : int = self.num_labels lowerCamelCase : str = TFLayoutLMvaForTokenClassification(config=UpperCamelCase__ ) lowerCamelCase : Tuple = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) lowerCamelCase : Tuple = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , training=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ) -> str: lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : List[str] = config_and_inputs lowerCamelCase : Dict = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase_ : int = False lowerCamelCase_ : int = False lowerCamelCase_ : str = False def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: return True def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> dict: lowerCamelCase : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): lowerCamelCase : List[str] = { k: tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowerCamelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Dict = TFLayoutLMvaModelTester(self ) lowerCamelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Optional[int]: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = model_class(UpperCamelCase__ ) if getattr(UpperCamelCase__ , "hf_compute_loss" , UpperCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label lowerCamelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCamelCase__ )[0] ] lowerCamelCase : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCamelCase : int = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Dict = prepared_for_class.pop("input_ids" ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , **UpperCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCamelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Dict = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: lowerCamelCase : List[str] = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCamelCase : Optional[int] = -100 lowerCamelCase : Any = tf.convert_to_tensor(UpperCamelCase__ ) lowerCamelCase : Dict = model(UpperCamelCase__ , **UpperCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCamelCase : str = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCamelCase : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) # Get keys that were added with the _prepare_for_class function lowerCamelCase : Any = prepared_for_class.keys() - inputs_dict.keys() lowerCamelCase : Any = inspect.signature(model.call ).parameters lowerCamelCase : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCamelCase : Any = {0: "input_ids"} for label_key in label_keys: lowerCamelCase : Optional[Any] = signature_names.index(UpperCamelCase__ ) lowerCamelCase : int = label_key lowerCamelCase : str = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCamelCase : List[str] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCamelCase : Optional[Any] = prepared_for_class[value] lowerCamelCase : Any = tuple(UpperCamelCase__ ) # Send to model lowerCamelCase : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _lowercase ( self ) -> Optional[Any]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Optional[int]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Any: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self ) -> Optional[int]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Dict = TFLayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A ( ) -> int: lowerCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) lowerCamelCase : Any = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : Dict = image_processor(images=UpperCamelCase__ , return_tensors="tf" ).pixel_values lowerCamelCase : Union[str, Any] = tf.constant([[1, 2]] ) lowerCamelCase : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowerCamelCase : List[Any] = model(input_ids=UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits lowerCamelCase : Dict = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) lowerCamelCase : Dict = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
0
import math def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase_: Any = range(3 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: Any=1 , **lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: Optional[Any] = factor * value UpperCAmelCase_: List[str] = value while not is_prime(lowerCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCAmelCase__ ) return value
82
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a : Optional[int] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: int = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = {} UpperCAmelCase_: Optional[Any] = r""".*sequential.(\d+).*""" UpperCAmelCase_: str = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_: Optional[int] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_: int = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_: Dict = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(lowerCAmelCase__ )//3}.linear.' ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_: int = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_: Optional[Any] = 1 if projecton_layer == 0 else 2 UpperCAmelCase_: Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_: str = value UpperCAmelCase_: Optional[int] = mixed_qkv.size(0 ) // 3 UpperCAmelCase_: Optional[int] = mixed_qkv[:qkv_dim] UpperCAmelCase_: List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_: int = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_: str = query_layer UpperCAmelCase_: List[Any] = key_layer UpperCAmelCase_: str = value_layer else: UpperCAmelCase_: Tuple = value return model_state_dict def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: List[Any]=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_: Optional[Any] = clap_model.state_dict() UpperCAmelCase_: Optional[Any] = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_: Dict = ClapConfig() UpperCAmelCase_: Tuple = enable_fusion UpperCAmelCase_: int = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A: int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = ['input_features'] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=160 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = n_fft UpperCAmelCase : str = hop_length UpperCAmelCase : Tuple = chunk_length UpperCAmelCase : Optional[Any] = chunk_length * sampling_rate UpperCAmelCase : str = self.n_samples // hop_length UpperCAmelCase : Any = sampling_rate UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm="""slaney""" , mel_scale="""slaney""" , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : Union[str, Any] = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) UpperCAmelCase : List[str] = log_spec[:, :-1] UpperCAmelCase : Any = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCAmelCase : List[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: UpperCAmelCase : Optional[Any] = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) UpperCAmelCase : List[str] = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCAmelCase : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase : Optional[Any] = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "max_length" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase : Tuple = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCAmelCase : List[str] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] UpperCAmelCase : Union[str, Any] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding UpperCAmelCase : Optional[int] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCAmelCase : Any = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) UpperCAmelCase : Tuple = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format UpperCAmelCase : Optional[int] = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) UpperCAmelCase : int = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Any = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCAmelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCAmelCase : Tuple = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: UpperCAmelCase : str = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def SCREAMING_SNAKE_CASE ( self ) -> Dict[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
109
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Any , A : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __snake_case: Dict = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) __snake_case: Dict = TensorFlowBenchmark(A ) __snake_case: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = """sgugger/tiny-distilbert-classification""" __snake_case: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) __snake_case: Any = TensorFlowBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: int = TensorFlowBenchmark(A ) __snake_case: str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = """sshleifer/tiny-gpt2""" __snake_case: int = AutoConfig.from_pretrained(A ) __snake_case: Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) __snake_case: Union[str, Any] = TensorFlowBenchmark(A , [config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[int] = """sshleifer/tiny-gpt2""" __snake_case: Tuple = AutoConfig.from_pretrained(A ) __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: str = TensorFlowBenchmark(A , [config] ) __snake_case: str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Tuple = """sshleifer/tiny-gpt2""" __snake_case: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Tuple = TensorFlowBenchmark(A ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = AutoConfig.from_pretrained(A ) __snake_case: Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: List[str] = TensorFlowBenchmark(A , [config] ) __snake_case: Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = """patrickvonplaten/t5-tiny-random""" __snake_case: List[str] = AutoConfig.from_pretrained(A ) __snake_case: List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Optional[int] = TensorFlowBenchmark(A , configs=[config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = """sshleifer/tiny-gpt2""" __snake_case: List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A , multi_process=A , ) __snake_case: Union[str, Any] = TensorFlowBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[str] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , ) __snake_case: Tuple = TensorFlowBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Any = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A : Union[str, Any] ): self.assertTrue(hasattr(A , """sequential""" ) ) self.assertTrue(hasattr(A , """cumulative""" ) ) self.assertTrue(hasattr(A , """current""" ) ) self.assertTrue(hasattr(A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , eager_mode=A , multi_process=A , ) __snake_case: Dict = TensorFlowBenchmark(A ) __snake_case: List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
111
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def _lowerCAmelCase ( A__: Dict , A__: Tuple=False ): '''simple docstring''' UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _lowerCAmelCase ( A__: List[Any] , A__: Any , A__: List[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _lowerCAmelCase ( A__: Any , A__: Optional[Any] , A__: int ): '''simple docstring''' UpperCAmelCase = dct.pop(A__ ) UpperCAmelCase = val def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( A__: Union[str, Any] , A__: Optional[int] ): '''simple docstring''' UpperCAmelCase = ViTConfig() UpperCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCAmelCase = True UpperCAmelCase = int(vit_name[-12:-10] ) UpperCAmelCase = int(vit_name[-9:-6] ) else: UpperCAmelCase = 1000 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = int(vit_name[-6:-4] ) UpperCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 elif vit_name[9:].startswith('''small''' ): UpperCAmelCase = 384 UpperCAmelCase = 1536 UpperCAmelCase = 12 UpperCAmelCase = 6 else: pass else: if vit_name[4:].startswith('''small''' ): UpperCAmelCase = 768 UpperCAmelCase = 2304 UpperCAmelCase = 8 UpperCAmelCase = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 elif vit_name[4:].startswith('''huge''' ): UpperCAmelCase = 1280 UpperCAmelCase = 5120 UpperCAmelCase = 32 UpperCAmelCase = 16 # load original model from timm UpperCAmelCase = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) UpperCAmelCase = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase = ViTModel(A__ ).eval() else: UpperCAmelCase = ViTForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCAmelCase = DeiTImageProcessor(size=config.image_size ) else: UpperCAmelCase = ViTImageProcessor(size=config.image_size ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = encoding['''pixel_values'''] UpperCAmelCase = model(A__ ) if base_model: UpperCAmelCase = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__ , outputs.pooler_output , atol=1E-3 ) else: UpperCAmelCase = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1E-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __magic_name__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
152
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
152
1
import argparse import copy def _A ( _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = {} with open(__snake_case ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" with open(__snake_case ) as f: __UpperCamelCase = f.read(1 ) __UpperCamelCase = start_node __UpperCamelCase = [] __UpperCamelCase = start_node __UpperCamelCase = 0 while visiting not in first_solution: __UpperCamelCase = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__snake_case ) and k[0] not in first_solution: __UpperCamelCase = k[1] __UpperCamelCase = k[0] first_solution.append(__snake_case ) __UpperCamelCase = distance_of_first_solution + int(__snake_case ) __UpperCamelCase = best_node first_solution.append(__snake_case ) __UpperCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] for n in solution[1:-1]: __UpperCamelCase = solution.index(__snake_case ) for kn in solution[1:-1]: __UpperCamelCase = solution.index(__snake_case ) if n == kn: continue __UpperCamelCase = copy.deepcopy(__snake_case ) __UpperCamelCase = kn __UpperCamelCase = n __UpperCamelCase = 0 for k in _tmp[:-1]: __UpperCamelCase = _tmp[_tmp.index(__snake_case ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCamelCase = distance + int(i[1] ) _tmp.append(__snake_case ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowercase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = first_solution __UpperCamelCase = [] __UpperCamelCase = distance_of_first_solution __UpperCamelCase = solution while count <= iters: __UpperCamelCase = find_neighborhood(__snake_case , __snake_case ) __UpperCamelCase = 0 __UpperCamelCase = neighborhood[index_of_best_solution] __UpperCamelCase = len(__snake_case ) - 1 __UpperCamelCase = False while not found: __UpperCamelCase = 0 while i < len(__snake_case ): if best_solution[i] != solution[i]: __UpperCamelCase = best_solution[i] __UpperCamelCase = solution[i] break __UpperCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCamelCase = True __UpperCamelCase = best_solution[:-1] __UpperCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCamelCase = cost __UpperCamelCase = solution else: __UpperCamelCase = index_of_best_solution + 1 __UpperCamelCase = neighborhood[index_of_best_solution] if len(__snake_case ) >= size: tabu_list.pop(0 ) __UpperCamelCase = count + 1 return best_solution_ever, best_cost def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = generate_neighbours(args.File ) __UpperCamelCase = generate_first_solution( args.File , __snake_case ) __UpperCamelCase = tabu_search( __snake_case , __snake_case , __snake_case , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
310
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __snake_case : str, __snake_case : dict ) -> str: """simple docstring""" A__ : Optional[Any] =BeautifulSoup(requests.get(__snake_case, params=__snake_case ).content, """html.parser""" ) A__ : List[str] =soup.find("""div""", attrs={"""class""": """gs_ri"""} ) A__ : Tuple =div.find("""div""", attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": __snake_case : Optional[Any] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
134
0
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase: Tuple = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : int, **lowerCAmelCase : str ) -> Any: super().__init__(**lowerCAmelCase ) requires_backends(self, 'vision' ) requires_backends(self, 'torch' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase ) def lowercase ( self : Optional[int], **lowerCAmelCase : int ) -> Tuple: lowercase : List[Any] = {} lowercase : List[str] = {} lowercase : Optional[int] = {} # preprocess args if "points_per_batch" in kwargs: lowercase : List[Any] = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowercase : Tuple = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowercase : Any = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowercase : Dict = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowercase : str = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowercase : List[str] = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowercase : List[str] = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowercase : str = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowercase : Optional[int] = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowercase : Dict = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowercase : int = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowercase : Union[str, Any] = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any], lowerCAmelCase : List[str], *lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict=None, lowerCAmelCase : Union[str, Any]=None, **lowerCAmelCase : int ) -> List[str]: return super().__call__(lowerCAmelCase, *lowerCAmelCase, num_workers=lowerCAmelCase, batch_size=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : List[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple=64, lowerCAmelCase : int = 0, lowerCAmelCase : float = 512 / 1500, lowerCAmelCase : Optional[int] = 32, lowerCAmelCase : Optional[int] = 1, ) -> Union[str, Any]: lowercase : List[Any] = load_image(lowerCAmelCase ) lowercase : str = self.image_processor.size['longest_edge'] lowercase , lowercase , lowercase , lowercase : List[Any] = self.image_processor.generate_crop_boxes( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : Any = self.image_processor(images=lowerCAmelCase, return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowercase : Optional[int] = self.get_inference_context() with inference_context(): lowercase : List[str] = self._ensure_tensor_on_device(lowerCAmelCase, device=self.device ) lowercase : int = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowercase : List[Any] = image_embeddings lowercase : Dict = grid_points.shape[1] lowercase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0, lowerCAmelCase, lowerCAmelCase ): lowercase : Optional[int] = grid_points[:, i : i + points_per_batch, :, :] lowercase : List[str] = input_labels[:, i : i + points_per_batch] lowercase : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase ( self : Any, lowerCAmelCase : List[str], lowerCAmelCase : str=0.88, lowerCAmelCase : Optional[int]=0.95, lowerCAmelCase : str=0, lowerCAmelCase : Optional[int]=1, ) -> Optional[int]: lowercase : Optional[int] = model_inputs.pop('input_boxes' ) lowercase : Any = model_inputs.pop('is_last' ) lowercase : Tuple = model_inputs.pop('original_sizes' ).tolist() lowercase : Union[str, Any] = model_inputs.pop('reshaped_input_sizes' ).tolist() lowercase : str = self.model(**lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase : str = model_outputs['pred_masks'] lowercase : str = self.image_processor.post_process_masks( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, binarize=lowerCAmelCase ) lowercase : Dict = model_outputs['iou_scores'] lowercase , lowercase , lowercase : int = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase ( self : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Tuple=False, lowerCAmelCase : Any=False, lowerCAmelCase : Tuple=0.7, ) -> List[str]: lowercase : Any = [] lowercase : Optional[Any] = [] lowercase : Optional[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowercase : Optional[Any] = torch.cat(lowerCAmelCase ) lowercase : List[Any] = torch.cat(lowerCAmelCase ) lowercase , lowercase , lowercase , lowercase : str = self.image_processor.post_process_for_mask_generation( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : str = defaultdict(lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase ) lowercase : Dict = {} if output_rle_mask: lowercase : Tuple = rle_mask if output_bboxes_mask: lowercase : Tuple = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
53
1