code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = StableDiffusionLDMaDPipeline UpperCAmelCase__ : Tuple = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCamelCase =CLIPTextModel(A_ ) __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , A_ , A_=0 ) -> List[str]: if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _a ( self ) -> Dict: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =StableDiffusionLDMaDPipeline(**A_ ) __UpperCamelCase =ldmad_pipe.to(A_ ) ldmad_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =ldmad_pipe(**A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =rgb[0, -3:, -3:, -1] __UpperCamelCase =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __UpperCamelCase =np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) __UpperCamelCase =np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _a ( self ) -> str: __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =StableDiffusionLDMaDPipeline(**A_ ) __UpperCamelCase =ldmad_pipe.to(A_ ) ldmad_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =3 * [inputs['prompt']] # forward __UpperCamelCase =ldmad_pipe(**A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =rgb_slice_a[0, -3:, -3:, -1] __UpperCamelCase =depth_slice_a[0, -3:, -1] __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =3 * [inputs.pop('prompt' )] __UpperCamelCase =ldmad_pipe.tokenizer( A_ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=A_ , return_tensors='pt' , ) __UpperCamelCase =text_inputs['input_ids'].to(A_ ) __UpperCamelCase =ldmad_pipe.text_encoder(A_ )[0] __UpperCamelCase =prompt_embeds # forward __UpperCamelCase =ldmad_pipe(**A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =rgb_slice_a[0, -3:, -3:, -1] __UpperCamelCase =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _a ( self ) -> Optional[Any]: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =PNDMScheduler(skip_prk_steps=A_ ) __UpperCamelCase =StableDiffusionLDMaDPipeline(**A_ ) __UpperCamelCase =ldmad_pipe.to(A_ ) ldmad_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase ='french fries' __UpperCamelCase =ldmad_pipe(**A_ , negative_prompt=A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =rgb[0, -3:, -3:, -1] __UpperCamelCase =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __UpperCamelCase =np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) __UpperCamelCase =np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , A_ , A_="cpu" , A_=torch.floataa , A_=0 ) -> int: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase =np.random.RandomState(A_ ).standard_normal((1, 4, 64, 64) ) __UpperCamelCase =torch.from_numpy(A_ ).to(device=A_ , dtype=A_ ) __UpperCamelCase ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _a ( self ) -> Optional[int]: __UpperCamelCase =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) __UpperCamelCase =ldmad_pipe.to(A_ ) ldmad_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs(A_ ) __UpperCamelCase =ldmad_pipe(**A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =rgb[0, -3:, -3:, -1].flatten() __UpperCamelCase =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) __UpperCamelCase =np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) __UpperCamelCase =np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , A_ , A_="cpu" , A_=torch.floataa , A_=0 ) -> Optional[int]: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase =np.random.RandomState(A_ ).standard_normal((1, 4, 64, 64) ) __UpperCamelCase =torch.from_numpy(A_ ).to(device=A_ , dtype=A_ ) __UpperCamelCase ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _a ( self ) -> List[str]: __UpperCamelCase =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(A_ ) ldmad_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs(A_ ) __UpperCamelCase =ldmad_pipe(**A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =0.49_5586 __UpperCamelCase =0.3379_5515 __UpperCamelCase =112.4_8518 __UpperCamelCase =98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _a ( self ) -> Optional[Any]: __UpperCamelCase =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(A_ ) ldmad_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs(A_ ) __UpperCamelCase =ldmad_pipe(**A_ ) __UpperCamelCase , __UpperCamelCase =output.rgb, output.depth __UpperCamelCase =0.419_4127 __UpperCamelCase =0.3537_5586 __UpperCamelCase =0.563_8502 __UpperCamelCase =0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
62
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase )] ) UpperCAmelCase__ : Any = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase ) ) , x.transpose() ) , lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (1, 2, 1) UpperCAmelCase__ : Tuple = (1, 1, 0, 7) UpperCAmelCase__ : int = SARIMAX( lowerCAmelCase , exog=lowerCAmelCase , order=lowerCAmelCase , seasonal_order=lowerCAmelCase ) UpperCAmelCase__ : Any = model.fit(disp=lowerCAmelCase , maxiter=6_00 , method="""nm""" ) UpperCAmelCase__ : Optional[Any] = model_fit.predict(1 , len(lowerCAmelCase ) , exog=[test_match] ) return result[0] def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = regressor.predict(lowerCAmelCase ) return y_pred[0] def a__ ( lowerCAmelCase ) -> float: train_user.sort() UpperCAmelCase__ : Optional[Any] = np.percentile(lowerCAmelCase , 25 ) UpperCAmelCase__ : str = np.percentile(lowerCAmelCase , 75 ) UpperCAmelCase__ : int = qa - qa UpperCAmelCase__ : Union[str, Any] = qa - (iqr * 0.1) return low_lim def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(lowerCAmelCase ) - abs(lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A = Normalizer().fit_transform(data_input_df.values) # split data _A = normalize_df[:, 2].tolist() _A = normalize_df[:, 0].tolist() _A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A = normalize_df[:, [1, 2]].tolist() _A = x[: len(x) - 1] _A = x[len(x) - 1 :] # for linear regression & sarimax _A = total_date[: len(total_date) - 1] _A = total_user[: len(total_user) - 1] _A = total_match[: len(total_match) - 1] _A = total_date[len(total_date) - 1 :] _A = total_user[len(total_user) - 1 :] _A = total_match[len(total_match) - 1 :] # voting system with forecasting _A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
171
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase__ : Dict = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowercase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def a__ ( lowercase : List[str], lowercase : Any=False ) -> Tuple: """simple docstring""" _UpperCamelCase , _UpperCamelCase = create_model( '''HTSAT-tiny''', '''roberta''', lowercase, precision='''fp32''', device='''cuda:0''' if torch.cuda.is_available() else '''cpu''', enable_fusion=lowercase, fusion_type='''aff_2d''' if enable_fusion else None, ) return model, model_cfg def a__ ( lowercase : Tuple ) -> Tuple: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = r'''.*sequential.(\d+).*''' _UpperCamelCase = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCamelCase = key.replace(lowercase, lowercase ) if re.match(lowercase, lowercase ): # replace sequential layers with list _UpperCamelCase = re.match(lowercase, lowercase ).group(1 ) _UpperCamelCase = key.replace(F"""sequential.{sequential_layer}.""", F"""layers.{int(lowercase )//3}.linear.""" ) elif re.match(lowercase, lowercase ): _UpperCamelCase = int(re.match(lowercase, lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCamelCase = 1 if projecton_layer == 0 else 2 _UpperCamelCase = key.replace(F"""_projection.{projecton_layer}.""", F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCamelCase = value _UpperCamelCase = mixed_qkv.size(0 ) // 3 _UpperCamelCase = mixed_qkv[:qkv_dim] _UpperCamelCase = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCamelCase = mixed_qkv[qkv_dim * 2 :] _UpperCamelCase = query_layer _UpperCamelCase = key_layer _UpperCamelCase = value_layer else: _UpperCamelCase = value return model_state_dict def a__ ( lowercase : int, lowercase : Dict, lowercase : Any, lowercase : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = init_clap(lowercase, enable_fusion=lowercase ) clap_model.eval() _UpperCamelCase = clap_model.state_dict() _UpperCamelCase = rename_state_dict(lowercase ) _UpperCamelCase = ClapConfig() _UpperCamelCase = enable_fusion _UpperCamelCase = ClapModel(lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase, strict=lowercase ) model.save_pretrained(lowercase ) transformers_config.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowercase__ : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
357
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : int = 32 def a__ ( lowercase : Accelerator, lowercase : int = 16 ) -> List[str]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCamelCase = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase = datasets.map( lowercase, batched=lowercase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase = 16 elif accelerator.mixed_precision != "no": _UpperCamelCase = 8 else: _UpperCamelCase = None return tokenizer.pad( lowercase, padding='''longest''', max_length=lowercase, pad_to_multiple_of=lowercase, return_tensors='''pt''', ) # Instantiate dataloaders. _UpperCamelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) _UpperCamelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : str = mocked_dataloaders # noqa: F811 def a__ ( lowercase : List[Any], lowercase : List[str] ) -> Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowercase ) == "1": _UpperCamelCase = 2 # Initialize accelerator _UpperCamelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config['''lr'''] _UpperCamelCase = int(config['''num_epochs'''] ) _UpperCamelCase = int(config['''seed'''] ) _UpperCamelCase = int(config['''batch_size'''] ) _UpperCamelCase = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = AdamW(params=model.parameters(), lr=lowercase ) _UpperCamelCase , _UpperCamelCase = get_dataloaders(lowercase, lowercase ) # Instantiate scheduler _UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=100, num_training_steps=(len(lowercase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase, references=lowercase, ) _UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=lowercase, default=lowercase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
287
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase : Tuple ={ '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase : int =logging.get_logger(__name__) class __a ( A__ ): _lowerCAmelCase : Optional[int] = '''maskformer''' _lowerCAmelCase : Tuple = {'''hidden_size''': '''mask_feature_size'''} _lowerCAmelCase : int = ['''resnet''', '''swin'''] _lowerCAmelCase : Any = ['''detr'''] def __init__( self : int , SCREAMING_SNAKE_CASE : int = 2_56 , SCREAMING_SNAKE_CASE : int = 2_56 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[Dict] = None , SCREAMING_SNAKE_CASE : Optional[Dict] = None , SCREAMING_SNAKE_CASE : float = 0.0_2 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : float = 2_0.0 , SCREAMING_SNAKE_CASE : Optional[bool] = None , **SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCamelCase__ : List[str] = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = backbone_config.pop("model_type" ) UpperCamelCase__ : List[str] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Dict = config_class.from_dict(SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCamelCase__ : int = DetrConfig() else: # verify that the decoder is supported UpperCamelCase__ : Dict = ( decoder_config.pop("model_type" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = CONFIG_MAPPING[decoder_type] UpperCamelCase__ : str = config_class.from_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = backbone_config UpperCamelCase__ : Tuple = decoder_config # main feature dimension for the model UpperCamelCase__ : Any = fpn_feature_size UpperCamelCase__ : Optional[int] = mask_feature_size # initializer UpperCamelCase__ : str = init_std UpperCamelCase__ : int = init_xavier_std # Hungarian matcher && loss UpperCamelCase__ : int = cross_entropy_weight UpperCamelCase__ : List[Any] = dice_weight UpperCamelCase__ : Union[str, Any] = mask_weight UpperCamelCase__ : List[Any] = use_auxiliary_loss UpperCamelCase__ : List[Any] = no_object_weight UpperCamelCase__ : Optional[int] = output_auxiliary_logits UpperCamelCase__ : int = self.decoder_config.encoder_attention_heads UpperCamelCase__ : str = self.decoder_config.num_hidden_layers super().__init__(**SCREAMING_SNAKE_CASE ) @classmethod def __lowercase ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE : PretrainedConfig , SCREAMING_SNAKE_CASE : PretrainedConfig , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' return cls( backbone_config=SCREAMING_SNAKE_CASE , decoder_config=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCamelCase__ : List[str] = self.backbone_config.to_dict() UpperCamelCase__ : Any = self.decoder_config.to_dict() UpperCamelCase__ : Tuple = self.__class__.model_type return output
189
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.array: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.array: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
189
1
import doctest from collections import deque import numpy as np class lowercase : def __init__( self): lowercase = [2, 1, 2, -1] lowercase = [1, 2, 3, 4] def A__ ( self): lowercase = len(self.first_signal) lowercase = len(self.second_signal) lowercase = max(A__ ,A__) # create a zero matrix of max_length x max_length lowercase = [[0] * max_length for i in range(A__)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(A__): lowercase = deque(self.second_signal) rotated_signal.rotate(A__) for j, item in enumerate(A__): matrix[i][j] += item # multiply the matrix with the first signal lowercase = np.matmul(np.transpose(A__) ,np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(A__ ,2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ :str = logging.get_logger(__name__) lowercase__ :Any = {"vocab_file": "sentencepiece.bpe.model"} lowercase__ :Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } lowercase__ :str = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } lowercase__ :int = "▁" class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Union[str, Any] =VOCAB_FILES_NAMES lowercase_ : List[Any] =PRETRAINED_VOCAB_FILES_MAP lowercase_ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str =['''input_ids''', '''attention_mask'''] def __init__( self ,A__ ,A__="<s>" ,A__="</s>" ,A__="</s>" ,A__="<s>" ,A__="<unk>" ,A__="<pad>" ,A__="<mask>" ,A__ = None ,**A__ ,): # Mask token behave like a normal word, i.e. include the space before it lowercase = AddedToken(A__ ,lstrip=A__ ,rstrip=A__) if isinstance(A__ ,A__) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ ,eos_token=A__ ,unk_token=A__ ,sep_token=A__ ,cls_token=A__ ,pad_token=A__ ,mask_token=A__ ,sp_model_kwargs=self.sp_model_kwargs ,**A__ ,) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(A__)) lowercase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase = len(self.sp_model) - 1 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A__ ( self ,A__ ,A__ = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self ,A__ ,A__ = None ,A__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ ,token_ids_a=A__ ,already_has_special_tokens=A__) if token_ids_a is None: return [1] + ([0] * len(A__)) + [1] return [1] + ([0] * len(A__)) + [1, 1] + ([0] * len(A__)) + [1] def A__ ( self ,A__ ,A__ = None): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) def A__ ( self): lowercase = {self.convert_ids_to_tokens(A__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self ,A__): return self.sp_model.encode(A__ ,out_type=A__) def A__ ( self ,A__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(A__) return spm_id if spm_id else self.unk_token_id def A__ ( self ,A__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A__) def A__ ( self ,A__): lowercase = [] lowercase = '''''' lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__) + token lowercase = True lowercase = [] else: current_sub_tokens.append(A__) lowercase = False out_string += self.sp_model.decode(A__) return out_string.strip() def __getstate__( self): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self ,A__): lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs'''): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self ,A__ ,A__ = None): if not os.path.isdir(A__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return lowercase = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(A__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,A__) elif not os.path.isfile(self.vocab_file): with open(A__ ,'''wb''') as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A__) return (out_vocab_file,)
97
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return EnvironmentCommand() def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class UpperCAmelCase ( snake_case_ ): @staticmethod def lowercase__ ( __snake_case : ArgumentParser ) -> Optional[Any]: _lowerCAmelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=__snake_case ) download_parser.add_argument( """--accelerate-config_file""" , default=__snake_case , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=__snake_case ) def __init__( self : Dict , __snake_case : Optional[Any] , *__snake_case : Dict ) -> None: _lowerCAmelCase = accelerate_config_file def lowercase__ ( self : Optional[int] ) -> Dict: _lowerCAmelCase = """not installed""" if is_safetensors_available(): import safetensors _lowerCAmelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _lowerCAmelCase = f"{safetensors.__version__} but is ignored because of PyTorch version too old." _lowerCAmelCase = """not installed""" _lowerCAmelCase = _lowerCAmelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowerCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__snake_case ): _lowerCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() _lowerCAmelCase = ( """\n""".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__snake_case , __snake_case ) else f"\t{accelerate_config}" ) _lowerCAmelCase = """not installed""" _lowerCAmelCase = """NA""" if is_torch_available(): import torch _lowerCAmelCase = torch.__version__ _lowerCAmelCase = torch.cuda.is_available() _lowerCAmelCase = """not installed""" _lowerCAmelCase = """NA""" if is_tf_available(): import tensorflow as tf _lowerCAmelCase = tf.__version__ try: # deprecated in v2.1 _lowerCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowerCAmelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) _lowerCAmelCase = """not installed""" _lowerCAmelCase = """not installed""" _lowerCAmelCase = """not installed""" _lowerCAmelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib _lowerCAmelCase = flax.__version__ _lowerCAmelCase = jax.__version__ _lowerCAmelCase = jaxlib.__version__ _lowerCAmelCase = jax.lib.xla_bridge.get_backend().platform _lowerCAmelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f"{safetensors_version}", """Accelerate version""": f"{accelerate_version}", """Accelerate config""": f"{accelerate_config_str}", """PyTorch version (GPU?)""": f"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": f"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": f"{flax_version} ({jax_backend})", """Jax version""": f"{jax_version}", """JaxLib version""": f"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__snake_case ) ) return info @staticmethod def lowercase__ ( __snake_case : str ) -> Dict: return "\n".join([f"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
70
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A__ : Dict ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A__ : Tuple =concatenate_datasets A__ : Dict =DownloadConfig A__ : int =DownloadManager A__ : Union[str, Any] =DownloadMode A__ : Tuple =DownloadConfig A__ : Optional[Any] =DownloadMode A__ : str =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("""RGB""" ) return image def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = val def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict SCREAMING_SNAKE_CASE__ = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase , requires_grad=__UpperCamelCase ), v_bias) ) SCREAMING_SNAKE_CASE__ = qkv_bias def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = 3_64 if """coco""" in model_name else 2_24 SCREAMING_SNAKE_CASE__ = InstructBlipVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE__ = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE__ = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_20_01 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE__ = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() SCREAMING_SNAKE_CASE__ = InstructBlipConfig(vision_config=__UpperCamelCase , text_config=__UpperCamelCase , qformer_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=None , __UpperCamelCase : int=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: SCREAMING_SNAKE_CASE__ = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE__ = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_blipa_config(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = InstructBlipForConditionalGeneration(__UpperCamelCase ).eval() SCREAMING_SNAKE_CASE__ = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) SCREAMING_SNAKE_CASE__ = """cuda:1""" if torch.cuda.is_available() else """cpu""" SCREAMING_SNAKE_CASE__ = """cuda:2""" if torch.cuda.is_available() else """cpu""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = load_model_and_preprocess( name=__UpperCamelCase , model_type=__UpperCamelCase , is_eval=__UpperCamelCase , device=__UpperCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE__ = state_dict.pop(__UpperCamelCase ) if key.startswith("""Qformer.bert""" ): SCREAMING_SNAKE_CASE__ = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: SCREAMING_SNAKE_CASE__ = key.replace("""self""" , """attention""" ) if "llm_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): SCREAMING_SNAKE_CASE__ = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): SCREAMING_SNAKE_CASE__ = key.replace("""t5""" , """language""" ) SCREAMING_SNAKE_CASE__ = val # read in qv biases read_in_q_v_bias(__UpperCamelCase , __UpperCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = load_demo_image() SCREAMING_SNAKE_CASE__ = """What is unusual about this image?""" # create processor SCREAMING_SNAKE_CASE__ = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__UpperCamelCase , image_std=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = InstructBlipProcessor( image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase , qformer_tokenizer=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = processor(images=__UpperCamelCase , text=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE__ = vis_processors["""eval"""](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE__ = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits SCREAMING_SNAKE_CASE__ = hf_model(**__UpperCamelCase ).logits else: SCREAMING_SNAKE_CASE__ = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits SCREAMING_SNAKE_CASE__ = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) SCREAMING_SNAKE_CASE__ = hf_model(**__UpperCamelCase , labels=__UpperCamelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE__ = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __UpperCamelCase , atol=__UpperCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) SCREAMING_SNAKE_CASE__ = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) SCREAMING_SNAKE_CASE__ = hf_model.generate( **__UpperCamelCase , do_sample=__UpperCamelCase , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE__ = 2 print("""Original generation:""" , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = processor.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [text.strip() for text in output_text] print("""HF generation:""" , __UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(f"""Salesforce/{model_name}""" ) hf_model.push_to_hub(f"""Salesforce/{model_name}""" ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() __lowerCamelCase : Optional[int] = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __lowerCamelCase : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
204
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def __a ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image @property def __a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_lowercase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def __a ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(_lowercase ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE__ = unet.half() SCREAMING_SNAKE_CASE__ = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ).images SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained(_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __a ( self : Any ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=5 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
204
1
'''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' SCREAMING_SNAKE_CASE_: Any =[{'type': 'code', 'content': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE_: Optional[Any] ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCAmelCase : str = TypeVar('''T''') class __magic_name__ ( Generic[T] ): """simple docstring""" def __init__( self :List[str] , snake_case :bool = True ): '''simple docstring''' A_ : dict[T, list[T]] = {} # dictionary of lists A_ : Dict = directed def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :T , snake_case :T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) self.adj_list[destination_vertex].append(snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) A_ : Any = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case ) A_ : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A_ : Tuple = [destination_vertex] A_ : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) A_ : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A_ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A_ : Dict = [destination_vertex] A_ : List[str] = [] return self def __repr__( self :Dict ): '''simple docstring''' return pformat(self.adj_list )
70
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase : Any = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase : Any = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ : """simple docstring""" def __init__( self :str , snake_case :Iterable[int] ): '''simple docstring''' A_ : Node | None = None for i in sorted(snake_case , reverse=snake_case ): A_ : str = Node(snake_case , self.head ) def __iter__( self :Any ): '''simple docstring''' A_ : List[Any] = self.head while node: yield node.data A_ : Optional[int] = node.next_node def __len__( self :Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self :Tuple ): '''simple docstring''' return " -> ".join([str(snake_case ) for node in self] ) def __snake_case ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
70
1
from math import factorial lowerCamelCase : List[Any] = {str(d): factorial(d) for d in range(1_0)} def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Dict = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,__SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(__SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
124
"""simple docstring""" from __future__ import annotations def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: __lowerCAmelCase: Tuple = str(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) == 9 and set(__SCREAMING_SNAKE_CASE ) == set("123456789" ) def a__ ( ) -> int | None: for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): __lowerCAmelCase: Tuple = 1_0_0_0_0_2 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): __lowerCAmelCase: int = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(__SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
217
0
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , ): __a : Tuple = size if size is not None else {'height': 18, 'width': 18} __a : Tuple = parent __a : Dict = batch_size __a : Tuple = num_channels __a : Union[str, Any] = image_size __a : Dict = min_resolution __a : Dict = max_resolution __a : Optional[int] = do_resize __a : Dict = size __a : Any = do_normalize def _lowerCamelCase ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowercase ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Optional[Any] = ImageGPTImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''clusters''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) def _lowerCamelCase ( self ): __a : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __a : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowerCamelCase ( self ): __a : Tuple = self.image_processing_class(**self.image_processor_dict ) __a : Dict = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_UpperCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''image_processor.json''' ) image_processor_first.to_json_file(_UpperCAmelCase ) __a : List[Any] = self.image_processing_class.from_json_file(_UpperCAmelCase ).to_dict() __a : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_UpperCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_UpperCAmelCase ) __a : Dict = self.image_processing_class.from_pretrained(_UpperCAmelCase ).to_dict() __a : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_UpperCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _UpperCAmelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def _lowerCamelCase ( self ): pass def __A ( ) -> Optional[int]: __a : str = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''') __a : int = Image.open(dataset[4]['''file''']) __a : Tuple = Image.open(dataset[5]['''file''']) __a : Tuple = [imagea, imagea] return images @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Any = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) __a : List[Any] = prepare_images() # test non-batched __a : Optional[int] = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) __a : Optional[int] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _UpperCAmelCase ) # test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) __a : Dict = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _UpperCAmelCase )
351
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model'''} A = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } A = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } A = '''▁''' class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase = None , **_UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a : int = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) __a : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __a : Tuple = do_lower_case __a : Optional[Any] = remove_space __a : Optional[Any] = keep_accents __a : Union[str, Any] = vocab_file __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): __a : Any = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a : str = self.__dict__.copy() __a : Tuple = None return state def __setstate__( self , _UpperCAmelCase ): __a : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a : Optional[Any] = {} __a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.remove_space: __a : Any = ''' '''.join(inputs.strip().split() ) else: __a : Tuple = inputs __a : Union[str, Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __a : List[str] = unicodedata.normalize('''NFKD''' , _UpperCAmelCase ) __a : Optional[int] = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: __a : Optional[Any] = outputs.lower() return outputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = self.preprocess_text(_UpperCAmelCase ) __a : Tuple = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) __a : int = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __a : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a : Tuple = cur_pieces[1:] else: __a : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = [] __a : str = '''''' __a : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token __a : Tuple = True __a : Tuple = [] else: current_sub_tokens.append(_UpperCAmelCase ) __a : Optional[int] = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : int = [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Union[str, Any] = [self.sep_token_id] __a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : List[str] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: __a : Any = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
188
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowercase ( a__ ) -> Optional[Any]: for param in module.parameters(): __SCREAMING_SNAKE_CASE = False def __lowercase ( ) -> Tuple: __SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __SCREAMING_SNAKE_CASE = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = plt.imshow(a__ ) fig.axes.get_xaxis().set_visible(a__ ) fig.axes.get_yaxis().set_visible(a__ ) plt.show() def __lowercase ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = datetime.now() __SCREAMING_SNAKE_CASE = current_time.strftime('%H:%M:%S' ) return timestamp
257
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __magic_name__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Optional[int] , snake_case__ : Union[str, Any]=None , **snake_case__ : Optional[Any] ): '''simple docstring''' super().__init__(features=snake_case__ ) lowercase :Optional[Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def __snake_case ( self : str , snake_case__ : List[str] ): '''simple docstring''' import torch if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(snake_case__ ) return column def __snake_case ( self : Optional[int] , snake_case__ : Optional[Any] ): '''simple docstring''' import torch if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase :str = {} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase :Dict = {'''dtype''': torch.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase :Tuple = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): lowercase :Tuple = np.asarray(snake_case__ ) return torch.tensor(snake_case__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def __snake_case ( self : Union[str, Any] , snake_case__ : Optional[Any] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(snake_case__ , '''__array__''' ) and not isinstance(snake_case__ , torch.Tensor ): lowercase :int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def __snake_case ( self : str , snake_case__ : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : pa.Table ): '''simple docstring''' lowercase :List[str] = self.numpy_arrow_extractor().extract_row(snake_case__ ) lowercase :List[str] = self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : pa.Table ): '''simple docstring''' lowercase :Optional[int] = self.numpy_arrow_extractor().extract_column(snake_case__ ) lowercase :Tuple = self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) lowercase :Union[str, Any] = self.recursive_tensorize(snake_case__ ) lowercase :Optional[Any] = self._consolidate(snake_case__ ) return column def __snake_case ( self : Optional[Any] , snake_case__ : pa.Table ): '''simple docstring''' lowercase :Optional[Any] = self.numpy_arrow_extractor().extract_batch(snake_case__ ) lowercase :List[str] = self.python_features_decoder.decode_batch(snake_case__ ) lowercase :Dict = self.recursive_tensorize(snake_case__ ) for column_name in batch: lowercase :Dict = self._consolidate(batch[column_name] ) return batch
172
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str , a_ :Optional[int]) -> Union[str, Any]: lowercase :List[str] = set() lowercase :Dict = [] def parse_line(a_ :Dict): for line in fp: if isinstance(a_ , a_): lowercase :Any = line.decode('''UTF-8''') if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' '''): # process a single warning and move it to `selected_warnings`. if len(a_) > 0: lowercase :int = '''\n'''.join(a_) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets): selected_warnings.add(a_) buffer.clear() continue else: lowercase :Any = line.strip() buffer.append(a_) if from_gh: for filename in os.listdir(a_): lowercase :Optional[int] = os.path.join(a_ , a_) if not os.path.isdir(a_): # read the file if filename != "warnings.txt": continue with open(a_) as fp: parse_line(a_) else: try: with zipfile.ZipFile(a_) as z: for filename in z.namelist(): if not os.path.isdir(a_): # read the file if filename != "warnings.txt": continue with z.open(a_) as fp: parse_line(a_) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""") return selected_warnings def lowerCamelCase (a_ :Any , a_ :Optional[int]) -> Any: lowercase :Tuple = set() lowercase :Dict = [os.path.join(a_ , a_) for p in os.listdir(a_) if (p.endswith('''.zip''') or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a_ , a_)) return selected_warnings if __name__ == "__main__": def lowerCamelCase (a_ :List[Any]) -> Optional[Any]: return values.split(''',''') UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase = extract_warnings(args.output_dir, args.targets) UpperCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
172
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a_ ( lowerCamelCase ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCAmelCase__ : List[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class snake_case ( __UpperCAmelCase ): """simple docstring""" @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : ArgumentParser ): UpperCAmelCase__ = parser.add_parser( 'convert' ,help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' ,) train_parser.add_argument('--model_type' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' ,type=lowerCamelCase__ ,default='' ,help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,help='Optional fine-tuning task name if the TF model was a finetuned model.' ,) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,*lowerCamelCase__ : Any ,): UpperCAmelCase__ = logging.get_logger('transformers-cli/converting' ) self._logger.info(f'''Loading model {model_type}''' ) UpperCAmelCase__ = model_type UpperCAmelCase__ = tf_checkpoint UpperCAmelCase__ = pytorch_dump_output UpperCAmelCase__ = config UpperCAmelCase__ = finetuning_task_name def __lowerCAmelCase ( self : str ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '' else: UpperCAmelCase__ = self._tf_checkpoint UpperCAmelCase__ = '' convert_transfo_xl_checkpoint_to_pytorch( lowerCamelCase__ ,self._config ,self._pytorch_dump_output ,lowerCamelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
98
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : int=False , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[int]=False ) -> Optional[Any]: UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Tuple ) -> List[str]: for i in range(config.num_hidden_layers ): UpperCAmelCase_ = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' ) UpperCAmelCase_ = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Optional[Any]: UpperCAmelCase_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> Dict: UpperCAmelCase_ = dct.pop(__UpperCamelCase ) UpperCAmelCase_ = val @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> str: UpperCAmelCase_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__UpperCamelCase ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False if "vqa" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = 3129 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''vqa2-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = ViltForQuestionAnswering(__UpperCamelCase ) elif "nlvr" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = 2 UpperCAmelCase_ = {0: '''False''', 1: '''True'''} UpperCAmelCase_ = {v: k for k, v in config.idalabel.items()} UpperCAmelCase_ = 3 UpperCAmelCase_ = ViltForImagesAndTextClassification(__UpperCamelCase ) elif "irtr" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = ViltForImageAndTextRetrieval(__UpperCamelCase ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = ViltForMaskedLM(__UpperCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ = create_rename_keys(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase ) if mlm_model or irtr_model: UpperCAmelCase_ = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__UpperCamelCase ) # Define processor UpperCAmelCase_ = ViltImageProcessor(size=384 ) UpperCAmelCase_ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ = ViltProcessor(__UpperCamelCase , __UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase_ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__UpperCamelCase ).raw ) UpperCAmelCase_ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__UpperCamelCase ).raw ) UpperCAmelCase_ = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase_ = processor(__UpperCamelCase , __UpperCamelCase , return_tensors='''pt''' ) UpperCAmelCase_ = processor(__UpperCamelCase , __UpperCamelCase , return_tensors='''pt''' ) UpperCAmelCase_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase_ = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__UpperCamelCase ).raw ) if mlm_model: UpperCAmelCase_ = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = processor(__UpperCamelCase , __UpperCamelCase , return_tensors='''pt''' ) UpperCAmelCase_ = model(**__UpperCamelCase ) # Verify outputs if mlm_model: UpperCAmelCase_ = torch.Size([1, 11, 3_0522] ) UpperCAmelCase_ = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" UpperCAmelCase_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase_ = torch.Size([1, 3129] ) UpperCAmelCase_ = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" UpperCAmelCase_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase_ = torch.Size([1, 2] ) UpperCAmelCase_ = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
177
from __future__ import annotations _lowerCamelCase = list[list[int]] # assigning initial values to the grid _lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None: if location := find_empty_location(__UpperCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase_ = digit if sudoku(__UpperCamelCase ) is not None: return grid UpperCAmelCase_ = 0 return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None: for row in grid: for cell in row: print(__UpperCamelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') _lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
177
1
lowerCAmelCase__ :Union[str, Any] = range(2, 2_0 + 1) lowerCAmelCase__ :int = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ :dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase__ ( a__: Optional[int] , a__: Union[str, Any] , a__: Union[str, Any] , a__: int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = sum(a_i[j] for j in range(a__ , len(a__ ) ) ) _UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(a__ ) , a__ ) ) ) _UpperCAmelCase , _UpperCAmelCase = 0, 0 _UpperCAmelCase = n - i _UpperCAmelCase = memo.get(a__ ) if sub_memo is not None: _UpperCAmelCase = sub_memo.get(a__ ) if jumps is not None and len(a__ ) > 0: # find and make the largest jump without going over _UpperCAmelCase = -1 for _k in range(len(a__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCAmelCase = _k break if max_jump >= 0: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCAmelCase = diff + c for j in range(min(a__ , len(a__ ) ) ): _UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 ) if new_c > 0: add(a__ , a__ , a__ ) else: _UpperCAmelCase = [] else: _UpperCAmelCase = {c: []} _UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCAmelCase , _UpperCAmelCase = next_term(a__ , k - 1 , i + dn , a__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCAmelCase , _UpperCAmelCase = compute(a__ , a__ , i + dn , a__ ) diff += _diff dn += terms_jumped _UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCAmelCase = 0 while j < len(a__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a__ , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase__ ( a__: List[Any] , a__: List[str] , a__: Tuple , a__: List[str] ) -> Optional[Any]: '''simple docstring''' if i >= n: return 0, i if k > len(a__ ): a_i.extend([0 for _ in range(k - len(a__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCAmelCase = i _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 0, 0 for j in range(len(a__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCAmelCase = ds_c + ds_b diff += addend _UpperCAmelCase = 0 for j in range(a__ ): _UpperCAmelCase = a_i[j] + addend _UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a__ , a__ , a__ ) return diff, i - start_i def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int] , a__: List[Any] ) -> Any: '''simple docstring''' for j in range(a__ , len(a__ ) ): _UpperCAmelCase = digits[j] + addend if s >= 1_0: _UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 ) _UpperCAmelCase = addend // 1_0 + quotient else: _UpperCAmelCase = s _UpperCAmelCase = addend // 1_0 if addend == 0: break while addend > 0: _UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 ) digits.append(a__ ) def lowerCAmelCase__ ( a__: int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCAmelCase = [1] _UpperCAmelCase = 1 _UpperCAmelCase = 0 while True: _UpperCAmelCase , _UpperCAmelCase = next_term(a__ , 2_0 , i + dn , a__ ) dn += terms_jumped if dn == n - i: break _UpperCAmelCase = 0 for j in range(len(a__ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
329
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , a : str , a : int , a : int )-> str: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) lowercase__ = img lowercase__ = img.shape[1] lowercase__ = img.shape[0] lowercase__ = dst_width lowercase__ = dst_height lowercase__ = self.src_w / self.dst_w lowercase__ = self.src_h / self.dst_h lowercase__ = lowercase__ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase__ = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : int )-> int: """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : int )-> int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowercase_ , lowercase_ = 800, 600 lowercase_ = imread("""image_data/lena.jpg""", 1) lowercase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
356
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
269
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['BeitFeatureExtractor'] lowerCAmelCase__ = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
def __UpperCamelCase ( _A : float , _A : int ) ->float: """simple docstring""" if digit_amount > 0: return round(number - int(_A ) , _A ) return number - int(_A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
154
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE_ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : int = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ : str = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } SCREAMING_SNAKE_CASE_ : List[Any] = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } SCREAMING_SNAKE_CASE_ : List[Any] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ConvBertTokenizer def __init__( self: Any , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: List[str]=None , UpperCamelCase: List[str]=True , UpperCamelCase: str="[UNK]" , UpperCamelCase: Optional[int]="[SEP]" , UpperCamelCase: List[str]="[PAD]" , UpperCamelCase: List[str]="[CLS]" , UpperCamelCase: Union[str, Any]="[MASK]" , UpperCamelCase: List[Any]=True , UpperCamelCase: Union[str, Any]=None , **UpperCamelCase: List[str] , ): """simple docstring""" super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase ) != tokenize_chinese_chars ): A__ = getattr(UpperCamelCase , normalizer_state.pop("""type""" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**UpperCamelCase ) A__ = do_lower_case def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Dict , UpperCamelCase: str=None ): """simple docstring""" A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self: int , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self: int , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ): """simple docstring""" A__ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
69
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a : """simple docstring""" UpperCAmelCase = BlenderbotConfig UpperCAmelCase = {} UpperCAmelCase = "gelu" def __init__( self: Optional[Any] , UpperCamelCase: str , UpperCamelCase: str=13 , UpperCamelCase: Union[str, Any]=7 , UpperCamelCase: int=True , UpperCamelCase: List[Any]=False , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Optional[int]=2 , UpperCamelCase: Tuple=4 , UpperCamelCase: List[Any]=37 , UpperCamelCase: int=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: Tuple=20 , UpperCamelCase: List[str]=2 , UpperCamelCase: Dict=1 , UpperCamelCase: Optional[int]=0 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self: Any ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def UpperCamelCase ( self: int , UpperCamelCase: Optional[Any] , UpperCamelCase: int ): """simple docstring""" A__ = TFBlenderbotModel(config=UpperCamelCase ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , head_mask=UpperCamelCase , use_cache=UpperCamelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , past_key_values=UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase , UpperCamelCase , rtol=1e-3 ) def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=None , ): if attention_mask is None: A__ = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCAmelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = TFBlenderbotModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase ) @require_tokenizers @require_tf class a ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = ["My friends are cool but they eat too many carbs."] UpperCAmelCase = "facebook/blenderbot-400M-distill" @cached_property def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
69
1
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = [ord(_A ) for i in text] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : str = [] for i in plain: UpperCAmelCase_ : List[str] = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : Optional[Any] , _A : int ) -> int: UpperCAmelCase_ : Optional[Any] = [] for i in range(len(_A ) ): UpperCAmelCase_ : List[str] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Optional[int] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
def _a ( lowerCamelCase ): return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
287
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowercase : Optional[int] = list[list[float | int]] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Matrix: _snake_case = len(__A ) _snake_case = [[0 for _ in range(size + 1 )] for _ in range(__A )] _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 for row in range(__A ): for col in range(__A ): _snake_case = matrix[row][col] _snake_case = vector[row][0] _snake_case = 0 _snake_case = 0 while row < size and col < size: # pivoting _snake_case = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _snake_case , _snake_case = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __A ): _snake_case = augmented[rowa][col] / augmented[row][col] _snake_case = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __A ): for row in range(__A ): _snake_case = augmented[row][col] / augmented[col][col] for cola in range(__A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A ) ] def SCREAMING_SNAKE_CASE__ ( __A ) -> Callable[[int], int]: _snake_case = len(__A ) _snake_case = [[0 for _ in range(__A )] for _ in range(__A )] _snake_case = [[0] for _ in range(__A )] _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 for x_val, y_val in enumerate(__A ): for col in range(__A ): _snake_case = (x_val + 1) ** (size - col - 1) _snake_case = y_val _snake_case = solve(__A , __A ) def interpolated_func(__A ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__A ) ) return interpolated_func def SCREAMING_SNAKE_CASE__ ( __A ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def SCREAMING_SNAKE_CASE__ ( __A = question_function , __A = 10 ) -> int: _snake_case = [func(__A ) for x_val in range(1 , order + 1 )] _snake_case = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _snake_case = 0 _snake_case = 42 _snake_case = 42 for poly in polynomials: _snake_case = 1 while func(__A ) == poly(__A ): x_val += 1 ret += poly(__A ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
160
'''simple docstring''' import random def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = False ) -> dict: _snake_case = {i: [] for i in range(__A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__A ): for j in range(i + 1 , __A ): if random.random() < probability: graph[i].append(__A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__A ) return graph def SCREAMING_SNAKE_CASE__ ( __A ) -> dict: return { i: [j for j in range(__A ) if i != j] for i in range(__A ) } if __name__ == "__main__": import doctest doctest.testmod()
160
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _A : Any =logging.get_logger(__name__) _A : List[str] =OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) _A : Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__ : List[Any] = model_type_to_module_name(UpperCamelCase ) lowerCamelCase__ : Any = importlib.import_module(f'''.{module_name}''' , """transformers.models""" ) try: return getattr(UpperCamelCase , UpperCamelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase , """__name__""" , UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__ : List[Any] = importlib.import_module("""transformers""" ) if hasattr(UpperCamelCase , UpperCamelCase ): return getattr(UpperCamelCase , UpperCamelCase ) return None def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , **UpperCamelCase , ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = get_file_from_repo( UpperCamelCase , UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , resume_download=UpperCamelCase , proxies=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , local_files_only=UpperCamelCase , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(UpperCamelCase , encoding="""utf-8""" ) as reader: return json.load(UpperCamelCase ) class _lowercase : def __init__( self: Optional[int] ): raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase__ ) def lowerCamelCase_ ( cls: List[Any] , UpperCamelCase__: int , **UpperCamelCase__: str ): lowerCamelCase__ : List[Any] = kwargs.pop("""config""" , UpperCamelCase__ ) lowerCamelCase__ : int = kwargs.pop("""trust_remote_code""" , UpperCamelCase__ ) lowerCamelCase__ : Dict = True lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = FeatureExtractionMixin.get_feature_extractor_dict(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : List[str] = config_dict.get("""feature_extractor_type""" , UpperCamelCase__ ) lowerCamelCase__ : Tuple = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): lowerCamelCase__ : Any = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # It could be in `config.feature_extractor_type`` lowerCamelCase__ : Tuple = getattr(UpperCamelCase__ , """feature_extractor_type""" , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase__ : Union[str, Any] = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: lowerCamelCase__ : List[Any] = feature_extractor_class_from_name(UpperCamelCase__ ) lowerCamelCase__ : str = feature_extractor_auto_map is not None lowerCamelCase__ : Optional[Any] = feature_extractor_class is not None or type(UpperCamelCase__ ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase__ : Optional[Any] = resolve_trust_remote_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if has_remote_code and trust_remote_code: lowerCamelCase__ : str = get_class_from_dynamic_module( UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : str = kwargs.pop("""code_revision""" , UpperCamelCase__ ) if os.path.isdir(UpperCamelCase__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCamelCase__ ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase__ : int = FEATURE_EXTRACTOR_MAPPING[type(UpperCamelCase__ )] return feature_extractor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase_ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] ): FEATURE_EXTRACTOR_MAPPING.register(UpperCamelCase__ , UpperCamelCase__ )
41
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[Any] ='''pt''' elif is_tf_available(): _A : Any ='''tf''' else: _A : List[str] ='''jax''' class _lowercase ( _lowercase , unittest.TestCase ): a = ByTaTokenizer a = False def lowerCamelCase_ ( self: str ): super().setUp() lowerCamelCase__ : str = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self: Optional[int] ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def lowerCamelCase_ ( self: Any , **UpperCamelCase__: Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Any=False , UpperCamelCase__: Union[str, Any]=20 , UpperCamelCase__: Optional[int]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCamelCase__ : List[str] = [] for i in range(len(UpperCamelCase__ ) ): try: lowerCamelCase__ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda UpperCamelCase__ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCamelCase__ ) ) lowerCamelCase__ : Tuple = list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: lowerCamelCase__ : Dict = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: lowerCamelCase__ : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : Union[str, Any] = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Union[str, Any] = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: lowerCamelCase__ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: lowerCamelCase__ : str = """ """ + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.ta_base_tokenizer lowerCamelCase__ : Union[str, Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowerCamelCase__ : Optional[int] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.ta_base_tokenizer lowerCamelCase__ : Dict = """Unicode €.""" lowerCamelCase__ : List[Any] = tokenizer(UpperCamelCase__ ) lowerCamelCase__ : List[str] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase__ ) # decoding lowerCamelCase__ : Tuple = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , """Unicode €.</s>""" ) lowerCamelCase__ : List[Any] = tokenizer("""e è é ê ë""" ) lowerCamelCase__ : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase__ ) # decoding lowerCamelCase__ : str = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.ta_base_tokenizer lowerCamelCase__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowerCamelCase__ : List[str] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCamelCase__ : int = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": lowerCamelCase__ : Any = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[str] = self.ta_base_tokenizer lowerCamelCase__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCamelCase__ : Tuple = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCamelCase__ ) self.assertIn("""attention_mask""" , UpperCamelCase__ ) self.assertNotIn("""decoder_input_ids""" , UpperCamelCase__ ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.ta_base_tokenizer lowerCamelCase__ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] lowerCamelCase__ : Union[str, Any] = tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding="""max_length""" , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Tuple = self.ta_base_tokenizer lowerCamelCase__ : str = ["""A long paragraph for summarization. </s>"""] lowerCamelCase__ : Optional[Any] = ["""Summary of the text. </s>"""] # fmt: off lowerCamelCase__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCamelCase__ : Any = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCamelCase__ : Any = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch["""input_ids"""][0] ) self.assertEqual(UpperCamelCase__ , batch["""labels"""][0] ) def lowerCamelCase_ ( self: Optional[int] ): # safety check on max_len default value so we are sure the test works lowerCamelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : int = tempfile.mkdtemp() lowerCamelCase__ : List[str] = """ He is very happy, UNwant\u00E9d,running""" lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) lowerCamelCase__ : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowerCamelCase__ : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : int = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase__ : Any = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase__ : Union[str, Any] = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [F'''<extra_id_{i}>''' for i in range(125 )] lowerCamelCase__ : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCamelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCamelCase__ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : str = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def lowerCamelCase_ ( self: Optional[int] ): pass def lowerCamelCase_ ( self: str ): pass def lowerCamelCase_ ( self: List[str] ): pass def lowerCamelCase_ ( self: Optional[int] ): pass def lowerCamelCase_ ( self: int ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCamelCase__ : Dict = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowerCamelCase__ : str = 0 lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + """_id""" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + """_id""" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + """_id""" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + """_id""" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens_ids""" ) , [] ) setattr(UpperCamelCase__ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
41
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class _a ( _a): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : List[str] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , )->str: super().__init__(**__lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_2_4} _UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowercase__ ( self : int , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->str: _UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->Tuple: _UpperCAmelCase = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->str: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->Any: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : int = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : int , )->List[str]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__lowerCamelCase , param_name='''size''' , default_to_square=__lowerCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__lowerCamelCase , param_name='''crop_size''' , default_to_square=__lowerCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __lowerCamelCase ( A__ , A__=7 ) -> Tuple: """simple docstring""" UpperCamelCase = None if token is not None: UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) UpperCamelCase = '636036' UpperCamelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" UpperCamelCase = requests.get(A__ , headers=A__ ).json() return result["workflow_runs"] def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = get_daily_ci_runs(A__ ) UpperCamelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCamelCase = workflow_run['id'] break return workflow_run_id def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = get_last_daily_ci_runs(A__ ) if workflow_run_id is not None: UpperCamelCase = get_artifacts_links(worflow_run_id=A__ , token=A__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCamelCase = artifacts_links[artifact_name] download_artifact( artifact_name=A__ , artifact_url=A__ , output_dir=A__ , token=A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" get_last_daily_ci_artifacts(A__ , A__ , A__ ) UpperCamelCase = {} for artifact_name in artifact_names: UpperCamelCase = os.path.join(A__ , F"""{artifact_name}.zip""" ) if os.path.isfile(A__ ): UpperCamelCase = {} with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file with z.open(A__ ) as f: UpperCamelCase = f.read().decode('UTF-8' ) return results
28
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Optional[int]=3_6 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : Dict=1_6 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=0.0_2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.get_config() UpperCamelCase = 3_0_0 return config def A ( self : Tuple ): """simple docstring""" ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = MraModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = MraModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = MraForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = MraForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = MraForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = () def A ( self : str ): """simple docstring""" UpperCamelCase = MraModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MraModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='MRA does not output attentions' ) def A ( self : List[str] ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) UpperCamelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
28
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' A__ = [] for line in lines: A__ = re.sub(R'#.*' , '' , SCREAMING_SNAKE_CASE__ ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE__ ) A__ = '\n'.join(SCREAMING_SNAKE_CASE__ ) # Make a hash from all this code A__ = full_str.encode('utf-8' ) return shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # get importable module names and hash for caching lowercase_ = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase_ = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase_ = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name lowercase_ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
282
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : str )-> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'],model_result['ss'] ): A__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sgugger/tiny-distilbert-classification' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,only_pretrain_model=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,torchscript=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu','Cant do half precision' ) def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,fpaa=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu','Can\'t do half precision' ) def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],fpaa=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,save_to_csv=lowercase_,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(lowercase_,'inf_time.csv' ),train_memory_csv_file=os.path.join(lowercase_,'train_mem.csv' ),inference_memory_csv_file=os.path.join(lowercase_,'inf_mem.csv' ),train_time_csv_file=os.path.join(lowercase_,'train_time.csv' ),env_info_csv_file=os.path.join(lowercase_,'env.csv' ),multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'env.csv' ) ).exists() ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase_ : Optional[Any] ): self.assertTrue(hasattr(lowercase_,'sequential' ) ) self.assertTrue(hasattr(lowercase_,'cumulative' ) ) self.assertTrue(hasattr(lowercase_,'current' ) ) self.assertTrue(hasattr(lowercase_,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(lowercase_,'log.txt' ),log_print=lowercase_,trace_memory_line_by_line=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_,'log.txt' ) ).exists() )
282
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = KandinskyVaaImgaImgPipeline __lowercase : str = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __lowercase : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __lowercase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase : Tuple = False @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return self.time_input_dim @property def snake_case_ ( self): return self.time_input_dim * 4 @property def snake_case_ ( self): return 1_0_0 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case_ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __SCREAMING_SNAKE_CASE = DDIMScheduler(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1)[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("""RGB""").resize((2_5_6, 2_5_6)) if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") __SCREAMING_SNAKE_CASE = """A red cartoon frog, 4k""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""").manual_seed(0) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
100
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 10**9 ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
100
1
def A(__a: list , __a: int = 0 ): lowerCAmelCase_ = length or len(_snake_case ) lowerCAmelCase_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCAmelCase_ = list_data[i + 1], list_data[i] lowerCAmelCase_ = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = params lowercase_ : Dict = np.array(A__ ) lowercase_ : int = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self ,__UpperCamelCase ) -> str: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: '''simple docstring''' return len(self.lengths ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = self.params.max_model_input_size lowercase_ : Tuple = self.lengths > max_len logger.info(f'''Splitting {sum(A__ )} too long sequences.''' ) def divide_chunks(__UpperCamelCase ,__UpperCamelCase ): return [l[i : i + n] for i in range(0 ,len(A__ ) ,A__ )] lowercase_ : Tuple = [] lowercase_ : Any = [] if self.params.mlm: lowercase_ : Optional[int] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: lowercase_ : Optional[Any] = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase_ : Optional[int] = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: lowercase_ : Union[str, Any] = np.insert(A__ ,0 ,A__ ) if sub_s[-1] != sep_id: lowercase_ : str = np.insert(A__ ,len(A__ ) ,A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) lowercase_ : List[Any] = np.array(A__ ) lowercase_ : Union[str, Any] = np.array(A__ ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = len(self ) lowercase_ : Dict = self.lengths > 11 lowercase_ : str = self.token_ids[indices] lowercase_ : Tuple = self.lengths[indices] lowercase_ : int = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase_ : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] lowercase_ : Union[str, Any] = len(self ) lowercase_ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase_ : Union[str, Any] = (unk_occs / self.lengths) < 0.5 lowercase_ : Any = self.token_ids[indices] lowercase_ : List[str] = self.lengths[indices] lowercase_ : Optional[Any] = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = [t[0] for t in batch] lowercase_ : Optional[int] = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings lowercase_ : str = max(A__ ) # Pad token ids if self.params.mlm: lowercase_ : Dict = self.params.special_tok_ids["""pad_token"""] else: lowercase_ : int = self.params.special_tok_ids["""unk_token"""] lowercase_ : str = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) lowercase_ : int = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase_ : str = torch.tensor(A__ ) # (bs) return tk_t, lg_t
213
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A_ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A_ : Tuple = 12_8022 A_ : Optional[Any] = 12_8028 @require_sentencepiece class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Tuple = MaMaaaTokenizer UpperCAmelCase__: List[Any] = False UpperCAmelCase__: Any = False UpperCAmelCase__: Optional[Any] = True def __A ( self ): super().setUp() A__ : Union[str, Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] A__ : Optional[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) A__ : Optional[int] = Path(self.tmpdirname ) save_json(A__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) A__ : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **A__ ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **A__ ) def __A ( self , A__ ): return ( "This is a test", "This is a test", ) def __A ( self ): A__ : Any = """</s>""" A__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) , A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) , A__ ) def __A ( self ): A__ : str = self.get_tokenizer() A__ : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(A__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def __A ( self ): pass def __A ( self ): A__ : Optional[int] = self.get_tokenizer() A__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [2, 3, 4, 5, 6] , ) A__ : Dict = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) A__ : Any = tokenizer.convert_tokens_to_string(A__ ) self.assertEqual(A__ , """This is a test""" ) @slow def __A ( self ): # fmt: off A__ : int = {"""input_ids""": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''facebook/m2m100_418M''' UpperCAmelCase__: Any = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__: Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__: List[str] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __A ( cls ): A__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) A__ : int = 1 return cls def __A ( self ): self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 12_8063 ) def __A ( self ): A__ : Optional[Any] = self.tokenizer.get_vocab() self.assertEqual(len(A__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , A__ ) def __A ( self ): A__ : List[Any] = """en""" A__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def __A ( self ): self.assertIn(A__ , self.tokenizer.all_special_ids ) # fmt: off A__ : Dict = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on A__ : Dict = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) A__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def __A ( self ): A__ : str = tempfile.mkdtemp() A__ : Dict = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A__ ) A__ : List[Any] = MaMaaaTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.lang_token_to_id , A__ ) @require_torch def __A ( self ): A__ : List[str] = """en""" A__ : List[str] = """fr""" A__ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors="""pt""" ) A__ : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A__ : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __A ( self ): A__ : List[str] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A__ : Any = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __A ( self ): A__ : Optional[int] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A__ : Any = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __A ( self ): A__ : Any = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(A__ ) , { # en_XX, A, test, EOS """input_ids""": [[12_8022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_8006, } , )
192
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : WhisperForConditionalGeneration , __a : WhisperProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ) -> int: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__a , speech_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , ) def lowerCAmelCase ( self : Dict , __a : Optional[Union[str, int]] = "auto" ) -> str: """simple docstring""" if slice_size == "auto": __lowercase : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(__a ) @torch.no_grad() def __call__( self : List[str] , __a : str , __a : Optional[Any]=16000 , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> Optional[int]: """simple docstring""" __lowercase : int = self.speech_processor.feature_extractor( __a , return_tensors="""pt""" , sampling_rate=__a ).input_features.to(self.device ) __lowercase : Tuple = self.speech_model.generate(__a , max_length=480000 ) __lowercase : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(__a , skip_special_tokens=__a , normalize=__a )[ 0 ] if isinstance(__a , __a ): __lowercase : Tuple = 1 elif isinstance(__a , __a ): __lowercase : List[str] = len(__a ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__a )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(__a )}." ) # get prompt text embeddings __lowercase : Optional[Any] = self.tokenizer( __a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowercase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase : Optional[int] = text_embeddings.shape __lowercase : str = text_embeddings.repeat(1 , __a , 1 ) __lowercase : Tuple = text_embeddings.view(bs_embed * num_images_per_prompt , __a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase : List[str] if negative_prompt is None: __lowercase : List[Any] = [""""""] * batch_size elif type(__a ) is not type(__a ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=" F" {type(__a )}." ) elif isinstance(__a , __a ): __lowercase : str = [negative_prompt] elif batch_size != len(__a ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: __lowercase : Optional[Any] = negative_prompt __lowercase : List[str] = text_input_ids.shape[-1] __lowercase : Optional[int] = self.tokenizer( __a , padding="""max_length""" , max_length=__a , truncation=__a , return_tensors="""pt""" , ) __lowercase : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase : str = uncond_embeddings.shape[1] __lowercase : int = uncond_embeddings.repeat(1 , __a , 1 ) __lowercase : int = uncond_embeddings.view(batch_size * num_images_per_prompt , __a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase : Optional[Any] = torch.randn(__a , generator=__a , device="""cpu""" , dtype=__a ).to( self.device ) else: __lowercase : List[Any] = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase : Tuple = {} if accepts_eta: __lowercase : Any = eta for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance __lowercase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase : str = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual __lowercase : Tuple = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase : int = noise_pred.chunk(2 ) __lowercase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase : List[str] = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a , __a ) __lowercase : Union[str, Any] = 1 / 0.18215 * latents __lowercase : Optional[Any] = self.vae.decode(__a ).sample __lowercase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase : Tuple = self.numpy_to_pil(__a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" A_ : Dict = nn.Parameter(_UpperCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" A_ : Optional[Any] = nn.Parameter(_UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[int] = np.asarray(weights[0] ) A_ : Optional[Any] = np.asarray(weights[1] ) A_ : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : int = np.asarray(weights[0] ) A_ : Optional[int] = np.asarray(weights[1] ) A_ : int = np.asarray(weights[2] ) A_ : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = weights[0][0][0] A_ : Any = np.asarray(layer_norm_a[0] ) A_ : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # lsh weights + output A_ : List[str] = weights[0][1] if len(_UpperCAmelCase ) < 4: set_layer_weights_in_torch_lsh(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) else: set_layer_weights_in_torch_local(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) # intermediate weighs A_ : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(_UpperCAmelCase ) == 4: A_ : Tuple = intermediate_weights[2] # layernorm 2 A_ : List[Any] = np.asarray(intermediate_weights[0][0] ) A_ : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # intermediate dense A_ : Optional[int] = np.asarray(intermediate_weights[1][0] ) A_ : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) # intermediate out A_ : List[str] = np.asarray(intermediate_weights[4][0] ) A_ : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = torch_model.reformer # word embeds A_ : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_UpperCAmelCase ) , ) if isinstance(weights[3] , _UpperCAmelCase ): A_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A_ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" A_ : Tuple = nn.Parameter(torch.tensor(_UpperCAmelCase ) ) A_ : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _UpperCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A_ : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # output layer norm A_ : int = np.asarray(weights[7][0] ) A_ : str = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # output embeddings A_ : Optional[Any] = np.asarray(weights[9][0] ) A_ : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = ReformerConfig.from_json_file(_UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) A_ : Optional[Any] = ReformerModelWithLMHead(_UpperCAmelCase ) with open(_UpperCAmelCase , '''rb''' ) as f: A_ : Union[str, Any] = pickle.load(_UpperCAmelCase )['''weights'''] set_model_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
167
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar _lowerCamelCase : Any = TypeVar('T') class lowercase ( Generic[T]): def __init__( self : Tuple , _lowerCamelCase : T ): """simple docstring""" A_ : Union[str, Any] = data A_ : List[Any] = self A_ : Optional[Any] = 0 class lowercase ( Generic[T]): def __init__( self : int ): """simple docstring""" A_ : dict[T, DisjointSetTreeNode[T]] = {} def a_ ( self : List[str] , _lowerCamelCase : T ): """simple docstring""" A_ : List[str] = DisjointSetTreeNode(_lowerCamelCase ) def a_ ( self : Dict , _lowerCamelCase : T ): """simple docstring""" A_ : Any = self.map[data] if elem_ref != elem_ref.parent: A_ : Any = self.find_set(elem_ref.parent.data ) return elem_ref.parent def a_ ( self : Union[str, Any] , _lowerCamelCase : DisjointSetTreeNode[T] , _lowerCamelCase : DisjointSetTreeNode[T] ): """simple docstring""" if nodea.rank > nodea.rank: A_ : List[str] = nodea else: A_ : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def a_ ( self : Optional[Any] , _lowerCamelCase : T , _lowerCamelCase : T ): """simple docstring""" self.link(self.find_set(_lowerCamelCase ) , self.find_set(_lowerCamelCase ) ) class lowercase ( Generic[T]): def __init__( self : Tuple ): """simple docstring""" A_ : dict[T, dict[T, int]] = {} def a_ ( self : List[Any] , _lowerCamelCase : T ): """simple docstring""" if node not in self.connections: A_ : Tuple = {} def a_ ( self : Optional[Any] , _lowerCamelCase : T , _lowerCamelCase : T , _lowerCamelCase : int ): """simple docstring""" self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) A_ : int = weight A_ : Dict = weight def a_ ( self : Any ): """simple docstring""" A_ : Tuple = [] A_ : Tuple = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowerCamelCase : x[2] ) # creating the disjoint set A_ : Optional[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_lowerCamelCase ) # MST generation A_ : Any = 0 A_ : Optional[int] = 0 A_ : Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A_ , A_ , A_ : int = edges[index] index += 1 A_ : Tuple = disjoint_set.find_set(_lowerCamelCase ) A_ : int = disjoint_set.find_set(_lowerCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) disjoint_set.union(_lowerCamelCase , _lowerCamelCase ) return graph
167
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def A(__a: List[str]=None ): if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser("tpu-config" , description=_description ) else: lowerCAmelCase_ = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments lowerCAmelCase_ = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=__a , default=__a , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=__a , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=__a , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) lowerCAmelCase_ = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=__a , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def A(__a: str ): lowerCAmelCase_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__a ): lowerCAmelCase_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCAmelCase_ = defaults.command_file if not args.command and defaults.commands is not None: lowerCAmelCase_ = defaults.commands if not args.tpu_name: lowerCAmelCase_ = defaults.tpu_name if not args.tpu_zone: lowerCAmelCase_ = defaults.tpu_zone if args.accelerate_version == "dev": lowerCAmelCase_ = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": lowerCAmelCase_ = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , __a ): lowerCAmelCase_ = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: lowerCAmelCase_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __a ): lowerCAmelCase_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCAmelCase_ = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command lowerCAmelCase_ = "; ".join(__a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCAmelCase_ = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__a )}" ) return subprocess.run(__a ) print("Successfully setup pod." ) def A(): lowerCAmelCase_ = tpu_command_parser() lowerCAmelCase_ = parser.parse_args() tpu_command_launcher(__a )
22
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , a__ ) __a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __a = dataset_size < in_memory_max_size else: __a = False __a = is_small_dataset(a__ ) assert result == expected
6
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[Any]: return 1 / (1 + np.exp(-z )) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> List[str]: _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=7_00_00 ) -> Optional[Any]: _snake_case = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase__ = datasets.load_iris() UpperCAmelCase__ = iris.data[:, :2] UpperCAmelCase__ = (iris.target != 0) * 1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
288
0
__magic_name__: Union[str, Any] = range(2, 20 + 1) __magic_name__: Dict = [10**k for k in range(ks[-1] + 1)] __magic_name__: dict[int, dict[int, list[list[int]]]] = {} def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = sum(a_i[j] for j in range(UpperCAmelCase_, len(UpperCAmelCase_ ) ) ) __magic_name__ : int = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ), UpperCAmelCase_ ) ) ) __magic_name__ ,__magic_name__ : List[Any] = 0, 0 __magic_name__ : int = n - i __magic_name__ : Any = memo.get(UpperCAmelCase_ ) if sub_memo is not None: __magic_name__ : Any = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over __magic_name__ : List[Any] = -1 for _k in range(len(UpperCAmelCase_ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : str = _k break if max_jump >= 0: __magic_name__ ,__magic_name__ ,__magic_name__ : Any = jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Union[str, Any] = diff + c for j in range(min(UpperCAmelCase_, len(UpperCAmelCase_ ) ) ): __magic_name__ ,__magic_name__ : Optional[int] = divmod(UpperCAmelCase_, 10 ) if new_c > 0: add(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) else: __magic_name__ : Tuple = [] else: __magic_name__ : List[Any] = {c: []} __magic_name__ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ ,__magic_name__ : Union[str, Any] = next_term(UpperCAmelCase_, k - 1, i + dn, UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ ,__magic_name__ : Dict = compute(UpperCAmelCase_, UpperCAmelCase_, i + dn, UpperCAmelCase_ ) diff += _diff dn += terms_jumped __magic_name__ : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : Dict = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_, (diff, dn, k) ) return (diff, dn) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Dict = i __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : int = ds_c + ds_b diff += addend __magic_name__ : List[Any] = 0 for j in range(UpperCAmelCase_ ): __magic_name__ : Optional[int] = a_i[j] + addend __magic_name__ ,__magic_name__ : Optional[Any] = divmod(UpperCAmelCase_, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) return diff, i - start_i def UpperCamelCase ( _A, _A, _A ): """simple docstring""" for j in range(UpperCAmelCase_, len(UpperCAmelCase_ ) ): __magic_name__ : Optional[Any] = digits[j] + addend if s >= 10: __magic_name__ ,__magic_name__ : List[str] = divmod(UpperCAmelCase_, 10 ) __magic_name__ : Union[str, Any] = addend // 10 + quotient else: __magic_name__ : Optional[Any] = s __magic_name__ : Dict = addend // 10 if addend == 0: break while addend > 0: __magic_name__ ,__magic_name__ : Dict = divmod(UpperCAmelCase_, 10 ) digits.append(UpperCAmelCase_ ) def UpperCamelCase ( _A = 10**15 ): """simple docstring""" __magic_name__ : Union[str, Any] = [1] __magic_name__ : int = 1 __magic_name__ : Union[str, Any] = 0 while True: __magic_name__ ,__magic_name__ : List[str] = next_term(UpperCAmelCase_, 20, i + dn, UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break __magic_name__ : Tuple = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
353
def UpperCamelCase ( _A = 1, _A = 1000 ): """simple docstring""" __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = 0 for divide_by_number in range(_A, digit + 1 ): __magic_name__ : list[int] = [] __magic_name__ : Any = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_A ): __magic_name__ : int = len(_A ) __magic_name__ : Dict = divide_by_number else: has_been_divided.append(_A ) __magic_name__ : Optional[int] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
138
0
import torch from diffusers import StableDiffusionPipeline lowercase__ : Union[str, Any] = '''path-to-your-trained-model''' lowercase__ : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowercase__ : Optional[Any] = '''A photo of sks dog in a bucket''' lowercase__ : List[str] = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
338
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = BioGptTokenizer UpperCAmelCase_ :str = False def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase_ :str = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase_ :int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[Any] = """lower newer""" lowerCAmelCase_ :Tuple = """lower newer""" return input_text, output_text def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ :Union[str, Any] = """lower""" lowerCAmelCase_ :Any = ["""low""", """er</w>"""] lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ :Dict = tokens + ["""<unk>"""] lowerCAmelCase_ :List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase_ :List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) lowerCAmelCase_ :List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) lowerCAmelCase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ :List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
84
0
'''simple docstring''' import random def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' _a = a[left_index] _a = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase__ ): if a[j] < pivot: _a , _a = a[i], a[j] i += 1 _a , _a = a[i - 1], a[left_index] return i - 1 def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' if left < right: _a = random.randint(lowerCAmelCase__ , right - 1 ) _a , _a = ( a[left], a[pivot], ) # switches the pivot with the left most bound _a = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) quick_sort_random( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase__ , pivot_index + 1 , lowerCAmelCase__ ) # recursive quicksort to the right of the pivot point def _A () -> Union[str, Any]: '''simple docstring''' _a = input('Enter numbers separated by a comma:\n' ).strip() _a = [int(lowerCAmelCase__ ) for item in user_input.split(',' )] quick_sort_random(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
104
'''simple docstring''' def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _a , _a = 1, 1 for _ in range(number_of_steps - 1 ): _a , _a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
104
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = "blip_2_vision_model" def __init__( self : Optional[Any] , A : Union[str, Any]=1408 , A : int=6144 , A : Union[str, Any]=39 , A : List[str]=16 , A : List[str]=224 , A : List[Any]=14 , A : int="gelu" , A : Optional[Any]=0.00_001 , A : str=0.0 , A : List[str]=1E-10 , A : Dict=True , **A : Optional[Any] , ): super().__init__(**A ) _UpperCAmelCase : int = hidden_size _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : int = patch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Any = qkv_bias @classmethod def _A ( cls : Tuple , A : Union[str, os.PathLike] , **A : List[str] ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": _UpperCAmelCase : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A , **A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = "blip_2_qformer" def __init__( self : List[str] , A : Dict=30522 , A : Optional[Any]=768 , A : List[str]=12 , A : int=12 , A : List[Any]=3072 , A : List[Any]="gelu" , A : List[str]=0.1 , A : int=0.1 , A : Any=512 , A : List[Any]=0.02 , A : List[Any]=1E-12 , A : Tuple=0 , A : int="absolute" , A : str=2 , A : List[Any]=1408 , **A : Optional[int] , ): super().__init__(pad_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Optional[Any] = cross_attention_frequency _UpperCAmelCase : int = encoder_hidden_size @classmethod def _A ( cls : Optional[Any] , A : Union[str, os.PathLike] , **A : Optional[int] ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": _UpperCAmelCase : List[str] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A , **A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = "blip-2" __UpperCamelCase: List[Any] = True def __init__( self : str , A : Optional[Any]=None , A : List[Any]=None , A : str=None , A : Optional[int]=32 , **A : Union[str, Any] ): super().__init__(**A ) if vision_config is None: _UpperCAmelCase : Dict = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : int = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : Dict = BlipaVisionConfig(**A ) _UpperCAmelCase : Optional[int] = BlipaQFormerConfig(**A ) _UpperCAmelCase : str = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**A ) _UpperCAmelCase : Any = self.text_config.tie_word_embeddings _UpperCAmelCase : Any = self.text_config.is_encoder_decoder _UpperCAmelCase : List[str] = num_query_tokens _UpperCAmelCase : Optional[int] = self.vision_config.hidden_size _UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : int = 1.0 _UpperCAmelCase : Optional[Any] = 0.02 @classmethod def _A ( cls : List[Any] , A : BlipaVisionConfig , A : BlipaQFormerConfig , A : PretrainedConfig , **A : Any , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : List[Any] = self.vision_config.to_dict() _UpperCAmelCase : Tuple = self.qformer_config.to_dict() _UpperCAmelCase : Dict = self.text_config.to_dict() _UpperCAmelCase : Tuple = self.__class__.model_type return output
31
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A : Dict , A : Dict=7 , A : Optional[int]=3 , A : Optional[int]=18 , A : Dict=30 , A : List[Any]=400 , A : Union[str, Any]=True , A : Tuple=None , A : List[Any]=True , A : int=None , A : Optional[int]=True , ): _UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 20} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : int = min_resolution _UpperCAmelCase : Optional[int] = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Optional[Any] = size _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Optional[int] = crop_size _UpperCAmelCase : Optional[Any] = do_flip_channel_order def _A ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Tuple = MobileViTImageProcessor if is_vision_available() else None def _A ( self : List[Any] ): _UpperCAmelCase : Any = MobileViTImageProcessingTester(self ) @property def _A ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Tuple ): _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "size" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "center_crop" ) ) self.assertTrue(hasattr(A , "do_flip_channel_order" ) ) def _A ( self : Any ): _UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Any ): pass def _A ( self : Dict ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processing _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Any ): # Initialize image_processing _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Any = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
1
"""simple docstring""" import unittest from transformers import DonutProcessor A_ = '''naver-clova-ix/donut-base''' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = DonutProcessor.from_pretrained(snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : int = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } A__ : Optional[Any] = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) A__ : int = self.processor.tokenajson(snake_case ) self.assertDictEqual(snake_case , snake_case )
350
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['GLPNFeatureExtractor'] lowerCamelCase__ = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
234
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 50 ): _UpperCAmelCase : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
234
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """unispeech""" def __init__( self : Tuple , __lowercase : List[str]=32 , __lowercase : Tuple=7_68 , __lowercase : Optional[int]=12 , __lowercase : Tuple=12 , __lowercase : Tuple=30_72 , __lowercase : int="gelu" , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Dict=0.1 , __lowercase : Optional[Any]=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : int=0.1 , __lowercase : Optional[Any]=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]="group" , __lowercase : Any="gelu" , __lowercase : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowercase : List[str]=(5, 2, 2, 2, 2, 2, 2) , __lowercase : int=(10, 3, 3, 3, 3, 2, 2) , __lowercase : List[Any]=False , __lowercase : Tuple=1_28 , __lowercase : List[str]=16 , __lowercase : List[Any]=False , __lowercase : List[str]=True , __lowercase : str=0.05 , __lowercase : Optional[Any]=10 , __lowercase : List[Any]=2 , __lowercase : Any=0.0 , __lowercase : Tuple=10 , __lowercase : str=0 , __lowercase : Optional[int]=3_20 , __lowercase : str=2 , __lowercase : Dict=0.1 , __lowercase : List[str]=1_00 , __lowercase : List[Any]=2_56 , __lowercase : List[str]=2_56 , __lowercase : List[str]=0.1 , __lowercase : str="mean" , __lowercase : List[Any]=False , __lowercase : Optional[Any]=False , __lowercase : Optional[Any]=2_56 , __lowercase : Dict=80 , __lowercase : Optional[Any]=0 , __lowercase : str=1 , __lowercase : str=2 , __lowercase : Optional[int]=0.5 , **__lowercase : Tuple , ) -> List[Any]: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : int =feat_extract_norm SCREAMING_SNAKE_CASE__ : Union[str, Any] =feat_extract_activation SCREAMING_SNAKE_CASE__ : str =list(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =list(__lowercase ) SCREAMING_SNAKE_CASE__ : int =list(__lowercase ) SCREAMING_SNAKE_CASE__ : int =conv_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ : Any =num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ : Any =len(self.conv_dim ) SCREAMING_SNAKE_CASE__ : int =num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_act SCREAMING_SNAKE_CASE__ : Tuple =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : int =activation_dropout SCREAMING_SNAKE_CASE__ : int =feat_proj_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] =final_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] =layerdrop SCREAMING_SNAKE_CASE__ : List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[Any] =initializer_range SCREAMING_SNAKE_CASE__ : Dict =num_ctc_classes SCREAMING_SNAKE_CASE__ : int =vocab_size SCREAMING_SNAKE_CASE__ : str =do_stable_layer_norm SCREAMING_SNAKE_CASE__ : Tuple =use_weighted_layer_sum SCREAMING_SNAKE_CASE__ : Dict =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ : str =apply_spec_augment SCREAMING_SNAKE_CASE__ : Optional[Any] =mask_time_prob SCREAMING_SNAKE_CASE__ : Any =mask_time_length SCREAMING_SNAKE_CASE__ : int =mask_time_min_masks SCREAMING_SNAKE_CASE__ : str =mask_feature_prob SCREAMING_SNAKE_CASE__ : Any =mask_feature_length SCREAMING_SNAKE_CASE__ : Union[str, Any] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ : int =num_codevectors_per_group SCREAMING_SNAKE_CASE__ : Any =num_codevector_groups SCREAMING_SNAKE_CASE__ : Union[str, Any] =contrastive_logits_temperature SCREAMING_SNAKE_CASE__ : Union[str, Any] =feat_quantizer_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] =num_negatives SCREAMING_SNAKE_CASE__ : Tuple =codevector_dim SCREAMING_SNAKE_CASE__ : Any =proj_codevector_dim SCREAMING_SNAKE_CASE__ : int =diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ : List[Any] =ctc_loss_reduction SCREAMING_SNAKE_CASE__ : List[Any] =ctc_zero_infinity # pretraining loss SCREAMING_SNAKE_CASE__ : Tuple =replace_prob @property def __magic_name__ ( self : List[Any] ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
222
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
1
from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE__ : Union[str, Any] = 300 # TEMPERATURE (unit = K) def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ) -> float: if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
270
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str a__ : List[str] a__ : Optional[List[str]] @dataclass class lowerCAmelCase__ : a__ : List[int] a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None class lowerCAmelCase__ ( __lowercase ): a__ : Optional[Any] = """train""" a__ : Optional[int] = """dev""" a__ : Dict = """test""" class lowerCAmelCase__ : @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : str ) -> List[str]: raise NotImplementedError @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : List[InputExample] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str="[SEP]" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : str=-1_00 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=True , ) -> List[InputFeatures]: __lowerCamelCase = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} __lowerCamelCase = [] for ex_index, example in enumerate(SCREAMING_SNAKE_CASE__ ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [] __lowerCamelCase = [] for word, label in zip(example.words , example.labels ): __lowerCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(SCREAMING_SNAKE_CASE__ ) > 0: tokens.extend(SCREAMING_SNAKE_CASE__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(SCREAMING_SNAKE_CASE__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __lowerCamelCase = tokenizer.num_special_tokens_to_add() if len(SCREAMING_SNAKE_CASE__ ) > max_seq_length - special_tokens_count: __lowerCamelCase = tokens[: (max_seq_length - special_tokens_count)] __lowerCamelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __lowerCamelCase = [sequence_a_segment_id] * len(SCREAMING_SNAKE_CASE__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __lowerCamelCase = [cls_token] + tokens __lowerCamelCase = [pad_token_label_id] + label_ids __lowerCamelCase = [cls_token_segment_id] + segment_ids __lowerCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __lowerCamelCase = [1 if mask_padding_with_zero else 0] * len(SCREAMING_SNAKE_CASE__ ) # Zero-pad up to the sequence length. __lowerCamelCase = max_seq_length - len(SCREAMING_SNAKE_CASE__ ) if pad_on_left: __lowerCamelCase = ([pad_token] * padding_length) + input_ids __lowerCamelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __lowerCamelCase = ([pad_token_segment_id] * padding_length) + segment_ids __lowerCamelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(SCREAMING_SNAKE_CASE__ ) == max_seq_length assert len(SCREAMING_SNAKE_CASE__ ) == max_seq_length assert len(SCREAMING_SNAKE_CASE__ ) == max_seq_length assert len(SCREAMING_SNAKE_CASE__ ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE__ ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE__ ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE__ ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE__ ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __lowerCamelCase = None features.append( InputFeatures( input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , label_ids=SCREAMING_SNAKE_CASE__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase__ ( __lowercase ): a__ : List[InputFeatures] a__ : int = nn.CrossEntropyLoss().ignore_index def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : TokenClassificationTask , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Split = Split.train , ) -> Union[str, Any]: # Load data features from cache or dataset file __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase = cached_features_file + '''.lock''' with FileLock(SCREAMING_SNAKE_CASE__ ): if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __lowerCamelCase = torch.load(SCREAMING_SNAKE_CASE__ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __lowerCamelCase = token_classification_task.read_examples_from_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # TODO clean up all this to leverage built-in features of tokenizers __lowerCamelCase = token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , SCREAMING_SNAKE_CASE__ ) def __len__( self : Dict ) -> str: return len(self.features ) def __getitem__( self : Any , SCREAMING_SNAKE_CASE__ : Dict ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase__ : a__ : List[InputFeatures] a__ : int = -100 def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : TokenClassificationTask , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Split = Split.train , ) -> List[Any]: __lowerCamelCase = token_classification_task.read_examples_from_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # TODO clean up all this to leverage built-in features of tokenizers __lowerCamelCase = token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __lowerCamelCase = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __lowerCamelCase = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[Any] ) -> Any: return len(self.features ) def __getitem__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> InputFeatures: return self.features[i]
270
1
"""simple docstring""" import re from filelock import FileLock try: import nltk _UpperCamelCase : str = True except (ImportError, ModuleNotFoundError): _UpperCamelCase : Dict = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def snake_case (A_ :str ): '''simple docstring''' re.sub('<n>' , '' , A_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A_ ) )
370
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class snake_case ( unittest.TestCase ): def __init__( self : List[str] , A : Union[str, Any] , A : Optional[Any]=1_3 , A : List[Any]=3_0 , A : List[Any]=2 , A : Optional[Any]=3 , A : Union[str, Any]=True , A : Union[str, Any]=True , A : Optional[int]=3_2 , A : Tuple=5 , A : List[str]=4 , A : List[Any]=3_7 , A : Optional[Any]="gelu" , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=1_0 , A : Union[str, Any]=0.02 , ): '''simple docstring''' a : Optional[Any] = parent a : Tuple = batch_size a : int = image_size a : str = patch_size a : List[str] = num_channels a : List[str] = is_training a : List[str] = use_labels a : Optional[int] = hidden_size a : Optional[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : str = intermediate_size a : List[str] = hidden_act a : List[str] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[Any] = type_sequence_label_size a : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = (image_size // patch_size) ** 2 a : List[Any] = num_patches + 1 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase__ ( self : Union[str, Any] , A : str , A : Union[str, Any] ): '''simple docstring''' a : Tuple = FlaxViTModel(config=A ) a : int = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (self.image_size, self.image_size) a : List[str] = (self.patch_size, self.patch_size) a : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , A : Dict , A : Optional[int] ): '''simple docstring''' a : Optional[Any] = self.type_sequence_label_size a : List[Any] = FlaxViTForImageClassification(config=A ) a : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a : Dict = 1 a : Tuple = FlaxViTForImageClassification(A ) a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : Optional[int] = model(A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.prepare_config_and_inputs() ( ( a ), ( a ), ) : Dict = config_and_inputs a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Any = FlaxViTModelTester(self ) a : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Tuple = model_class(A ) a : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' a, a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : List[Any] = self._prepare_for_class(A , A ) a : Tuple = model_class(A ) @jax.jit def model_jitted(A : Tuple , **A : int ): return model(pixel_values=A , **A ) with self.subTest('JIT Enabled' ): a : List[str] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : List[str] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a : List[str] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) a : Optional[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A )
186
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : str= None _a : int= BloomTokenizerFast _a : Optional[Any]= BloomTokenizerFast _a : Dict= True _a : str= False _a : Union[str, Any]= "tokenizer_file" _a : Union[str, Any]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[int] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_rust_tokenizer() lowercase : List[str] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase : int = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : int = tokenizer.batch_encode_plus(snake_case )["""input_ids"""] self.assertListEqual(snake_case ,snake_case ) lowercase : int = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case ,**snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : str = """This is a simple input""" lowercase : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase : Optional[int] = ("""This is a simple input""", """This is a pair""") lowercase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase : List[Any] = None # Hotfixing padding = None self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.get_rust_tokenizer() lowercase : Optional[Any] = load_dataset("""xnli""" ,"""all_languages""" ,split="""test""" ,streaming=snake_case ) lowercase : Tuple = next(iter(snake_case ) )["""premise"""] # pick up one data lowercase : Any = list(sample_data.values() ) lowercase : str = list(map(tokenizer.encode ,snake_case ) ) lowercase : Tuple = [tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: str , lowerCAmelCase__: Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_: Tuple = quote(lowerCAmelCase__ ) return hfh.hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" , revision=lowerCAmelCase__ )
358
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets a : Dict = datasets.logging.get_logger(__name__) a : Any = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' a : int = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' a : List[Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Dict=False , lowerCAmelCase__: List[Any]=False , lowerCAmelCase__: Any=True , lowerCAmelCase__: Union[str, Any]=False , lowerCAmelCase__: List[Any]="dummy_doc" ): """simple docstring""" UpperCAmelCase_: str = {doc: key_lines} UpperCAmelCase_: str = {doc: sys_lines} UpperCAmelCase_: Optional[Any] = {} UpperCAmelCase_: Optional[int] = 0 UpperCAmelCase_: Optional[Any] = 0 UpperCAmelCase_: str = 0 UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_ , UpperCAmelCase_: List[str] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_: List[str] = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: Any = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_: Tuple = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase_ , UpperCAmelCase_: str = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase_: Tuple = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Dict , lowerCAmelCase__: int , lowerCAmelCase__: Any , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Tuple = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Any = {} UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Optional[Any] = 0 for name, metric in metrics: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: UpperCAmelCase_: List[str] = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Dict = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCAmelCase_: Any = line.split()[5] if not parse_col == "-": UpperCAmelCase_: List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def __snake_case (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ), codebase_urls=["""https://github.com/ns-moosavi/coval"""], reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ], ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> int: UpperCAmelCase_: Tuple = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCAmelCase_: str = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE_ ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase_: Tuple = evaluate( key_lines=SCREAMING_SNAKE_CASE_, sys_lines=SCREAMING_SNAKE_CASE_, metrics=SCREAMING_SNAKE_CASE_, NP_only=SCREAMING_SNAKE_CASE_, remove_nested=SCREAMING_SNAKE_CASE_, keep_singletons=SCREAMING_SNAKE_CASE_, min_span=SCREAMING_SNAKE_CASE_, ) return score
82
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = (16, 32, 96, 256) _SCREAMING_SNAKE_CASE = jnp.floataa def A ( self : List[str] ): """simple docstring""" UpperCamelCase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase = self.block_out_channels[i] UpperCamelCase = self.block_out_channels[i + 1] UpperCamelCase = nn.Conv( __snake_case , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__snake_case ) UpperCamelCase = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__snake_case ) UpperCamelCase = blocks UpperCamelCase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = self.conv_in(__snake_case ) UpperCamelCase = nn.silu(__snake_case ) for block in self.blocks: UpperCamelCase = block(__snake_case ) UpperCamelCase = nn.silu(__snake_case ) UpperCamelCase = self.conv_out(__snake_case ) return embedding @flax_register_to_config class SCREAMING_SNAKE_CASE ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = ( """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """DownBlock2D""", ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = (320, 640, 1_280, 1_280) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 1_280 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """rgb""" _SCREAMING_SNAKE_CASE = (16, 32, 96, 256) def A ( self : List[str] , UpperCamelCase__ : jax.random.KeyArray ): """simple docstring""" UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase = jnp.zeros(__snake_case , dtype=jnp.floataa ) UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase = jnp.zeros(__snake_case , dtype=jnp.floataa ) UpperCamelCase = jax.random.split(__snake_case ) UpperCamelCase = {'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )["params"] def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.block_out_channels UpperCamelCase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) UpperCamelCase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase = self.only_cross_attention if isinstance(__snake_case , __snake_case ): UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = block_out_channels[0] UpperCamelCase = nn.Conv( __snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__snake_case ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] UpperCamelCase = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) for _ in range(self.layers_per_block ): UpperCamelCase = nn.Conv( __snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__snake_case ) if not is_final_block: UpperCamelCase = nn.Conv( __snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__snake_case ) UpperCamelCase = down_blocks UpperCamelCase = controlnet_down_blocks # mid UpperCamelCase = block_out_channels[-1] UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=__snake_case , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase = nn.Conv( __snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = False , ): """simple docstring""" UpperCamelCase = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase = jnp.flip(__snake_case , axis=1 ) # 1. time if not isinstance(__snake_case , jnp.ndarray ): UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase = jnp.expand_dims(__snake_case , 0 ) UpperCamelCase = self.time_proj(__snake_case ) UpperCamelCase = self.time_embedding(__snake_case ) # 2. pre-process UpperCamelCase = jnp.transpose(__snake_case , (0, 2, 3, 1) ) UpperCamelCase = self.conv_in(__snake_case ) UpperCamelCase = jnp.transpose(__snake_case , (0, 2, 3, 1) ) UpperCamelCase = self.controlnet_cond_embedding(__snake_case ) sample += controlnet_cond # 3. down UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): UpperCamelCase = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: UpperCamelCase = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) # 5. contronet blocks UpperCamelCase = () for down_block_res_sample, controlnet_block in zip(__snake_case , self.controlnet_down_blocks ): UpperCamelCase = controlnet_block(__snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase = controlnet_down_block_res_samples UpperCamelCase = self.controlnet_mid_block(__snake_case ) # 6. scaling UpperCamelCase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__snake_case , mid_block_res_sample=__snake_case )
28
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCAmelCase: Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase: List[str] = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class a__( lowerCamelCase__ ): lowercase__ = """t5""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Union[str, Any] , __snake_case : int=3_21_28 , __snake_case : str=5_12 , __snake_case : Dict=64 , __snake_case : Optional[int]=20_48 , __snake_case : Tuple=6 , __snake_case : Any=None , __snake_case : Optional[int]=8 , __snake_case : str=32 , __snake_case : Union[str, Any]=1_28 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=1e-6 , __snake_case : int=1.0 , __snake_case : Optional[int]="relu" , __snake_case : Any=True , __snake_case : List[str]=True , __snake_case : Union[str, Any]=0 , __snake_case : Dict=1 , **__snake_case : Optional[int] , ): a : Optional[int] = vocab_size a : Dict = d_model a : Union[str, Any] = d_kv a : Dict = d_ff a : Tuple = num_layers a : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a : int = num_heads a : str = relative_attention_num_buckets a : List[Any] = relative_attention_max_distance a : int = dropout_rate a : Tuple = layer_norm_epsilon a : str = initializer_factor a : List[Any] = feed_forward_proj a : Union[str, Any] = use_cache a : List[str] = self.feed_forward_proj.split('-' ) a : int = act_info[-1] a : Union[str, Any] = act_info[0] == 'gated' if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a : Optional[Any] = 'gelu_new' super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , ) class a__( lowerCamelCase__ ): @property def lowercase_ ( self : Optional[int] ): a : Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: a : Dict = 'past_encoder_sequence + sequence' a : Dict = {0: 'batch'} a : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} a : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='inputs' ) return common_inputs @property def lowercase_ ( self : List[Any] ): return 13
297
0
'''simple docstring''' from math import ceil def __a ( _UpperCamelCase: int = 1_001 ) -> int: """simple docstring""" _snake_case = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _snake_case = 2 * i + 1 _snake_case = 2 * i _snake_case = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCamelCase_ : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
356
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ : Any = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __a ( _UpperCamelCase: str , _UpperCamelCase: Union[str, Any]=100 , _UpperCamelCase: List[str]=" " ) -> List[str]: """simple docstring""" _snake_case = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __a ( _UpperCamelCase: dict ) -> dict: """simple docstring""" _snake_case , _snake_case = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else "" ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __a ( _UpperCamelCase: dict , _UpperCamelCase: DPRContextEncoder , _UpperCamelCase: DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" _snake_case = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_UpperCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] _snake_case = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __a ( _UpperCamelCase: "RagExampleArguments" , _UpperCamelCase: "ProcessingArguments" , _UpperCamelCase: "IndexHnswArguments" , ) -> Dict: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _snake_case = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _snake_case = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) _snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _snake_case = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _snake_case = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_UpperCamelCase ) # And save the index _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : SCREAMING_SNAKE_CASE_ : str = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=__lowerCAmelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) SCREAMING_SNAKE_CASE_ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) SCREAMING_SNAKE_CASE_ : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ : List[str] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
142
0
UpperCamelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
186
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): A_ : List[str] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): if magnitude == 0: A_ : Union[str, Any] = column continue A_ : Dict = column / magnitude # Subtract to cancel term A_ : Union[str, Any] = current_set[0] A_ : Tuple = [first_row] A_ : int = current_set[1::] for row in current_set: A_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE ) continue for column_index in range(len(SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: A_ : Optional[Any] = final_set[0] A_ : Any = [] A_ : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A_ : Optional[Any] = simplify(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE ) A_ : List[Any] = resultant return final_set def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) A_ : str = len(SCREAMING_SNAKE_CASE ) + 1 if any(len(SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] A_ : Dict = equations.copy() if any(0 in row for row in data_set ): A_ : Tuple = data_set.copy() A_ : Optional[Any] = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): if 0 not in row: A_ : str = data_set.pop(SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , SCREAMING_SNAKE_CASE ) A_ : int = data_set.copy() A_ : Dict = simplify(SCREAMING_SNAKE_CASE ) A_ : Dict = simplified[::-1] A_ : list = [] for row in simplified: A_ : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A_ : Optional[Any] = row.copy()[: len(SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue A_ : int = temp_row[1::] A_ : int = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
186
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features''', '''is_longer'''] def __init__( self : int , _A : List[str]=64 , _A : Union[str, Any]=48_000 , _A : Union[str, Any]=480 , _A : Optional[int]=10 , _A : Union[str, Any]=1_024 , _A : int=0.0 , _A : Union[str, Any]=False , _A : float = 0 , _A : float = 14_000 , _A : int = None , _A : str = "fusion" , _A : str = "repeatpad" , **_A : Tuple , ) -> Tuple: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Dict = top_db lowercase : Tuple = truncation lowercase : Optional[int] = padding lowercase : Dict = fft_window_size lowercase : Optional[Any] = (fft_window_size >> 1) + 1 lowercase : Dict = hop_length lowercase : List[Any] = max_length_s lowercase : Dict = max_length_s * sampling_rate lowercase : int = sampling_rate lowercase : Any = frequency_min lowercase : Optional[int] = frequency_max lowercase : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) lowercase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Optional[int] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) lowercase : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __a ( self : str , _A : np.array , _A : Optional[np.array] = None ) -> np.ndarray: """simple docstring""" lowercase : List[Any] = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def __a ( self : int , _A : List[str] , _A : Optional[Any] , _A : List[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[int] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase : List[str] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase : Optional[Any] = [0] # randomly choose index for each part lowercase : str = np.random.choice(ranges[0] ) lowercase : Union[str, Any] = np.random.choice(ranges[1] ) lowercase : str = np.random.choice(ranges[2] ) lowercase : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] lowercase : str = mel[idx_back : idx_back + chunk_frames, :] lowercase : Dict = torch.tensor(mel[None, None, :] ) lowercase : Optional[Any] = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) lowercase : str = mel_shrink[0][0].numpy() lowercase : Optional[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __a ( self : Optional[int] , _A : np.array , _A : List[Any] , _A : str , _A : Union[str, Any] ) -> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase : str = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase : str = len(_A ) - max_length lowercase : str = np.random.randint(0 , overflow + 1 ) lowercase : Tuple = waveform[idx : idx + max_length] lowercase : int = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase : Optional[int] = self._np_extract_fbank_features(_A , self.mel_filters ) lowercase : Dict = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) lowercase : Dict = False else: lowercase : Dict = self._random_mel_fusion(_A , _A , _A ) lowercase : Optional[Any] = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: lowercase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase : int = int(max_length / len(_A ) ) lowercase : Tuple = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase : List[Any] = int(max_length / len(_A ) ) lowercase : Tuple = np.stack(np.tile(_A , _A ) ) lowercase : Optional[Any] = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": lowercase : Optional[int] = self._np_extract_fbank_features(_A , self.mel_filters ) lowercase : Any = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowercase : Dict = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : str = None , _A : Optional[str] = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , **_A : Optional[int] , ) -> BatchFeature: """simple docstring""" lowercase : str = truncation if truncation is not None else self.truncation lowercase : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Optional[int] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : str = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : int = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : Dict = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Any = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. lowercase : Any = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] lowercase : Optional[int] = [] lowercase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase : Any = np.random.randint(0 , len(_A ) ) lowercase : int = True if isinstance(input_mel[0] , _A ): lowercase : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase : str = [[longer] for longer in is_longer] lowercase : Dict = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase : Any = BatchFeature(_A ) if return_tensors is not None: lowercase : List[str] = input_features.convert_to_tensors(_A ) return input_features
116
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
116
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __A =2_5_6_0_4_7 __A =2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = NllbTokenizer lowerCAmelCase__ = NllbTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = {} def SCREAMING_SNAKE_CASE_( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = NllbTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = NllbTokenizer(lowercase , keep_accents=lowercase ) lowerCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) lowerCamelCase_ = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) lowerCamelCase_ = tokenizer_p.save_pretrained(lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> str: if not self.test_seqaseq: return lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. lowerCamelCase_ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] lowerCamelCase_ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: lowerCamelCase_ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase , tgt_texts=lowercase , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCamelCase_ = tokenizer.prepare_seqaseq_batch( lowercase , tgt_texts=lowercase , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCamelCase_ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , lowercase ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase_ = [AddedToken("<special>" , lstrip=lowercase )] lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , **lowercase ) lowerCamelCase_ = tokenizer_r.encode("Hey this is a <special> token" ) lowerCamelCase_ = tokenizer_r.encode("<special>" , add_special_tokens=lowercase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = self.tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , **lowercase ) lowerCamelCase_ = tokenizer_p.encode("Hey this is a <special> token" ) lowerCamelCase_ = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , lowercase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = 'facebook/nllb-200-distilled-600M' lowerCAmelCase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase__ = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> int: lowerCamelCase_ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) lowerCamelCase_ = 1 return cls def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 256057 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: self.assertIn(lowercase , self.tokenizer.all_special_ids ) # fmt: off lowerCamelCase_ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on lowerCamelCase_ = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase ) self.assertEqual(lowercase , lowercase ) self.assertNotIn(self.tokenizer.eos_token , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowercase ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(lowercase , max_length=lowercase , truncation=lowercase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowercase ) self.assertEqual(len(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [256203, 3] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase ) lowerCamelCase_ = NllbTokenizer.from_pretrained(lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCamelCase_ = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase ) self.assertEqual(lowercase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.tokenizer(self.src_text , padding=lowercase , truncation=lowercase , max_length=3 , return_tensors="pt" ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=10 , return_tensors="pt" ) lowerCamelCase_ = targets["input_ids"] lowerCamelCase_ = shift_tokens_right( lowercase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(lowercase ) , { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, } , ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) lowerCamelCase_ = False lowerCamelCase_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
19
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
1
"""simple docstring""" import re import string import numpy as np import datasets __UpperCamelCase = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' __UpperCamelCase = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' __UpperCamelCase = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , ) -> Dict: if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE = np.array([re.sub(lowerCAmelCase__ , '' , lowerCAmelCase__ ) for x in predictions] ) SCREAMING_SNAKE_CASE = np.array([re.sub(lowerCAmelCase__ , '' , lowerCAmelCase__ ) for x in references] ) else: SCREAMING_SNAKE_CASE = np.asarray(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.asarray(lowerCAmelCase__ ) if ignore_case: SCREAMING_SNAKE_CASE = np.char.lower(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.char.lower(lowerCAmelCase__ ) if ignore_punctuation: SCREAMING_SNAKE_CASE = string.punctuation.maketrans('' , '' , string.punctuation ) SCREAMING_SNAKE_CASE = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) if ignore_numbers: SCREAMING_SNAKE_CASE = string.digits.maketrans('' , '' , string.digits ) SCREAMING_SNAKE_CASE = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = predictions == references return {"exact_match": np.mean(lowerCAmelCase__ ) * 100}
38
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = [0] * size SCREAMING_SNAKE_CASE = [0] * size @staticmethod def __A ( lowerCAmelCase__ ) -> int: return index | (index + 1) @staticmethod def __A ( lowerCAmelCase__ ) -> int: return (index & (index + 1)) - 1 def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = value while index < self.size: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_next(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE = 0 while left <= right: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) if left <= current_left: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.tree[right] ) SCREAMING_SNAKE_CASE = current_left else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
38
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=_lowercase ) lowerCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go lowerCAmelCase = parser.parse_args() if not hasattr(_lowercase , """func""" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
46
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Union[str, Any] ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _lowercase : Optional[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure)
170
0
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( lowercase_ ): def __init__( self ): # test for the above condition self.test() def a ( self ): snake_case_ = 0 snake_case_ = False while not completed: if counter == 1: self.reset() snake_case_ = self.advance() if not self.does_advance(snake_case ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) snake_case_ , snake_case_ , snake_case_ = self.update(snake_case ) counter += 1 if counter > 1_0000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def a ( self ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self , snake_case ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self , snake_case ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a ( self , snake_case=False ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( lowercase_ ): def __init__( self , snake_case ): super(snake_case , self ).__init__() if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(snake_case , snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) snake_case_ = token_ids snake_case_ = len(self.token_ids ) snake_case_ = -1 # the index of the currently fulfilled step snake_case_ = False def a ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def a ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(snake_case )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def a ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(snake_case )}''' ) snake_case_ = False snake_case_ = False snake_case_ = False if self.does_advance(snake_case ): self.fulfilled_idx += 1 snake_case_ = True if self.fulfilled_idx == (self.seqlen - 1): snake_case_ = True snake_case_ = completed else: # failed to make progress. snake_case_ = True self.reset() return stepped, completed, reset def a ( self ): snake_case_ = False snake_case_ = 0 def a ( self ): return self.seqlen - (self.fulfilled_idx + 1) def a ( self , snake_case=False ): snake_case_ = PhrasalConstraint(self.token_ids ) if stateful: snake_case_ = self.seqlen snake_case_ = self.fulfilled_idx snake_case_ = self.completed return new_constraint class lowercase : def __init__( self , snake_case , snake_case=True ): snake_case_ = max([len(snake_case ) for one in nested_token_ids] ) snake_case_ = {} for token_ids in nested_token_ids: snake_case_ = root for tidx, token_id in enumerate(snake_case ): if token_id not in level: snake_case_ = {} snake_case_ = level[token_id] if no_subsets and self.has_subsets(snake_case , snake_case ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) snake_case_ = root def a ( self , snake_case ): snake_case_ = self.trie for current_token in current_seq: snake_case_ = start[current_token] snake_case_ = list(start.keys() ) return next_tokens def a ( self , snake_case ): snake_case_ = self.next_tokens(snake_case ) return len(snake_case ) == 0 def a ( self , snake_case ): snake_case_ = list(root.values() ) if len(snake_case ) == 0: return 1 else: return sum([self.count_leaves(snake_case ) for nn in next_nodes] ) def a ( self , snake_case , snake_case ): snake_case_ = self.count_leaves(snake_case ) return len(snake_case ) != leaf_count class lowercase ( lowercase_ ): def __init__( self , snake_case ): super(snake_case , self ).__init__() if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(snake_case , snake_case ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(snake_case , snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) snake_case_ = DisjunctiveTrie(snake_case ) snake_case_ = nested_token_ids snake_case_ = self.trie.max_height snake_case_ = [] snake_case_ = False def a ( self ): snake_case_ = self.trie.next_tokens(self.current_seq ) if len(snake_case ) == 0: return None else: return token_list def a ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case )}''' ) snake_case_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def a ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case )}''' ) snake_case_ = False snake_case_ = False snake_case_ = False if self.does_advance(snake_case ): self.current_seq.append(snake_case ) snake_case_ = True else: snake_case_ = True self.reset() snake_case_ = self.trie.reached_leaf(self.current_seq ) snake_case_ = completed return stepped, completed, reset def a ( self ): snake_case_ = False snake_case_ = [] def a ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def a ( self , snake_case=False ): snake_case_ = DisjunctiveConstraint(self.token_ids ) if stateful: snake_case_ = self.seqlen snake_case_ = self.current_seq snake_case_ = self.completed return new_constraint class lowercase : def __init__( self , snake_case ): snake_case_ = constraints # max # of steps required to fulfill a given constraint snake_case_ = max([c.seqlen for c in constraints] ) snake_case_ = len(snake_case ) snake_case_ = False self.init_state() def a ( self ): snake_case_ = [] snake_case_ = None snake_case_ = [constraint.copy(stateful=snake_case ) for constraint in self.constraints] def a ( self ): snake_case_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def a ( self ): snake_case_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" snake_case_ = constraint.advance() if isinstance(snake_case , snake_case ): token_list.append(snake_case ) elif isinstance(snake_case , snake_case ): token_list.extend(snake_case ) else: snake_case_ = self.inprogress_constraint.advance() if isinstance(snake_case , snake_case ): token_list.append(snake_case ) elif isinstance(snake_case , snake_case ): token_list.extend(snake_case ) if len(snake_case ) == 0: return None else: return token_list def a ( self , snake_case ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint snake_case_ , snake_case_ = self.add(snake_case ) # the entire list of constraints are fulfilled if self.completed: break def a ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) snake_case_ , snake_case_ = False, False if self.completed: snake_case_ = True snake_case_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state snake_case_ , snake_case_ , snake_case_ = self.inprogress_constraint.update(snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=snake_case ) ) snake_case_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) snake_case_ = None if len(self.pending_constraints ) == 0: # we're done! snake_case_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(snake_case ): snake_case_ , snake_case_ , snake_case_ = pending_constraint.update(snake_case ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(snake_case ) snake_case_ = None if not complete and stepped: snake_case_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". snake_case_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. snake_case_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def a ( self , snake_case=True ): snake_case_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: snake_case_ = [ constraint.copy(stateful=snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: snake_case_ = self.inprogress_constraint.copy(stateful=snake_case ) snake_case_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
357
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def a ( self ): snake_case_ , snake_case_ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ , snake_case_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ = controlnet_params snake_case_ = 'bird' snake_case_ = jax.device_count() snake_case_ = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) snake_case_ = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.split(snake_case , jax.device_count() ) snake_case_ = replicate(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ = images[0, 253:256, 253:256, -1] snake_case_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def a ( self ): snake_case_ , snake_case_ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ , snake_case_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ = controlnet_params snake_case_ = 'Chef in the kitchen' snake_case_ = jax.device_count() snake_case_ = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) snake_case_ = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.split(snake_case , jax.device_count() ) snake_case_ = replicate(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ = images[0, 253:256, 253:256, -1] snake_case_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
200
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: if digit_amount > 0: return round(number - int(lowerCamelCase__ ) , lowerCamelCase__ ) return number - int(lowerCamelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
73
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( a_: float, a_: float, a_: float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(a_, 2 ) + pow(a_, 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __UpperCamelCase ( _A : str , _A : Union[str, Any] , _A : Optional[int] ) ->Dict: """simple docstring""" lowerCamelCase_ ={ """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ ={ """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } lowerCamelCase_ =f'{src_lang}-{tgt_lang}' lowerCamelCase_ =f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(_A , exist_ok=_A ) lowerCamelCase_ =os.path.join(_A , """README.md""" ) print(f'Generating {path}' ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(_A ) # make sure we are under the root of the project __A : List[str] = Path(__file__).resolve().parent.parent.parent __A : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __A, __A, __A : Tuple = model_name.split('-') __A : Optional[Any] = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
154
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : str = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __A : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) __A : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Tuple = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') __A : Dict = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __UpperCamelCase ( _A : Optional[Any] ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =None # source code of `config_class` lowerCamelCase_ =inspect.getsource(_A ) lowerCamelCase_ =_re_checkpoint.findall(_A ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): lowerCamelCase_ =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase_ =f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: lowerCamelCase_ =ckpt_name break return checkpoint def __UpperCamelCase ( ) ->Tuple: """simple docstring""" lowerCamelCase_ =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase_ =get_checkpoint_from_config_class(_A ) lowerCamelCase_ =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_A ) if len(_A ) > 0: lowerCamelCase_ ="""\n""".join(sorted(_A ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
154
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :int=False ) -> Optional[Any]: __lowerCAmelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowerCAmelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase : Dict = """""" else: __lowerCAmelCase : List[Any] = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : Optional[int] = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] __lowerCAmelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[int] ) -> Tuple: __lowerCAmelCase : Any = dct.pop(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = val def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __lowerCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : int = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Tuple ) -> Tuple: __lowerCAmelCase : Tuple = DeiTConfig() # all deit models have fine-tuned heads __lowerCAmelCase : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowerCAmelCase : Tuple = 1_000 __lowerCAmelCase : Optional[Any] = """huggingface/label-files""" __lowerCAmelCase : int = """imagenet-1k-id2label.json""" __lowerCAmelCase : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : str = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowerCAmelCase : List[str] = idalabel __lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Union[str, Any] = int(deit_name[-6:-4] ) __lowerCAmelCase : int = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __lowerCAmelCase : Union[str, Any] = 192 __lowerCAmelCase : Any = 768 __lowerCAmelCase : Optional[int] = 12 __lowerCAmelCase : List[Any] = 3 elif deit_name[9:].startswith("""small""" ): __lowerCAmelCase : Union[str, Any] = 384 __lowerCAmelCase : List[Any] = 1_536 __lowerCAmelCase : int = 12 __lowerCAmelCase : Dict = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __lowerCAmelCase : List[str] = 1_024 __lowerCAmelCase : Any = 4_096 __lowerCAmelCase : Dict = 24 __lowerCAmelCase : Optional[int] = 16 # load original model from timm __lowerCAmelCase : Tuple = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase : List[Any] = timm_model.state_dict() __lowerCAmelCase : Any = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model __lowerCAmelCase : List[str] = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor __lowerCAmelCase : Optional[int] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowerCAmelCase : int = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE , crop_size=config.image_size ) __lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCAmelCase : int = encoding["""pixel_values"""] __lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
232
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ ( __lowercase ): def UpperCAmelCase__ ( self : Dict )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_snake_case , """num_heads""" ) ) class snake_case_ : def __init__( self : Dict , _snake_case : int , _snake_case : str=13 , _snake_case : Optional[int]=64 , _snake_case : Union[str, Any]=3 , _snake_case : Any=[16, 48, 96] , _snake_case : List[str]=[1, 3, 6] , _snake_case : str=[1, 2, 10] , _snake_case : Tuple=[7, 3, 3] , _snake_case : Tuple=[4, 2, 2] , _snake_case : Tuple=[2, 1, 1] , _snake_case : List[str]=[2, 2, 2] , _snake_case : Tuple=[False, False, True] , _snake_case : int=[0.0, 0.0, 0.0] , _snake_case : Union[str, Any]=0.02 , _snake_case : List[str]=1E-12 , _snake_case : str=True , _snake_case : Any=True , _snake_case : Optional[Any]=2 , )->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Optional[int] = image_size __lowerCAmelCase : Optional[Any] = patch_sizes __lowerCAmelCase : Tuple = patch_stride __lowerCAmelCase : List[Any] = patch_padding __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : str = use_labels __lowerCAmelCase : List[Any] = num_labels __lowerCAmelCase : int = num_channels __lowerCAmelCase : Tuple = embed_dim __lowerCAmelCase : Optional[int] = num_heads __lowerCAmelCase : Union[str, Any] = stride_kv __lowerCAmelCase : List[Any] = depth __lowerCAmelCase : int = cls_token __lowerCAmelCase : Optional[Any] = attention_drop_rate __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Any = layer_norm_eps def UpperCAmelCase__ ( self : List[str] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Optional[int] = None if self.use_labels: # create a random int32 tensor of given shape __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] )->int: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : int , _snake_case : str , _snake_case : Union[str, Any] )->Tuple: '''simple docstring''' __lowerCAmelCase : str = TFCvtModel(config=_snake_case ) __lowerCAmelCase : Optional[Any] = model(_snake_case , training=_snake_case ) __lowerCAmelCase : str = (self.image_size, self.image_size) __lowerCAmelCase , __lowerCAmelCase : Tuple = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowerCAmelCase : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowerCAmelCase : Any = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase__ ( self : Tuple , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : Optional[int] = TFCvtForImageClassification(_snake_case ) __lowerCAmelCase : str = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case_ ( __lowercase ,__lowercase ,unittest.TestCase ): A_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def UpperCAmelCase__ ( self : List[str] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = TFCvtModelTester(self ) __lowerCAmelCase : Optional[Any] = TFCvtConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] )->Optional[int]: '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCAmelCase__ ( self : str )->List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->List[str]: '''simple docstring''' pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Tuple )->Optional[int]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def UpperCAmelCase__ ( self : Dict )->Any: '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase__ ( self : Dict )->Dict: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' __lowerCAmelCase : Optional[int] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_snake_case ) __lowerCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : int = [*signature.parameters.keys()] __lowerCAmelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase__ ( self : int )->List[str]: '''simple docstring''' def check_hidden_states_output(_snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): __lowerCAmelCase : Any = model_class(_snake_case ) __lowerCAmelCase : Any = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowerCAmelCase : Optional[Any] = outputs.hidden_states __lowerCAmelCase : Tuple = len(self.model_tester.depth ) self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Optional[Any] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def UpperCAmelCase__ ( self : str )->List[str]: '''simple docstring''' __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase__ ( self : Dict )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[Any] = TFCvtModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Dict )->List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase__ ( self : List[str] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase : List[Any] = self.default_image_processor __lowerCAmelCase : Optional[int] = prepare_img() __lowerCAmelCase : int = image_processor(images=_snake_case , return_tensors="""tf""" ) # forward pass __lowerCAmelCase : Dict = model(**_snake_case ) # verify the logits __lowerCAmelCase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowerCAmelCase : Any = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
232
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ ,'''width_multiplier''' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple ,lowercase_ : Dict ,lowercase_ : List[Any]=1_3 ,lowercase_ : Tuple=6_4 ,lowercase_ : Optional[int]=2 ,lowercase_ : Any=3 ,lowercase_ : List[Any]="swish" ,lowercase_ : Optional[Any]=3 ,lowercase_ : Dict=3_2 ,lowercase_ : Union[str, Any]=0.1 ,lowercase_ : int=0.02 ,lowercase_ : List[Any]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Optional[int]=1_0 ,lowercase_ : List[str]=None ,lowercase_ : List[Any]=0.25 ,lowercase_ : List[Any]=0.0 ,lowercase_ : Dict=0.0 ,): lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : Optional[Any] = num_channels lowerCAmelCase__ : List[str] = make_divisible(5_1_2 * width_multiplier ,divisor=8 ) lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : List[Any] = conv_kernel_size lowerCAmelCase__ : Tuple = output_stride lowerCAmelCase__ : Union[str, Any] = classifier_dropout_prob lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : List[Any] = num_labels lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Tuple = scope lowerCAmelCase__ : int = width_multiplier lowerCAmelCase__ : Any = ffn_dropout lowerCAmelCase__ : Tuple = attn_dropout def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] ,self.num_labels ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self : Tuple ): return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Dict ,lowercase_ : List[str] ,lowercase_ : Dict ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : int = MobileViTVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : int = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def __lowerCAmelCase ( self : Dict ,lowercase_ : List[str] ,lowercase_ : Tuple ,lowercase_ : Optional[Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : int = MobileViTVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : Any ,lowercase_ : int ,lowercase_ : Tuple ,lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : Optional[Any] = MobileViTVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : int = model(lowercase_ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) lowerCAmelCase__ : Tuple = model(lowercase_ ,labels=lowercase_ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Any = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = config_and_inputs lowerCAmelCase__ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[int] = MobileViTVaModelTester(self ) lowerCAmelCase__ : Optional[int] = MobileViTVaConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ) def __lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __lowerCAmelCase ( self : Dict ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __lowerCAmelCase ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __lowerCAmelCase ( self : Dict ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Any ): pass def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = model_class(lowercase_ ) lowerCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : int ): def check_hidden_states_output(lowercase_ : int ,lowercase_ : List[Any] ,lowercase_ : Any ): lowerCAmelCase__ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : List[Any] = 5 self.assertEqual(len(lowercase_ ) ,lowercase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ : Optional[Any] = 2 for i in range(len(lowercase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = True check_hidden_states_output(lowercase_ ,lowercase_ ,lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True check_hidden_states_output(lowercase_ ,lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def __lowerCAmelCase ( self : Union[str, Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Any = MobileViTVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : Optional[Any] ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : int = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( lowercase_ ) lowerCAmelCase__ : Optional[int] = self.default_image_processor lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : int = image_processor(images=lowercase_ ,return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Dict = model(**lowercase_ ) # verify the logits lowerCAmelCase__ : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase_ ) lowerCAmelCase__ : List[Any] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : int = model.to(lowercase_ ) lowerCAmelCase__ : int = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : int = image_processor(images=lowercase_ ,return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**lowercase_ ) lowerCAmelCase__ : List[Any] = outputs.logits # verify the logits lowerCAmelCase__ : str = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : str = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] ,device=lowercase_ ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,lowercase_ ,atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : int = model.to(lowercase_ ) lowerCAmelCase__ : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : str = image_processor(images=lowercase_ ,return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = outputs.logits.detach().cpu() lowerCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ,target_sizes=[(5_0, 6_0)] ) lowerCAmelCase__ : Optional[int] = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) lowerCAmelCase__ : int = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape ,lowercase_ )
106
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" if len(snake_case__ ) < k or k < 0: raise ValueError("""Invalid Input""" ) _snake_case : Optional[int] = sum(array[:k] ) for i in range(len(snake_case__ ) - k ): _snake_case : Optional[Any] = current_sum - array[i] + array[i + k] _snake_case : List[str] = max(snake_case__ , snake_case__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A_ = [randint(-10_00, 10_00) for i in range(1_00)] A_ = randint(0, 1_10) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
64
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
366
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _A = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') _A = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') _A = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') _A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') _A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
205
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , *a , **a ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , a , ) super().__init__(*a , **a )
178
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {"vocab_file": "spiece.model"} lowercase = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } lowercase = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = [] def __init__( self , a , a="<unk>" , a="<s>" , a="</s>" , a="<pad>" , a="[SEP]" , a="[MASK]" , a="[CLS]" , a = None , **a , ) -> None: snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sep_token=a , mask_token=a , cls_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def _UpperCamelCase ( self ) -> Tuple: return self.sp_model.get_piece_size() def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a ) -> Optional[Any]: snake_case_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , a ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _UpperCamelCase ( self , a ) -> Dict: return self.sp_model.piece_to_id(a ) def _UpperCamelCase ( self , a ) -> Union[str, Any]: snake_case_ = self.sp_model.IdToPiece(a ) return token def _UpperCamelCase ( self , a ) -> List[Any]: snake_case_ = [] snake_case_ = '' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(a ) snake_case_ = False out_string += self.sp_model.decode(a ) return out_string.strip() def _UpperCamelCase ( self , a , a = False , a = None , a = True , **a , ) -> str: snake_case_ = kwargs.pop('use_source_tokenizer' , a ) snake_case_ = self.convert_ids_to_tokens(a , skip_special_tokens=a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a ) ) snake_case_ = [] sub_texts.append(a ) else: current_sub_text.append(a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(a ) ) else: snake_case_ = ''.join(a ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(a ) return clean_text else: return text def _UpperCamelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _UpperCamelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _UpperCamelCase ( self , a , a = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
178
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available a : Union[str, Any] = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
82
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a : str = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Dict=None ): """simple docstring""" UpperCAmelCase_: Any = XLNetConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_: int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCAmelCase_: Optional[int] = finetuning_task UpperCAmelCase_: int = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_: Optional[Any] = XLNetForSequenceClassification(lowerCAmelCase__ ) elif "squad" in finetuning_task: UpperCAmelCase_: List[Any] = finetuning_task UpperCAmelCase_: Optional[Any] = XLNetForQuestionAnswering(lowerCAmelCase__ ) else: UpperCAmelCase_: Tuple = XLNetLMHeadModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model UpperCAmelCase_: Tuple = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {os.path.abspath(lowerCAmelCase__ )}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) a : List[str] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
82
1
from __future__ import annotations from collections import namedtuple def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> int: _snake_case : Any = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
317
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = np.inf def set_batch_size(SCREAMING_SNAKE_CASE ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": A_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : str = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ : Optional[int] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ : Union[str, Any] = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.streaming: A_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : List[str] = None A_ : List[str] = None A_ : List[Any] = None A_ : Dict = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = dataset A_ : Union[str, Any] = path_or_buf A_ : Any = batch_size or get_writer_batch_size(dataset.features ) A_ : Optional[int] = parquet_writer_kwargs def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ : str = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ : Tuple = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : List[Any] = 0 A_ : int = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.dataset.features.arrow_schema A_ : List[str] = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ : List[Any] = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
186
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""Input value must be a 'int' type""" ) return bin(lowerCAmelCase__ ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
32
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None SCREAMING_SNAKE_CASE__ : torch.FloatTensor = None SCREAMING_SNAKE_CASE__ : Optional[Tuple[torch.FloatTensor]] = None SCREAMING_SNAKE_CASE__ : Optional[Tuple[torch.FloatTensor]] = None class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=5_1_2 , __lowercase="cls" , __lowercase=False , __lowercase=True , **__lowercase , ) -> int: super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) lowerCAmelCase_ : int = project_dim lowerCAmelCase_ : Dict = pooler_fn lowerCAmelCase_ : int = learn_encoder lowerCAmelCase_ : Tuple = use_attention_mask class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [r"""pooler""", r"""logit_scale"""] SCREAMING_SNAKE_CASE__ : Optional[int] = [r"""position_ids""", r"""predictions.decoder.bias"""] SCREAMING_SNAKE_CASE__ : Dict = """roberta""" SCREAMING_SNAKE_CASE__ : Any = RobertaSeriesConfig def __init__( self , __lowercase ) -> Union[str, Any]: super().__init__(__lowercase ) lowerCAmelCase_ : int = XLMRobertaModel(__lowercase ) lowerCAmelCase_ : Optional[Any] = nn.Linear(config.hidden_size , config.project_dim ) lowerCAmelCase_ : Union[str, Any] = getattr(__lowercase , '''has_pre_transformation''' , __lowercase ) if self.has_pre_transformation: lowerCAmelCase_ : Tuple = nn.Linear(config.hidden_size , config.project_dim ) lowerCAmelCase_ : int = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowercase_ ( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> str: lowerCAmelCase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Tuple = self.base_model( input_ids=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_attentions=__lowercase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__lowercase , ) if self.has_pre_transformation: lowerCAmelCase_ : int = outputs['''hidden_states'''][-2] lowerCAmelCase_ : List[Any] = self.pre_LN(__lowercase ) lowerCAmelCase_ : Any = self.transformation_pre(__lowercase ) return TransformationModelOutput( projection_state=__lowercase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowerCAmelCase_ : Dict = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__lowercase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
262
from __future__ import annotations import requests def lowerCAmelCase ( lowerCAmelCase_ )-> dict: lowerCAmelCase_ : List[Any] = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(lowerCAmelCase_ ).json() def lowerCAmelCase ( lowerCAmelCase_ = 10 )-> list[dict]: lowerCAmelCase_ : List[Any] = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowerCAmelCase_ : Tuple = requests.get(lowerCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids] def lowerCAmelCase ( lowerCAmelCase_ = 10 )-> str: lowerCAmelCase_ : Optional[Any] = hackernews_top_stories(lowerCAmelCase_ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
262
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase ( _A = "" ): """simple docstring""" __magic_name__ : str = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" __magic_name__ : Any = BeautifulSoup(requests.get(_A ).text, """html.parser""" ) __magic_name__ : Union[str, Any] = soup.find_all("""td""", attrs="""titleColumn""" ) __magic_name__ : Dict = soup.find_all("""td""", class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_A, _A ) } def UpperCamelCase ( _A = "IMDb_Top_250_Movies.csv" ): """simple docstring""" __magic_name__ : Union[str, Any] = get_imdb_top_aaa_movies() with open(_A, """w""", newline="""""" ) as out_file: __magic_name__ : Optional[Any] = csv.writer(_A ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
351
import os from pathlib import Path def UpperCamelCase ( ): """simple docstring""" from torch.utils.cpp_extension import load __magic_name__ : Dict = Path(_A ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __magic_name__ : Optional[int] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""", """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""", """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""", _A, with_cuda=_A, extra_include_paths=[str(_A )], extra_cflags=["""-DWITH_CUDA=1"""], extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ], ) import MultiScaleDeformableAttention as MSDA return MSDA
138
0
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : torch.FloatTensor A : Optional[torch.FloatTensor] = None def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: List[Any]=0.9_9_9 ,__UpperCamelCase: Optional[int]="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase: List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase: Optional[int] ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) SCREAMING_SNAKE_CASE : int = [] for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : int = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[str] = 1 @register_to_config def __init__( self, A = 1_000, A = 0.00_01, A = 0.02, A = "linear", A = None, A = True, A = True, A = 0, A = "epsilon", A = 1.0, **A, ): '''simple docstring''' if kwargs.get('set_alpha_to_one', A ) is not None: SCREAMING_SNAKE_CASE : Optional[Any] = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one', '1.0.0', A, standard_warn=A ) SCREAMING_SNAKE_CASE : Optional[Any] = kwargs['set_alpha_to_one'] if trained_betas is not None: SCREAMING_SNAKE_CASE : Dict = torch.tensor(A, dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE : List[Any] = torch.linspace(A, A, A, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE : Optional[Any] = ( torch.linspace(beta_start**0.5, beta_end**0.5, A, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE : int = betas_for_alpha_bar(A ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas SCREAMING_SNAKE_CASE : List[Any] = torch.cumprod(self.alphas, dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : List[Any] = 1.0 # setable values SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(np.arange(0, A ).copy().astype(np.intaa ) ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' return sample def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) SCREAMING_SNAKE_CASE : Dict = num_inference_steps SCREAMING_SNAKE_CASE : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE : int = (np.arange(0, A ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(A ) self.timesteps += self.config.steps_offset def UpperCamelCase_ ( self, A, A, A, A = 0.0, A = False, A = None, A = True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE : Optional[Any] = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE : int = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE : Optional[int] = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE : str = model_output SCREAMING_SNAKE_CASE : Tuple = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE : List[str] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE : int = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : Union[str, Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=A, pred_original_sample=A ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
251
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase_ = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase_ = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len([g for position, g in enumerate(__UpperCamelCase ) if g == main_target[position]] ) return (item, float(__UpperCamelCase )) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : int = random.randint(0 ,len(__UpperCamelCase ) - 1 ) SCREAMING_SNAKE_CASE : List[str] = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: list[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = list(__UpperCamelCase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : Optional[Any] = random.choice(__UpperCamelCase ) return "".join(__UpperCamelCase ) def lowercase__( __UpperCamelCase: tuple[str, float] ,__UpperCamelCase: list[tuple[str, float]] ,__UpperCamelCase: list[str] ,): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : Optional[Any] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = population_score[random.randint(0 ,__UpperCamelCase )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = crossover(parent_a[0] ,__UpperCamelCase ) # Append new string to the population list. pop.append(mutate(__UpperCamelCase ,__UpperCamelCase ) ) pop.append(mutate(__UpperCamelCase ,__UpperCamelCase ) ) return pop def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: list[str] ,__UpperCamelCase: bool = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : List[str] = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : List[Any] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__UpperCamelCase ) # Generate random starting population. SCREAMING_SNAKE_CASE : Optional[Any] = [] for _ in range(__UpperCamelCase ): population.append(''.join([random.choice(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : Optional[int] = [evaluate(__UpperCamelCase ,__UpperCamelCase ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x[1] ,reverse=__UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCamelCase ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : str = [ (item, score / len(__UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCamelCase ): population.extend(select(population_score[int(__UpperCamelCase )] ,__UpperCamelCase ,__UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase_ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) UpperCamelCase_ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
251
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowerCAmelCase : List[str] =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) __lowerCAmelCase : int =[] __lowerCAmelCase : Union[str, Any] =[] __lowerCAmelCase : str ={"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} __lowerCAmelCase : Optional[Any] =[ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", """emoji""": True, }, } ] __lowerCAmelCase : Tuple =0 for log in Path().glob("""*.log"""): __lowerCAmelCase : str =0 with open(log, """r""") as f: for line in f: __lowerCAmelCase : Any =json.loads(line) if line.get("""nodeid""", """""") != "": __lowerCAmelCase : List[str] =line["""nodeid"""] if line.get("""duration""", None) is not None: __lowerCAmelCase : Optional[int] =F"""{line['duration']:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowerCAmelCase : List[str] =[] log.unlink() __lowerCAmelCase : Union[str, Any] ="""""" __lowerCAmelCase : Tuple =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __lowerCAmelCase : Optional[Any] =[] __lowerCAmelCase : List[Any] ={} for test in failed_tests: __lowerCAmelCase : Dict =test[0].split("""::""") __lowerCAmelCase : int =data[0].split("""/""")[-1] if data[0] not in filesafailed: __lowerCAmelCase : Union[str, Any] =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowerCAmelCase : List[str] =[test[0] for test in failed_table] __lowerCAmelCase : Dict =list(set(files)) # Count number of instances in failed_tests __lowerCAmelCase : Optional[int] =[] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowerCAmelCase : int =tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: __lowerCAmelCase : int ="""Too many failed tests, please see the full report in the Action results.""" __lowerCAmelCase : List[str] =len(err) + 1_0 __lowerCAmelCase : Any =message[: 3_0_0_0 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: __lowerCAmelCase : int ="""No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient __lowerCAmelCase : Dict =WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": __lowerCAmelCase : int ={ """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) __lowerCAmelCase : Tuple ={ """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) __lowerCAmelCase : Union[str, Any] ={ """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) __lowerCAmelCase : str =client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) __lowerCAmelCase : Tuple =response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowerCAmelCase : str ="""""" for i, row in enumerate(test_failures): if row[0] != test_class: __lowerCAmelCase : List[str] =row[0] else: __lowerCAmelCase : Optional[Any] ="""""" __lowerCAmelCase : Any ={ """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase_ = 128022 lowercase_ = 128028 @require_sentencepiece class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = MaMaaaTokenizer lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' super().setUp() A__ = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] A__ = dict(zip(lowercase_,range(len(lowercase_ ) ) ) ) A__ = Path(self.tmpdirname ) save_json(lowercase_,save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase_,save_dir / VOCAB_FILES_NAMES['spm_file'] ) A__ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Tuple,**lowercase_ : Any )-> Any: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname,**lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : List[Any] )-> List[str]: '''simple docstring''' return ( "This is a test", "This is a test", ) def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' A__ = '</s>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0],'</s>' ) self.assertEqual(vocab_keys[1],'<unk>' ) self.assertEqual(vocab_keys[-1],'<s>' ) self.assertEqual(len(lowercase_ ),tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def snake_case__ ( self : str )-> str: '''simple docstring''' pass def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[2, 3, 4, 5, 6],) A__ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) A__ = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertEqual(lowercase_,'This is a test' ) @slow def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = {'input_ids': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='facebook/m2m100_418M',revision='c168bae485c864188cf9aa0e4108b0b6934dc91e',) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): """simple docstring""" lowerCamelCase = 'facebook/m2m100_418M' lowerCamelCase = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] lowerCamelCase = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off lowerCamelCase = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def snake_case__ ( cls : Optional[Any] )-> Optional[Any]: '''simple docstring''' A__ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name,src_lang='en',tgt_lang='fr' ) A__ = 1 return cls def snake_case__ ( self : Union[str, Any] )-> List[str]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('ar' ),1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('en' ),1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ),1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ),1_2_8_0_6_3 ) def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' A__ = self.tokenizer.get_vocab() self.assertEqual(len(lowercase_ ),self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'],3 ) self.assertIn(self.tokenizer.get_lang_token('en' ),lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = 'en' A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens,lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' self.assertIn(lowercase_,self.tokenizer.all_special_ids ) # fmt: off A__ = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on A__ = self.tokenizer.decode(lowercase_,skip_special_tokens=lowercase_ ) A__ = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_,lowercase_ ) self.assertNotIn(self.tokenizer.eos_token,lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' A__ = tempfile.mkdtemp() A__ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowercase_ ) A__ = MaMaaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.lang_token_to_id,lowercase_ ) @require_torch def snake_case__ ( self : List[Any] )-> List[Any]: '''simple docstring''' A__ = 'en' A__ = 'fr' A__ = self.tokenizer(self.src_text,text_target=self.tgt_text,padding=lowercase_,return_tensors='pt' ) A__ = shift_tokens_right( batch['labels'],self.tokenizer.pad_token_id,self.tokenizer.eos_token_id ) for k in batch: A__ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' A__ = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) A__ = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) @require_torch def snake_case__ ( self : Optional[Any] )-> List[str]: '''simple docstring''' A__ = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A__ = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def snake_case__ ( self : Union[str, Any] )-> Any: '''simple docstring''' A__ = self.tokenizer._build_translation_inputs('A test',return_tensors='pt',src_lang='en',tgt_lang='ar' ) self.assertEqual( nested_simplify(lowercase_ ),{ # en_XX, A, test, EOS 'input_ids': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 1_2_8_0_0_6, },)
7
from __future__ import annotations from typing import Any def __snake_case ( _UpperCAmelCase ): if not postfix_notation: return 0 __a = {'''+''', '''-''', '''*''', '''/'''} __a = [] for token in postfix_notation: if token in operations: __a , __a = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_UpperCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
49
0
class lowercase : '''simple docstring''' def __init__( self , _snake_case ) -> None: """simple docstring""" UpperCAmelCase = set_counts UpperCAmelCase = max(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = [1] * num_sets UpperCAmelCase = list(range(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( self , _snake_case , _snake_case ) -> bool: """simple docstring""" UpperCAmelCase = self.get_parent(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = self.get_parent(_SCREAMING_SNAKE_CASE ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCAmelCase = 0 UpperCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCAmelCase = 0 UpperCAmelCase = src_parent UpperCAmelCase = self.set_counts[src_parent] UpperCAmelCase = max(self.max_set , _SCREAMING_SNAKE_CASE ) return True def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set UpperCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
368
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _lowerCAmelCase ( A__: str , A__: List[str] , A__: str ): '''simple docstring''' UpperCAmelCase = AlbertConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase = AlbertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
152
0
def _lowercase ( UpperCamelCase_ = 1000 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
176
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : int =1 A__ : bool =True A__ : bool =False A__ : bool =False A__ : bool =False A__ : jnp.dtype =jnp.floataa def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=True ): SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : bool =True A__ : jnp.dtype =jnp.floataa def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]=True ): SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : int =1 A__ : bool =True A__ : bool =False A__ : bool =False A__ : bool =False A__ : jnp.dtype =jnp.floataa def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class lowercase__ ( nn.Module ): A__ : int A__ : int A__ : int A__ : float =0.0 A__ : int =1 A__ : bool =True A__ : jnp.dtype =jnp.floataa def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict=True ): for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class lowercase__ ( nn.Module ): A__ : int A__ : float =0.0 A__ : int =1 A__ : int =1 A__ : bool =False A__ : bool =False A__ : jnp.dtype =jnp.floataa def A_ ( self : Optional[int] ): # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=True ): SCREAMING_SNAKE_CASE__ = self.resnets[0](UpperCAmelCase_ , UpperCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) return hidden_states
176
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowercase ): """simple docstring""" def is_in_circle(lowercase ,lowercase ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(lowerCAmelCase__ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 0.0 ,lowercase = 1.0 ,): """simple docstring""" return mean( function_to_integrate(uniform(lowerCAmelCase__ ,lowerCAmelCase__ ) ) for _ in range(lowerCAmelCase__ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowercase ,lowercase = 0.0 ,lowercase = 1.0 ): """simple docstring""" def identity_function(lowercase ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" def function_to_integrate(lowercase ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( lowerCAmelCase__ ,lowerCAmelCase__ ,0.0 ,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _a ( ) -> int: a = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } a = Dataset.from_dict(a ) return dataset class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = get_dataset() a = make_duplicate_clusters(__UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = get_dataset() a , a = deduplicate_dataset(__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) print(__UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , __UpperCAmelCase )
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _lowerCAmelCase : List[Any] = "scheduler_config.json" class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 2 UpperCAmelCase_ = 3 UpperCAmelCase_ = 4 UpperCAmelCase_ = 5 @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 class _UpperCamelCase : UpperCAmelCase_ = SCHEDULER_CONFIG_NAME UpperCAmelCase_ = ["""dtype"""] UpperCAmelCase_ = [] UpperCAmelCase_ = True @classmethod def UpperCAmelCase_ ( cls :List[Any] , lowerCamelCase :Dict[str, Any] = None , lowerCamelCase :Optional[str] = None , lowerCamelCase :Any=False , **lowerCamelCase :Dict , ) -> str: UpperCAmelCase__ , UpperCAmelCase__ = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) UpperCAmelCase__ , UpperCAmelCase__ = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): UpperCAmelCase__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Union[str, os.PathLike] , lowerCamelCase :bool = False , **lowerCamelCase :Optional[int] ) -> Dict: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def UpperCAmelCase_ ( self :List[Any] ) -> Any: return self._get_compatibles() @classmethod def UpperCAmelCase_ ( cls :str ) -> Optional[int]: UpperCAmelCase__ = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase__ = importlib.import_module(__name__.split("." )[0] ) UpperCAmelCase__ = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : Tuple[int] ): """simple docstring""" assert len(_lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowerCAmelCase ) - x.ndim) ) , _lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : List[str]=0.999 , _lowerCAmelCase : Optional[int]=jnp.floataa ): """simple docstring""" def alpha_bar(_lowerCAmelCase : Tuple ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 UpperCAmelCase__ = [] for i in range(_lowerCAmelCase ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowerCAmelCase ) / alpha_bar(_lowerCAmelCase ) , _lowerCAmelCase ) ) return jnp.array(_lowerCAmelCase , dtype=_lowerCAmelCase ) @flax.struct.dataclass class _UpperCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , lowerCamelCase :Optional[int] ) -> Optional[int]: UpperCAmelCase__ = scheduler.config if config.trained_betas is not None: UpperCAmelCase__ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCAmelCase__ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase__ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase__ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCAmelCase__ = 1.0 - betas UpperCAmelCase__ = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" UpperCAmelCase__ = state.alphas_cumprod UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() UpperCAmelCase__ = broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() UpperCAmelCase__ = broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
169
0
import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase_ = os.path.join(git_repo_path, """src""", """diffusers""") class _snake_case ( unittest.TestCase): def A__ ( self : Optional[Any] ): lowercase__ = find_backend(" if not is_torch_available():" ) self.assertEqual(lowercase_, "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowercase__ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowercase_, "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowercase__ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowercase_, "torch_and_transformers_and_onnx" ) def A__ ( self : int ): lowercase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch", lowercase_ ) self.assertIn("torch_and_transformers", lowercase_ ) self.assertIn("flax_and_transformers", lowercase_ ) self.assertIn("torch_and_transformers_and_onnx", lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel", objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel", objects["flax"] ) self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"] ) def A__ ( self : Any ): lowercase__ = create_dummy_object("CONSTANT", "\'torch\'" ) self.assertEqual(lowercase_, "\nCONSTANT = None\n" ) lowercase__ = create_dummy_object("function", "\'torch\'" ) self.assertEqual( lowercase_, "\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n" ) lowercase__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n" lowercase__ = create_dummy_object("FakeClass", "\'torch\'" ) self.assertEqual(lowercase_, lowercase_ ) def A__ ( self : Any ): lowercase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" lowercase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"], lowercase_ )
356
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") lowercase_ = parser.parse_args() if args.model_type == "roberta": lowercase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase_ = """roberta""" elif args.model_type == "gpt2": lowercase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase_ = """transformer""" lowercase_ = model.state_dict() lowercase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase_ = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase_ = F'{prefix}.embeddings.{w}.weight' lowercase_ = state_dict[param_name] for w in ["weight", "bias"]: lowercase_ = F'{prefix}.embeddings.LayerNorm.{w}' lowercase_ = state_dict[param_name] # Transformer Blocks # lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowercase_ = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase_ = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[F'lm_head.dense.{w}'] lowercase_ = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase_ = state_dict[F'{prefix}.ln_f.{w}'] lowercase_ = state_dict["""lm_head.weight"""] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
224
0
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase : Union[str, Any] = '''3''' print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
42
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Optional[Any]: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase , id=__UpperCamelCase )
219
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : str = "cpu" , lowerCAmelCase_ : str = "openai/clip-vit-large-patch14" ) -> None: '''simple docstring''' A__ : Dict =device A__ : Optional[Any] =CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) A__ : List[Any] =[0.48145466, 0.4578275, 0.40821073] A__ : Optional[int] =[0.26862954, 0.26130258, 0.27577711] A__ : Union[str, Any] =torchvision.transforms.Normalize(self.image_mean , self.image_std ) A__ : Dict =torchvision.transforms.Resize(2_24 ) A__ : List[Any] =torchvision.transforms.CenterCrop(2_24 ) def lowercase__ ( self : Dict , lowerCAmelCase_ : str ) -> int: '''simple docstring''' A__ : Union[str, Any] =self.resize(lowerCAmelCase_ ) A__ : Union[str, Any] =self.center_crop(lowerCAmelCase_ ) A__ : List[Any] =self.normalize(lowerCAmelCase_ ) return images def __call__( self : Dict , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : int =self.tokenizer(text=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Optional[int] =self.preprocess_img(lowerCAmelCase_ ) A__ : List[str] ={key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : int=10 , lowerCAmelCase_ : Dict=0.01 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]="image" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=False , ) -> None: '''simple docstring''' super().__init__() A__ : Optional[Any] =None A__ : Any =device if device else get_device() if vqgan: A__ : Union[str, Any] =vqgan else: A__ : str =load_vqgan(self.device , conf_path=lowerCAmelCase_ , ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: A__ : Optional[int] =clip else: A__ : Dict =CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) A__ : str =ProcessorGradientFlow(device=self.device ) A__ : Union[str, Any] =iterations A__ : str =lr A__ : List[str] =log A__ : Any =make_grid A__ : Dict =return_val A__ : str =quantize A__ : str =self.vqgan.decoder.z_shape def lowercase__ ( self : Tuple , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]=5 , lowerCAmelCase_ : List[str]=True ) -> Any: '''simple docstring''' A__ : Optional[Any] =[] if output_path is None: A__ : str ="""./animation.gif""" if input_path is None: A__ : List[Any] =self.save_path A__ : Any =sorted(glob(input_path + """/*""" ) ) if not len(lowerCAmelCase_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowerCAmelCase_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) A__ : Tuple =total_duration / len(lowerCAmelCase_ ) A__ : Union[str, Any] =[frame_duration] * len(lowerCAmelCase_ ) if extend_frames: A__ : Any =1.5 A__ : Tuple =3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_ , lowerCAmelCase_ , duration=lowerCAmelCase_ ) print(f"gif saved to {output_path}" ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None ) -> List[Any]: '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError A__ : Optional[Any] =preprocess(Image.open(lowerCAmelCase_ ) , target_image_size=2_56 ).to(self.device ) A__ : Tuple =preprocess_vqgan(lowerCAmelCase_ ) A__ : Dict =self.vqgan.encode(lowerCAmelCase_ ) return z def lowercase__ ( self : Any , lowerCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' A__ : Union[str, Any] =self.latent.detach().requires_grad_() A__ : List[str] =base_latent + transform_vector if self.quantize: A__ : List[Any] =self.vqgan.quantize(lowerCAmelCase_ ) else: A__ : int =trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=None ) -> Union[str, Any]: '''simple docstring''' A__ : int =self.clip_preprocessor(text=lowerCAmelCase_ , images=lowerCAmelCase_ , return_tensors="""pt""" , padding=lowerCAmelCase_ ) A__ : int =self.clip(**lowerCAmelCase_ ) A__ : List[Any] =clip_outputs.logits_per_image if weights is not None: A__ : Dict =similarity_logits * weights return similarity_logits.sum() def lowercase__ ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' A__ : Dict =self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCAmelCase_ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: A__ : Any =self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCAmelCase_ , weights=neg_prompts["""weights"""] ) else: A__ : Optional[int] =torch.tensor([1] , device=self.device ) A__ : List[str] =-torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : Optional[int] =torch.randn_like(self.latent , requires_grad=lowerCAmelCase_ , device=self.device ) A__ : str =torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A__ : str =self._add_vector(lowerCAmelCase_ ) A__ : List[Any] =loop_post_process(lowerCAmelCase_ ) A__ : Optional[Any] =self._get_CLIP_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print("""CLIP loss""" , lowerCAmelCase_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' wandb.init(reinit=lowerCAmelCase_ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: A__ : str =Image.open(lowerCAmelCase_ ) A__ : Optional[Any] =image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(lowerCAmelCase_ ) ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not prompts: return [] A__ : List[Any] =[] A__ : int =[] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Any =[prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowerCAmelCase_ , (tuple, list) ): A__ : Any =prompt[0] A__ : Tuple =float(prompt[1] ) elif ":" in prompt: A__ : Dict =prompt.split(""":""" ) A__ : Union[str, Any] =float(lowerCAmelCase_ ) else: A__ : Union[str, Any] =prompt A__ : Dict =1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_ , device=self.device ), } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , ) -> Optional[Any]: '''simple docstring''' if image_path: A__ : Union[str, Any] =self._get_latent(lowerCAmelCase_ ) else: A__ : str =torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." A__ : List[str] =self.process_prompts(lowerCAmelCase_ ) A__ : List[str] =self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: A__ : List[str] =os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: A__ : List[Any] =save_path + """_""" + get_timestamp() os.makedirs(lowerCAmelCase_ ) A__ : List[Any] =save_path A__ : Dict =self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) A__ : str =loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}_final.png" ) )
369
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy" def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Tuple , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[str]=(4, 4, 64, 64) , lowerCAmelCase_ : Optional[Any]=False ) -> str: '''simple docstring''' A__ : Union[str, Any] =jnp.bfloataa if fpaa else jnp.floataa A__ : Any =jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return image def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Dict="CompVis/stable-diffusion-v1-4" ) -> List[Any]: '''simple docstring''' A__ : Any =jnp.bfloataa if fpaa else jnp.floataa A__ : int ="""bf16""" if fpaa else None A__ , A__ : Any =FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder="""unet""" , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ ) return model, params def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[Any]=(4, 77, 7_68) , lowerCAmelCase_ : List[str]=False ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =jnp.bfloataa if fpaa else jnp.floataa A__ : Optional[int] =jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 10_00, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowercase__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> int: '''simple docstring''' A__ , A__ : Tuple =self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCAmelCase_ ) A__ : List[Any] =self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) A__ : Optional[int] =self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) A__ : Union[str, Any] =model.apply( {"""params""": params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape A__ : Optional[int] =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ : Tuple =jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 10_00, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowercase__ ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' A__ , A__ : List[str] =self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_latents(lowerCAmelCase_ , shape=(4, 4, 96, 96) , fpaa=lowerCAmelCase_ ) A__ : Dict =self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 77, 10_24) , fpaa=lowerCAmelCase_ ) A__ : Optional[Any] =model.apply( {"""params""": params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape A__ : Optional[Any] =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ : List[Any] =jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
136
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowercase ( unittest.TestCase ): def a__ ( self ) -> str: _A : Any = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _A : Tuple = dict(zip(_a , range(len(_a ) ) ) ) _A : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _A : Optional[Any] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } _A : Union[str, Any] = tempfile.mkdtemp() _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Optional[Any] = os.path.join(self.tmpdirname , _a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) # load decoder from hub _A : str = """hf-internal-testing/ngram-beam-search-decoder""" def a__ ( self , **_a ) -> Union[str, Any]: _A : str = self.add_kwargs_tokens_map.copy() kwargs.update(_a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Dict: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> str: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_a ) def a__ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> str: _A : List[Any] = self.get_tokenizer() _A : Optional[Any] = self.get_feature_extractor() _A : List[str] = self.get_decoder() _A : List[str] = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) processor.save_pretrained(self.tmpdirname ) _A : List[str] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _a ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A : int = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a__ ( self ) -> Optional[Any]: _A : Dict = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_a , """include""" ): WavaVecaProcessorWithLM( tokenizer=_a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a__ ( self ) -> List[str]: _A : str = self.get_feature_extractor() _A : Tuple = self.get_tokenizer() _A : List[Any] = self.get_decoder() _A : Any = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) _A : Tuple = floats_list((3, 1000) ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ) _A : Tuple = processor(_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self ) -> str: _A : Any = self.get_feature_extractor() _A : List[str] = self.get_tokenizer() _A : List[Any] = self.get_decoder() _A : List[str] = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) _A : int = """This is a test string""" _A : List[str] = processor(text=_a ) _A : Union[str, Any] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self , _a=(2, 10, 16) , _a=77 ) -> Optional[int]: np.random.seed(_a ) return np.random.rand(*_a ) def a__ ( self ) -> List[str]: _A : Dict = self.get_feature_extractor() _A : List[Any] = self.get_tokenizer() _A : Optional[int] = self.get_decoder() _A : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) _A : List[Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A : Dict = processor.decode(_a ) _A : Optional[Any] = decoder.decode_beams(_a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def a__ ( self , _a ) -> int: _A : int = self.get_feature_extractor() _A : Any = self.get_tokenizer() _A : int = self.get_decoder() _A : Tuple = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) _A : Union[str, Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A : Any = processor.batch_decode(_a ) else: with get_context(_a ).Pool() as pool: _A : Optional[int] = processor.batch_decode(_a , _a ) _A : Optional[int] = list(_a ) with get_context("""fork""" ).Pool() as p: _A : Tuple = decoder.decode_beams_batch(_a , _a ) _A , _A , _A : str = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_a , decoded_processor.logit_score ) self.assertListEqual(_a , decoded_processor.lm_score ) def a__ ( self ) -> Optional[Any]: _A : Any = self.get_feature_extractor() _A : str = self.get_tokenizer() _A : int = self.get_decoder() _A : Dict = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) _A : List[Any] = self._get_dummy_logits() _A : Union[str, Any] = 15 _A : str = -20.0 _A : Optional[int] = -4.0 _A : Union[str, Any] = processor.batch_decode( _a , beam_width=_a , beam_prune_logp=_a , token_min_logp=_a , ) _A : str = decoded_processor_out.text _A : Dict = list(_a ) with get_context("""fork""" ).Pool() as pool: _A : Union[str, Any] = decoder.decode_beams_batch( _a , _a , beam_width=_a , beam_prune_logp=_a , token_min_logp=_a , ) _A : Optional[int] = [d[0][0] for d in decoded_decoder_out] _A : int = [d[0][2] for d in decoded_decoder_out] _A : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_a , _a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _a ) self.assertTrue(np.array_equal(_a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _a , atol=1e-3 ) ) self.assertTrue(np.array_equal(_a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _a , atol=1e-3 ) ) def a__ ( self ) -> str: _A : Any = self.get_feature_extractor() _A : Dict = self.get_tokenizer() _A : Any = self.get_decoder() _A : Any = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) _A : Dict = self._get_dummy_logits() _A : Any = 2.0 _A : int = 5.0 _A : Union[str, Any] = -20.0 _A : str = True _A : Optional[Any] = processor.batch_decode( _a , alpha=_a , beta=_a , unk_score_offset=_a , lm_score_boundary=_a , ) _A : Union[str, Any] = decoded_processor_out.text _A : Tuple = list(_a ) decoder.reset_params( alpha=_a , beta=_a , unk_score_offset=_a , lm_score_boundary=_a , ) with get_context("""fork""" ).Pool() as pool: _A : Optional[Any] = decoder.decode_beams_batch( _a , _a , ) _A : Dict = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_a , _a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _a ) _A : List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _a ) def a__ ( self ) -> Any: _A : Tuple = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] _A : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A : Any = os.listdir(_a ) _A : int = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_a , _a ) def a__ ( self ) -> Dict: _A : int = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _A : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(_a ) _A : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] _A : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A : Optional[int] = os.listdir(_a ) _A : List[str] = os.listdir(_a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: _A : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A : Union[str, Any] = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A : List[str] = floats_list((3, 1000) ) _A : Union[str, Any] = processor_wavaveca(_a , return_tensors="""np""" ) _A : Any = processor_auto(_a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _A : Tuple = self._get_dummy_logits() _A : List[str] = processor_wavaveca.batch_decode(_a ) _A : Any = processor_auto.batch_decode(_a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a__ ( self ) -> Dict: _A : Dict = self.get_feature_extractor() _A : Optional[int] = self.get_tokenizer() _A : int = self.get_decoder() _A : List[str] = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def a__ ( _a , _a ) -> int: _A : List[Any] = [d[key] for d in offsets] return retrieved_list def a__ ( self ) -> int: _A : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A : Optional[int] = self._get_dummy_logits()[0] _A : str = processor.decode(_a , output_word_offsets=_a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_a , _a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def a__ ( self ) -> int: _A : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A : Tuple = self._get_dummy_logits() _A : int = processor.batch_decode(_a , output_word_offsets=_a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_a , _a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a__ ( self ) -> Tuple: import torch _A : Union[str, Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_a ) _A : List[Any] = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6000 ) ) _A : Optional[Any] = iter(_a ) _A : Any = next(_a ) _A : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _A : Optional[int] = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A : Dict = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _A : Dict = model(_a ).logits.cpu().numpy() _A : Optional[int] = processor.decode(logits[0] , output_word_offsets=_a ) _A : List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A : List[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _A : Optional[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_a , """word""" ) ) , _a ) self.assertEqual(""" """.join(self.get_from_offsets(_a , """word""" ) ) , output.text ) # output times _A : Optional[Any] = torch.tensor(self.get_from_offsets(_a , """start_time""" ) ) _A : int = torch.tensor(self.get_from_offsets(_a , """end_time""" ) ) # fmt: off _A : Dict = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _A : str = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_a , _a , atol=0.01 ) ) self.assertTrue(torch.allclose(_a , _a , atol=0.01 ) )
26
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = ["""input_features"""] def __init__( self , lowerCAmelCase=80 , lowerCAmelCase=16_000 , lowerCAmelCase=160 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=0.0 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) _lowercase =n_fft _lowercase =hop_length _lowercase =chunk_length _lowercase =chunk_length * sampling_rate _lowercase =self.n_samples // hop_length _lowercase =sampling_rate _lowercase =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def A__ ( self , lowerCAmelCase ) -> np.ndarray: '''simple docstring''' _lowercase =spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _lowercase =log_spec[:, :-1] _lowercase =np.maximum(lowerCAmelCase , log_spec.max() - 8.0 ) _lowercase =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: _lowercase =np.array(lowerCAmelCase , np.intaa ) _lowercase =[] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): _lowercase =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _lowercase =padding_value normed_input_values.append(lowerCAmelCase ) else: _lowercase =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "max_length" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase =isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase =is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): _lowercase =np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[np.asarray([raw_speech] ).T] _lowercase =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _lowercase =self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _lowercase =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _lowercase =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _lowercase =[self._np_extract_fbank_features(lowerCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase ): _lowercase =[np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] else: _lowercase =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _lowercase =padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
205
0
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCamelCase = '''sshleifer/mar_enro_6_3_student''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : Dict ) -> Dict: '''simple docstring''' super().setUp() A: str = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' MarianMTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def _snake_case ( self : int ) -> Dict: '''simple docstring''' A: Dict = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script A: Any = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() A: Any = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): A: Optional[Any] = bash_script.replace(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) A: Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") A: str = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future A: int = ['''finetune.py'''] + bash_script.split() + args with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = argparse.ArgumentParser() A: Optional[int] = pl.Trainer.add_argparse_args(SCREAMING_SNAKE_CASE_ ) A: List[Any] = SummarizationModule.add_model_specific_args(SCREAMING_SNAKE_CASE_ , os.getcwd() ) A: int = parser.parse_args() A: List[str] = main(SCREAMING_SNAKE_CASE_ ) # Check metrics A: List[Any] = load_json(model.metrics_save_path ) A: Union[str, Any] = metrics['''val'''][0] A: List[str] = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , SCREAMING_SNAKE_CASE_ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict A: Optional[Any] = os.listdir(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = [x for x in contents if x.endswith('''.ckpt''' )][0] A: Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) A: List[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) A: int = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A: List[str] = {os.path.basename(SCREAMING_SNAKE_CASE_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def _snake_case ( self : Dict ) -> str: '''simple docstring''' A: List[str] = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" A: str = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_28, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script A: List[Any] = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) A: Optional[int] = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) A: str = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): A: Tuple = bash_script.replace(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) A: List[Any] = self.get_auto_remove_tmp_dir() A: List[Any] = bash_script.replace('''--fp16''' , '''''' ) A: int = 6 A: int = ( ['''distillation.py'''] + bash_script.split() + [ f"""--output_dir={output_dir}""", '''--gpus=1''', '''--learning_rate=1e-3''', f"""--num_train_epochs={epochs}""", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ): A: List[Any] = argparse.ArgumentParser() A: List[Any] = pl.Trainer.add_argparse_args(SCREAMING_SNAKE_CASE_ ) A: List[str] = SummarizationDistiller.add_model_specific_args(SCREAMING_SNAKE_CASE_ , os.getcwd() ) A: List[str] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu A: Optional[Any] = distill_main(SCREAMING_SNAKE_CASE_ ) # Check metrics A: List[str] = load_json(model.metrics_save_path ) A: Any = metrics['''val'''][0] A: Tuple = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , SCREAMING_SNAKE_CASE_ ) # check lightning ckpt can be loaded and has a reasonable statedict A: Any = os.listdir(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [x for x in contents if x.endswith('''.ckpt''' )][0] A: Optional[Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) A: Tuple = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) A: List[str] = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A: Optional[Any] = {os.path.basename(SCREAMING_SNAKE_CASE_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _UpperCamelCase = iter(lowercase ) while True: _UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) ) if not chunk: return yield chunk def a__ ( lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase = '''''' if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def a__ ( lowercase : str ) -> list[str]: """simple docstring""" _UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = prepare_input(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : List[Any]=24 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Dict=16 , UpperCAmelCase : int=2 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=1000 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = scope A_ = range_bbox def __A ( self : str ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = t A_ = None if self.use_input_mask: A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self : int ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , ): A_ = LiltModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , ): A_ = self.num_labels A_ = LiltForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , ): A_ = LiltForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Dict ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase : Union[str, Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Any = False def __A ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ): return True def __A ( self : Dict ): A_ = LiltModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Optional[int] ): self.config_tester.run_common_tests() def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def __A ( self : List[str] ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LiltModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any ): A_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(UpperCAmelCase ) A_ = torch.tensor([[1, 2]] , device=UpperCAmelCase ) A_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase ) A_ = torch.Size([1, 2, 768] ) A_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1E-3 ) )
367
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( UpperCAmelCase_ : Optional[int] ): A__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionLatentUpscalePipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } UpperCAmelCase = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase = frozenset([] ) UpperCAmelCase = True @property def UpperCamelCase ( self: str ): """simple docstring""" A__ = 1 A__ = 4 A__ = (16, 16) A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase ) return image def UpperCamelCase ( self: Tuple ): """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=UpperCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=UpperCamelCase , only_cross_attention=UpperCamelCase , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) A__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) A__ = EulerDiscreteScheduler(prediction_type="""sample""" ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""quick_gelu""" , projection_dim=5_12 , ) A__ = CLIPTextModel(UpperCamelCase ) A__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: str , UpperCamelCase: str , UpperCamelCase: List[str]=0 ): """simple docstring""" if str(UpperCamelCase ).startswith("""mps""" ): A__ = torch.manual_seed(UpperCamelCase ) else: A__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) A__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self: str ): """simple docstring""" A__ = """cpu""" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = self.get_dummy_inputs(UpperCamelCase ) A__ = pipe(**UpperCamelCase ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) A__ = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase , 1e-3 ) def UpperCamelCase ( self: str ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase ( self: int ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase ( self: Tuple ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCamelCase ( self: Dict ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCamelCase ( self: Any ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase ( self: Tuple ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = self.get_dummy_inputs(UpperCamelCase ) A__ = 2 A__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A__ = getattr(UpperCamelCase , scheduler_enum.name ) A__ = scheduler_cls.from_config(pipe.scheduler.config ) A__ = pipe(**UpperCamelCase )[0] outputs.append(UpperCamelCase ) assert check_same_shape(UpperCamelCase ) @require_torch_gpu @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = torch.manual_seed(33 ) A__ = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) A__ = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) A__ = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" A__ = pipe(UpperCamelCase , generator=UpperCamelCase , output_type="""latent""" ).images A__ = upscaler( prompt=UpperCamelCase , image=UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase , output_type="""np""" , ).images[0] A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = torch.manual_seed(33 ) A__ = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) A__ = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) A__ = upscaler( prompt=UpperCamelCase , image=UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase , output_type="""np""" , ).images[0] A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-2
335
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : int = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Tuple = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
1
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : List[str] = 2_048 UpperCAmelCase_ : int = 4_096 UpperCAmelCase_ : Optional[int] = 42 UpperCAmelCase_ : Tuple = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : Union[str, Any] = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def UpperCamelCase ( _A : str )-> Union[str, Any]: """simple docstring""" def choose_first(_A : Tuple , _A : Optional[Any]=False ): assert isinstance(_A , _A ) if len(_A ) == 1: A__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: A__ = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a A__ = {"id": example["id"]} A__ = example["annotations"] A__ = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: A__ = ["yes"] if 1 in yes_no_answer else ["no"] A__ = A__ = [] A__ = A__ = [] A__ = ["<cls>"] else: A__ = ["short"] A__ = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available A__ = ["long"] A__ = choose_first(annotation["long_answer"] , is_long_answer=_A ) A__ = [] answer.update(_A ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: A__ = True else: A__ = False A__ = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , _A ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def UpperCamelCase ( _A : List[Any] , _A : int=False )-> List[str]: """simple docstring""" A__ = _get_single_answer(_A ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = example["document"]["tokens"] A__ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(_A ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples A__ = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 A__ = example["document"]["tokens"] A__ = answer["start_token"] A__ = answer["end_token"] A__ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 A__ = " ".join(context[start_token:end_token] ) # checking above code if assertion: A__ = doc["is_html"][answer["start_token"] : answer["end_token"]] A__ = doc["token"][answer["start_token"] : answer["end_token"]] A__ = " ".join([old[i] for i in range(len(_A ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , _A , end="\n" ) print("Old:" , _A , end="\n\n" ) return { "context": " ".join(_A ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCamelCase ( _A : Optional[Any] , _A : Optional[int] , _A : int=2048 , _A : Optional[Any]=4096 , _A : Union[str, Any]=True )-> Optional[int]: """simple docstring""" A__ = get_context_and_ans(_A , assertion=_A ) A__ = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } A__ = tokenizer(example["question"]["text"] , out["context"] ).input_ids A__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = [] A__ = [] A__ = input_ids[:q_len] A__ = range(_A , len(_A ) , max_length - doc_stride ) for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_A ), "end_token": [-100] * len(_A ), "category": category, }, } A__ = out["context"].split() A__ = splitted_context[answer["end_token"]] A__ = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=_A , ).input_ids ) A__ = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=_A ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token A__ = len(tokenizer(_A , add_special_tokens=_A ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 A__ = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive A__ = answer["start_token"] A__ = answer["end_token"] if assertion: A__ = tokenizer.decode(_A ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , _A , end="\n\n" ) if len(_A ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } A__ = input_ids[:q_len] A__ = range(_A , len(_A ) , max_length - doc_stride ) A__ = [] A__ = [] A__ = [] A__ = [] # null, yes, no, long, short for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: A__ = start_token - i + q_len A__ = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: A__ = -100 A__ = -100 answers_category.append("null" ) A__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(_A ) answers_end_token.append(_A ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(_A ) ) print("Old:" , tokenizer.decode(_A ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCamelCase ( _A : Optional[int] , _A : List[str] , _A : Optional[Any]=2048 , _A : int=4096 , _A : Any=False )-> Optional[int]: """simple docstring""" A__ = get_strided_contexts_and_ans( _A , _A , doc_stride=_A , max_length=_A , assertion=_A , ) return example def UpperCamelCase ( _A : int , _A : Dict )-> int: """simple docstring""" with jsonlines.open(_A , "a" ) as writer: for example in tqdm(_A , total=len(_A ) , desc="Saving samples ... " ): A__ = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[Any] = load_dataset("natural_questions") UpperCAmelCase_ : List[Any] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : int = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : str = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : Dict = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : str = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : Tuple = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
365
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase ( _A : str , _A : str )-> Any: """simple docstring""" A__ = RobertaPreLayerNormConfig.from_pretrained( _A , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A__ = torch.load(hf_hub_download(repo_id=_A , filename="pytorch_model.bin" ) ) A__ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A__ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A__ = tensor_value A__ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_A , config=_A , state_dict=_A ) model.save_pretrained(_A ) # convert tokenizer A__ = AutoTokenizer.from_pretrained(_A ) tokenizer.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
198
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A: List[str] = logging.get_logger(__name__) A: Dict = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Any = 'conditional_detr' __lowerCAmelCase : Union[str, Any] = ['past_key_values'] __lowerCAmelCase : int = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : Union[str, Any] = config_class.from_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = use_timm_backbone UpperCAmelCase : Optional[int] = backbone_config UpperCAmelCase : List[str] = num_channels UpperCAmelCase : Any = num_queries UpperCAmelCase : Union[str, Any] = d_model UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : Union[str, Any] = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Any = decoder_layers UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : Optional[int] = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Any = activation_function UpperCAmelCase : Any = init_std UpperCAmelCase : Tuple = init_xavier_std UpperCAmelCase : Optional[int] = encoder_layerdrop UpperCAmelCase : Any = decoder_layerdrop UpperCAmelCase : Any = encoder_layers UpperCAmelCase : Optional[Any] = auxiliary_loss UpperCAmelCase : List[Any] = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[Any] = use_pretrained_backbone UpperCAmelCase : Dict = dilation # Hungarian matcher UpperCAmelCase : Optional[int] = class_cost UpperCAmelCase : List[str] = bbox_cost UpperCAmelCase : List[str] = giou_cost # Loss coefficients UpperCAmelCase : List[Any] = mask_loss_coefficient UpperCAmelCase : List[str] = dice_loss_coefficient UpperCAmelCase : Optional[int] = cls_loss_coefficient UpperCAmelCase : Union[str, Any] = bbox_loss_coefficient UpperCAmelCase : Union[str, Any] = giou_loss_coefficient UpperCAmelCase : int = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.d_model def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCAmelCase : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase : Dict = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 12
109
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=24 , A_=2 , A_=6 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=None , A_=1000 , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Dict = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : str = type_vocab_size UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : int = num_labels UpperCamelCase : Optional[int] = scope UpperCamelCase : int = range_bbox def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase : Union[str, Any] = bbox[i, j, 3] UpperCamelCase : int = bbox[i, j, 1] UpperCamelCase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase : List[str] = bbox[i, j, 2] UpperCamelCase : Optional[int] = bbox[i, j, 0] UpperCamelCase : Optional[Any] = t UpperCamelCase : Dict = None if self.use_input_mask: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase : str = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Dict = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = LiltModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = model(A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase : Optional[int] = model(A_ , bbox=A_ , token_type_ids=A_ ) UpperCamelCase : Any = model(A_ , bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = self.num_labels UpperCamelCase : Dict = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Dict = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[str] = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Tuple = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Dict = False _UpperCAmelCase :Union[str, Any] = False def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' return True def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = LiltModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Dict = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(A_ ) UpperCamelCase : Tuple = torch.tensor([[1, 2]] , device=A_ ) UpperCamelCase : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[int] = model(input_ids=A_ , bbox=A_ ) UpperCamelCase : List[str] = torch.Size([1, 2, 768] ) UpperCamelCase : Any = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=A_ , ) self.assertTrue(outputs.last_hidden_state.shape , A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A_ , atol=1e-3 ) )
52
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : """simple docstring""" pass
311
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> np.ndarray: _a : Union[str, Any] = cva.getAffineTransform(lowerCAmelCase_ , lowerCAmelCase_ ) return cva.warpAffine(lowerCAmelCase_ , lowerCAmelCase_ , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCAmelCase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __lowerCAmelCase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCAmelCase , __lowerCAmelCase = gray_img.shape # set different points to rotate image __lowerCAmelCase = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __lowerCAmelCase = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __lowerCAmelCase = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __lowerCAmelCase = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __lowerCAmelCase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCAmelCase = plt.figure(1) __lowerCAmelCase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
89
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=64 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=1 , ) -> Any: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = q_groups _snake_case = k_groups _snake_case = v_groups _snake_case = post_attention_groups _snake_case = intermediate_groups _snake_case = output_groups def lowercase (self ) -> Any: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase (self ) -> Union[str, Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _snake_case = SqueezeBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _snake_case = SqueezeBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = SqueezeBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case = self.num_labels _snake_case = SqueezeBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _snake_case = self.num_labels _snake_case = SqueezeBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = self.num_choices _snake_case = SqueezeBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase (self ) -> int: _snake_case = self.prepare_config_and_inputs() ((_snake_case), (_snake_case), (_snake_case), (_snake_case), (_snake_case), (_snake_case)) = config_and_inputs _snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase_ = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = SqueezeBertModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def lowercase (self ) -> Tuple: self.config_tester.run_common_tests() def lowercase (self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase ) def lowercase (self ) -> Optional[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase ) @slow def lowercase (self ) -> Any: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = SqueezeBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase (self ) -> Optional[Any]: _snake_case = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) _snake_case = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) _snake_case = model(UpperCAmelCase )[0] _snake_case = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
270
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1e-12 ): UpperCAmelCase__ : int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase__ , axis=1 ) , a_min=UpperCamelCase__ ) ).T UpperCAmelCase__ : Tuple = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase__ , axis=1 ) , a_min=UpperCamelCase__ ) ).T return jnp.matmul(UpperCamelCase__ , norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCAmelCase :CLIPConfig lowerCAmelCase :jnp.dtype = jnp.floataa def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxCLIPVisionModule(self.config.vision_config) UpperCAmelCase__ : Dict = nn.Dense(self.config.projection_dim , use_bias=_lowerCamelCase , dtype=self.dtype) UpperCAmelCase__ : Optional[Any] = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim)) UpperCAmelCase__ : Tuple = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim)) UpperCAmelCase__ : str = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,)) UpperCAmelCase__ : int = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,)) def __call__( self , _lowerCamelCase): UpperCAmelCase__ : str = self.vision_model(_lowerCamelCase)[1] UpperCAmelCase__ : Optional[int] = self.visual_projection(_lowerCamelCase) UpperCAmelCase__ : List[Any] = jax_cosine_distance(_lowerCamelCase , self.special_care_embeds) UpperCAmelCase__ : int = jax_cosine_distance(_lowerCamelCase , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase__ : Union[str, Any] = 0.0 UpperCAmelCase__ : Optional[int] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase__ : Union[str, Any] = jnp.round(_lowerCamelCase , 3) UpperCAmelCase__ : int = jnp.any(special_scores > 0 , axis=1 , keepdims=_lowerCamelCase) # Use a lower threshold if an image has any special care concept UpperCAmelCase__ : int = is_special_care * 0.01 UpperCAmelCase__ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase__ : List[Any] = jnp.round(_lowerCamelCase , 3) UpperCAmelCase__ : Union[str, Any] = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class _snake_case ( a__ ): lowerCAmelCase :int = CLIPConfig lowerCAmelCase :Any = '''clip_input''' lowerCAmelCase :str = FlaxStableDiffusionSafetyCheckerModule def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = jnp.floataa , _lowerCamelCase = True , **_lowerCamelCase , ): if input_shape is None: UpperCAmelCase__ : Tuple = (1, 224, 224, 3) UpperCAmelCase__ : Optional[int] = self.module_class(config=_lowerCamelCase , dtype=_lowerCamelCase , **_lowerCamelCase) super().__init__(_lowerCamelCase , _lowerCamelCase , input_shape=_lowerCamelCase , seed=_lowerCamelCase , dtype=_lowerCamelCase , _do_init=_do_init) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None): # init input tensor UpperCAmelCase__ : List[str] = jax.random.normal(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jax.random.split(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} UpperCAmelCase__ : Optional[int] = self.module.init(_lowerCamelCase , _lowerCamelCase)["""params"""] return random_params def __call__( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCAmelCase__ : Union[str, Any] = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1)) return self.module.apply( {"""params""": params or self.params} , jnp.array(_lowerCamelCase , dtype=jnp.floataa) , rngs={} , )
163
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __A =3_00 # TEMPERATURE (unit = K) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
163
1
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCamelCase ): def __init__( self : Optional[int] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[Any]=768 ): super().__init__(_UpperCAmelCase ) _a : List[str] = proj_size _a : Dict = CLIPVisionModel(_UpperCAmelCase ) _a : Tuple = PaintByExampleMapper(_UpperCAmelCase ) _a : Optional[int] = nn.LayerNorm(config.hidden_size ) _a : Optional[int] = nn.Linear(config.hidden_size ,self.proj_size ) # uncondition for scaling _a : List[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowercase ( self : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int=False ): _a : Tuple = self.model(pixel_values=_UpperCAmelCase ) _a : str = clip_output.pooler_output _a : List[Any] = self.mapper(latent_states[:, None] ) _a : Any = self.final_layer_norm(_UpperCAmelCase ) _a : Optional[Any] = self.proj_out(_UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __magic_name__ ( nn.Module ): def __init__( self : Optional[Any] ,_UpperCAmelCase : Union[str, Any] ): super().__init__() _a : List[Any] = (config.num_hidden_layers + 1) // 5 _a : List[str] = config.hidden_size _a : str = 1 _a : List[str] = nn.ModuleList( [ BasicTransformerBlock(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,activation_fn='gelu' ,attention_bias=_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ] ) def __lowercase ( self : Tuple ,_UpperCAmelCase : str ): for block in self.blocks: _a : List[Any] = block(_UpperCAmelCase ) return hidden_states
107
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) set_seed(770) __lowerCAmelCase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } __lowerCAmelCase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } __lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) __lowerCAmelCase = os.path.join(os.path.expanduser('''~'''), '''.cache''') __lowerCAmelCase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _a : int = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) hf_hub_download(repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , local_dir=lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[str]: if model_type == "text": _a : List[str] = BarkSemanticModel _a : Optional[Any] = BarkSemanticConfig _a : Any = BarkSemanticGenerationConfig elif model_type == "coarse": _a : Tuple = BarkCoarseModel _a : str = BarkCoarseConfig _a : str = BarkCoarseGenerationConfig elif model_type == "fine": _a : List[str] = BarkFineModel _a : Optional[Any] = BarkFineConfig _a : str = BarkFineGenerationConfig else: raise NotImplementedError() _a : Dict = f"""{model_type}_small""" if use_small else model_type _a : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) _a : int = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) # this is a hack _a : List[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: _a : Dict = model_args['vocab_size'] _a : Dict = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _a : List[Any] = model_args.pop('n_head' ) _a : Any = model_args.pop('n_embd' ) _a : List[Any] = model_args.pop('n_layer' ) _a : Optional[int] = ConfigClass(**checkpoint['model_args'] ) _a : List[str] = ModelClass(config=lowerCAmelCase_ ) _a : Tuple = GenerationConfigClass() _a : Optional[Any] = model_generation_config _a : Optional[Any] = checkpoint['model'] # fixup checkpoint _a : int = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation _a : str = k[len(lowerCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: _a : List[Any] = new_k.replace(lowerCAmelCase_ , new_layer_name_dict[old_layer_name] ) _a : List[Any] = state_dict.pop(lowerCAmelCase_ ) _a : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) _a : Tuple = {k for k in extra_keys if not k.endswith('.attn.bias' )} _a : Tuple = set(model.state_dict().keys() ) - set(state_dict.keys() ) _a : Optional[Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) _a : Dict = model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) _a : Tuple = checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCAmelCase_ , 3 )} loss""" ) model.eval() model.to(lowerCAmelCase_ ) del checkpoint, state_dict return model def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _a : Optional[int] = 'cpu' # do conversion on cpu _a : Tuple = _get_ckpt_path(lowerCAmelCase_ , use_small=lowerCAmelCase_ ) _a : List[Any] = _load_model(lowerCAmelCase_ , lowerCAmelCase_ , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) # load bark initial model _a : Any = _bark_load_model(lowerCAmelCase_ , 'cpu' , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) if model_type == "text": _a : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _a : Any = 5 _a : List[str] = 10 if model_type in ["text", "coarse"]: _a : Dict = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _a : Dict = bark_model(lowerCAmelCase_ )[0] _a : Tuple = model(lowerCAmelCase_ ) # take last logits _a : Optional[int] = output_new_model_total.logits[:, [-1], :] else: _a : List[str] = 3 _a : List[Any] = 8 _a : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _a : Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = bark_model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Any: _a : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : Any = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[Any] = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[str] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _a : str = BarkSemanticModel.from_pretrained(lowerCAmelCase_ ) _a : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase_ ) _a : int = BarkFineModel.from_pretrained(lowerCAmelCase_ ) _a : List[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _a : Any = BarkConfig.from_sub_model_configs( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _a : Optional[Any] = BarkModel(lowerCAmelCase_ ) _a : List[str] = semantic _a : Union[str, Any] = coarseAcoustic _a : Optional[int] = fineAcoustic _a : Optional[Any] = codec _a : List[Any] = bark_generation_config Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) bark.save_pretrained(lowerCAmelCase_ , repo_id=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') __lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
107
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : '''simple docstring''' def __init__( self : int , _A : Tuple , _A : List[str]=2 , _A : Optional[Any]=8 , _A : Optional[int]=True , _A : List[Any]=True , _A : Dict=True , _A : Union[str, Any]=True , _A : Tuple=99 , _A : List[Any]=16 , _A : Any=5 , _A : str=2 , _A : Optional[Any]=36 , _A : Optional[Any]="gelu" , _A : Any=0.0 , _A : Union[str, Any]=0.0 , _A : List[Any]=512 , _A : Optional[int]=16 , _A : Tuple=2 , _A : Optional[Any]=0.02 , _A : int=3 , _A : List[str]=4 , _A : Optional[int]=None , ) -> str: __magic_name__ : Dict = parent __magic_name__ : int = batch_size __magic_name__ : str = seq_length __magic_name__ : Any = is_training __magic_name__ : Tuple = use_input_mask __magic_name__ : Any = use_token_type_ids __magic_name__ : List[str] = use_labels __magic_name__ : Dict = vocab_size __magic_name__ : List[str] = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Optional[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : Dict = type_vocab_size __magic_name__ : int = type_sequence_label_size __magic_name__ : Optional[Any] = initializer_range __magic_name__ : Union[str, Any] = num_labels __magic_name__ : Optional[int] = num_choices __magic_name__ : Optional[Any] = scope def __lowerCAmelCase ( self : str ) -> Optional[int]: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[str] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = None __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Dict ) -> List[str]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : str = self.get_config() __magic_name__ : List[Any] = 300 return config def __lowerCAmelCase ( self : int ) -> Tuple: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = self.prepare_config_and_inputs() __magic_name__ : Optional[Any] = True __magic_name__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Tuple , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Union[str, Any] ) -> Dict: __magic_name__ : List[Any] = MraModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model(_A , attention_mask=_A , token_type_ids=_A ) __magic_name__ : int = model(_A , token_type_ids=_A ) __magic_name__ : str = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : List[str] , _A : List[Any] , _A : Optional[Any] , _A : str , _A : int , _A : List[Any] , _A : int , _A : List[Any] , ) -> str: __magic_name__ : Tuple = True __magic_name__ : Optional[Any] = MraModel(_A ) model.to(_A ) model.eval() __magic_name__ : int = model( _A , attention_mask=_A , token_type_ids=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __magic_name__ : Dict = model( _A , attention_mask=_A , token_type_ids=_A , encoder_hidden_states=_A , ) __magic_name__ : List[Any] = model(_A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : Any , _A : Optional[Any] , _A : Tuple , _A : Union[str, Any] , _A : List[Any] , _A : List[Any] ) -> str: __magic_name__ : Dict = MraForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : Any , _A : List[str] , _A : Optional[Any] , _A : Tuple , _A : Tuple , _A : Tuple ) -> Optional[Any]: __magic_name__ : int = MraForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Union[str, Any] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : List[str] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , _A : Any , _A : Dict ) -> Dict: __magic_name__ : List[str] = self.num_labels __magic_name__ : List[str] = MraForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , _A : Dict , _A : Tuple , _A : Optional[Any] , _A : Any , _A : Optional[int] , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Optional[Any] = MraForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : Union[str, Any] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : Optional[int] , _A : str , _A : int , _A : Tuple , _A : str , _A : Dict , _A : Any ) -> Optional[int]: __magic_name__ : Any = self.num_choices __magic_name__ : Optional[int] = MraForMultipleChoice(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Optional[Any] = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: __magic_name__ : Any = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[Any] = config_and_inputs __magic_name__ : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) A_ : Dict = False A_ : Dict = False A_ : int = False A_ : Union[str, Any] = False A_ : List[Any] = () def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: __magic_name__ : Any = MraModelTester(self ) __magic_name__ : Any = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Any: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ : Optional[Any] = type self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : List[Any] ) -> List[str]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : str = MraModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='MRA does not output attentions' ) def __lowerCAmelCase ( self : List[str] ) -> Dict: return @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Dict ) -> List[Any]: __magic_name__ : int = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __magic_name__ : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __magic_name__ : Optional[Any] = model(_A )[0] __magic_name__ : str = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _A ) __magic_name__ : Optional[int] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[str] = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __magic_name__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __magic_name__ : Tuple = model(_A )[0] __magic_name__ : Tuple = 50265 __magic_name__ : str = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _A ) __magic_name__ : str = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ : int = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __magic_name__ : Optional[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __magic_name__ : Optional[Any] = model(_A )[0] __magic_name__ : Optional[Any] = 50265 __magic_name__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _A ) __magic_name__ : Union[str, Any] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1E-4 ) )
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = '''EncodecFeatureExtractor''' __UpperCamelCase : Dict = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = self.feature_extractor _A: Dict = False def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase_ , language=lowerCAmelCase_ , no_timestamps=lowerCAmelCase_ ) def __call__( self : Dict , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Optional[int] = kwargs.pop('''audio''' , lowerCAmelCase_ ) _A: List[str] = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ ) _A: Dict = kwargs.pop('''text''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _A: Union[str, Any] = args[0] _A: Tuple = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _A: Tuple = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) if audio is not None: _A: int = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) if audio is None: return inputs elif text is None: return audio_inputs else: _A: Optional[Any] = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _A: Optional[Any] = audio_inputs['padding_mask'] return inputs def __magic_name__ ( self : Tuple , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: str = kwargs.pop('''audio''' , lowerCAmelCase_ ) _A: Any = kwargs.pop('''padding_mask''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _A: Union[str, Any] = args[0] _A: List[str] = args[1:] if audio_values is not None: return self._decode_audio(lowerCAmelCase_ , padding_mask=lowerCAmelCase_ ) else: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional = None ): """simple docstring""" _A: Dict = to_numpy(lowerCAmelCase_ ) _A: Union[str, Any] = audio_values.shape if padding_mask is None: return list(lowerCAmelCase_ ) _A: Any = to_numpy(lowerCAmelCase_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _A: Dict = seq_len - padding_mask.shape[-1] _A: Tuple = 1 - self.feature_extractor.padding_value _A: List[Any] = np.pad(lowerCAmelCase_ , ((0, 0), (0, difference)) , '''constant''' , constant_values=lowerCAmelCase_ ) _A: int = audio_values.tolist() for i in range(lowerCAmelCase_ ): _A: Dict = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _A: Any = sliced_audio.reshape(lowerCAmelCase_ , -1 ) return audio_values
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase__( __SCREAMING_SNAKE_CASE : str ): for param in module.parameters(): lowercase_ : str = False def lowercase__( ): lowercase_ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase_ : str = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : int = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowercase__( ): lowercase_ : List[Any] = datetime.now() lowercase_ : List[Any] = current_time.strftime('%H:%M:%S' ) return timestamp
213
'''simple docstring''' import functools def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = len(_lowerCamelCase ) A__ = len(_lowerCamelCase ) @functools.cache def min_distance(_lowerCamelCase : int , _lowerCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
237
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: tuple , lowerCAmelCase: Path , lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any] , lowerCAmelCase: int , lowerCAmelCase: Dict=False , )-> Union[str, Any]: output_path.parent.mkdir(parents=lowerCAmelCase , exist_ok=lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase , lowerCAmelCase , f=output_path.as_posix() , input_names=lowerCAmelCase , output_names=lowerCAmelCase , dynamic_axes=lowerCAmelCase , do_constant_folding=lowerCAmelCase , use_external_data_format=lowerCAmelCase , enable_onnx_checker=lowerCAmelCase , opset_version=lowerCAmelCase , ) else: export( lowerCAmelCase , lowerCAmelCase , f=output_path.as_posix() , input_names=lowerCAmelCase , output_names=lowerCAmelCase , dynamic_axes=lowerCAmelCase , do_constant_folding=lowerCAmelCase , opset_version=lowerCAmelCase , ) @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: int , lowerCAmelCase: bool = False )-> int: _snake_case : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _snake_case : List[str] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _snake_case : Any = 'cpu' _snake_case : Union[str, Any] = Path(lowerCAmelCase ) # VAE DECODER _snake_case : Union[str, Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) _snake_case : Dict = vae_decoder.config.latent_channels # forward only through the decoder part _snake_case : Optional[int] = vae_decoder.decode onnx_export( lowerCAmelCase , model_args=( torch.randn(1 , lowerCAmelCase , 25 , 25 ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowerCAmelCase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
260
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =["""speech"""] def __init__( self : Optional[int] , *UpperCamelCase : int , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ['speech'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] =["""speech"""] def __init__( self : Any , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): '''simple docstring''' requires_backends(self , ['speech'] )
260
1
def lowerCamelCase__ ( a , a ) -> List[str]: return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ) -> Tuple: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
121
'''simple docstring''' import math import os import sys def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Any = """""" try: with open(lowerCAmelCase__ , """rb""" ) as binary_file: __UpperCAmelCase : int = binary_file.read() for dat in data: __UpperCAmelCase : Tuple = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( lowerCAmelCase__ : dict[str, str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ): """simple docstring""" lexicon.pop(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = last_match_id if math.loga(lowerCAmelCase__ ).is_integer(): for curr_key in lexicon: __UpperCAmelCase : List[str] = """0""" + lexicon[curr_key] __UpperCAmelCase : Any = bin(lowerCAmelCase__ )[2:] def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = {"""0""": """0""", """1""": """1"""} __UpperCAmelCase , __UpperCAmelCase : Dict = """""", """""" __UpperCAmelCase : str = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCAmelCase : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) index += 1 __UpperCAmelCase : Any = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __UpperCAmelCase : Union[str, Any] = lexicon[curr_string] result += last_match_id return result def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : int = os.path.getsize(lowerCAmelCase__ ) __UpperCAmelCase : int = bin(lowerCAmelCase__ )[2:] __UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : List[str] = 8 try: with open(lowerCAmelCase__ , """wb""" ) as opened_file: __UpperCAmelCase : Any = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Dict = read_file_binary(lowerCAmelCase__ ) __UpperCAmelCase : str = compress_data(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
254
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _a : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _a : List[Any] = """xvjiarui/stable-diffusion-2-inpainting""" _a , _a : Tuple = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) _a : str = """Face of a yellow cat, high resolution, sitting on a park bench""" _a : List[Any] = jax.random.PRNGKey(0 ) _a : Any = 50 _a : Dict = jax.device_count() _a : Optional[int] = num_samples * [prompt] _a : int = num_samples * [init_image] _a : Dict = num_samples * [mask_image] _a , _a , _a : str = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # shard inputs and rng _a : Any = replicate(UpperCAmelCase__ ) _a : Optional[Any] = jax.random.split(UpperCAmelCase__ , jax.device_count() ) _a : Tuple = shard(UpperCAmelCase__ ) _a : List[str] = shard(UpperCAmelCase__ ) _a : Any = shard(UpperCAmelCase__ ) _a : List[str] = pipeline( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ) _a : List[Any] = output.images.reshape(UpperCAmelCase__ , 512 , 512 , 3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: __lowerCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Dict: __lowerCamelCase , __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowerCamelCase = emb.weight.data return lin_layer def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__="facebook/mbart-large-en-ro" , UpperCamelCase__=False , UpperCamelCase__=False ) -> List[str]: __lowerCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(UpperCamelCase__ ) __lowerCamelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowerCamelCase = MBartConfig.from_pretrained(UpperCamelCase__ , vocab_size=UpperCamelCase__ ) if mbart_aa and finetuned: __lowerCamelCase = '''relu''' __lowerCamelCase = state_dict['''decoder.embed_tokens.weight'''] __lowerCamelCase = MBartForConditionalGeneration(UpperCamelCase__ ) model.model.load_state_dict(UpperCamelCase__ ) if finetuned: __lowerCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __UpperCAmelCase =parser.parse_args() __UpperCAmelCase =convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
67
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 1_00_00_00 ) -> int: __lowerCamelCase = set(range(3 , UpperCamelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase__ , UpperCamelCase__ ) ) ) __lowerCamelCase = [float(UpperCamelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase__ , limit + 1 , UpperCamelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
67
1
"""simple docstring""" import math def __lowerCamelCase ( a_ : int = 1_00 ) -> int: __SCREAMING_SNAKE_CASE :List[Any] = sum(i * i for i in range(1 , n + 1 ) ) __SCREAMING_SNAKE_CASE :int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
239
"""simple docstring""" def __lowerCamelCase ( a_ : str , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __SCREAMING_SNAKE_CASE :list = [] for char_count in range(a_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
239
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :Any = logging.get_logger(__name__) lowercase__ :Dict = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Any ='''git_vision_model''' def __init__( self ,A__=7_6_8 ,A__=3_0_7_2 ,A__=1_2 ,A__=1_2 ,A__=3 ,A__=2_2_4 ,A__=1_6 ,A__="quick_gelu" ,A__=1E-5 ,A__=0.0 ,A__=0.02 ,**A__ ,): super().__init__(**A__) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = num_channels lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act @classmethod def A__ ( cls ,A__ ,**A__): cls._set_token_in_kwargs(A__) lowercase , lowercase = cls.get_config_dict(A__ ,**A__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(A__ ,**A__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[Any] ='''git''' def __init__( self ,A__=None ,A__=3_0_5_2_2 ,A__=7_6_8 ,A__=6 ,A__=1_2 ,A__=3_0_7_2 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=1_0_2_4 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__="absolute" ,A__=True ,A__=False ,A__=1_0_1 ,A__=1_0_2 ,A__=None ,**A__ ,): super().__init__(bos_token_id=A__ ,eos_token_id=A__ ,pad_token_id=A__ ,**A__) if vision_config is None: lowercase = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') lowercase = GitVisionConfig(**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = tie_word_embeddings lowercase = num_image_with_embedding lowercase = bos_token_id lowercase = eos_token_id def A__ ( self): lowercase = copy.deepcopy(self.__dict__) lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
101
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ :str = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = '''huggingface/label-files''' lowercase = '''imagenet-1k-id2label.json''' lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = {v: k for k, v in idalabel.items()} lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if "stem.conv" in name: lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase = '''bit.encoder.''' + name return name def UpperCamelCase ( ): '''simple docstring''' lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_config(lowerCAmelCase__ ) # load original model from timm lowercase = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowercase = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowercase = transform.transforms lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase = prepare_img() lowercase = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowercase = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowercase = model(lowerCAmelCase__ ) lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowercase__ :List[str] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
101
1
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowerCAmelCase_ : str = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] SCREAMING_SNAKE_CASE = True if """large""" in model_name or """huge""" in model_name else False SCREAMING_SNAKE_CASE = True if """large""" in model_name or """huge""" in model_name else False SCREAMING_SNAKE_CASE = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: SCREAMING_SNAKE_CASE = [3, 3, 3, 3] SCREAMING_SNAKE_CASE = [5, 5, 5, 5] elif "fl4" in model_name: SCREAMING_SNAKE_CASE = [4, 4, 4, 4] SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "lrf" in model_name: SCREAMING_SNAKE_CASE = [3, 3, 3, 3] else: SCREAMING_SNAKE_CASE = [2, 2, 2, 2] if "tiny" in model_name: SCREAMING_SNAKE_CASE = 96 elif "small" in model_name: SCREAMING_SNAKE_CASE = 96 elif "base" in model_name: SCREAMING_SNAKE_CASE = 1_28 elif "large" in model_name: SCREAMING_SNAKE_CASE = 1_92 elif "xlarge" in model_name: SCREAMING_SNAKE_CASE = 2_56 elif "huge" in model_name: SCREAMING_SNAKE_CASE = 3_52 # set label information SCREAMING_SNAKE_CASE = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: SCREAMING_SNAKE_CASE = """imagenet-22k-id2label.json""" else: SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = FocalNetConfig( embed_dim=_SCREAMING_SNAKE_CASE , depths=_SCREAMING_SNAKE_CASE , focal_levels=_SCREAMING_SNAKE_CASE , focal_windows=_SCREAMING_SNAKE_CASE , use_conv_embed=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE , use_post_layernorm=_SCREAMING_SNAKE_CASE , use_layerscale=_SCREAMING_SNAKE_CASE , ) return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "encoder.layers" in name: SCREAMING_SNAKE_CASE = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: SCREAMING_SNAKE_CASE = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: SCREAMING_SNAKE_CASE = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: SCREAMING_SNAKE_CASE = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """focalnet.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on SCREAMING_SNAKE_CASE = model_name_to_url[model_name] print("""Checkpoint URL: """ , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE = state_dict.pop(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = val SCREAMING_SNAKE_CASE = get_focalnet_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify conversion SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=_SCREAMING_SNAKE_CASE , size={"""shortest_edge""": 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size=2_24 , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) SCREAMING_SNAKE_CASE = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _SCREAMING_SNAKE_CASE , atol=1E-4 ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": SCREAMING_SNAKE_CASE = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": SCREAMING_SNAKE_CASE = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": SCREAMING_SNAKE_CASE = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": SCREAMING_SNAKE_CASE = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": SCREAMING_SNAKE_CASE = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": SCREAMING_SNAKE_CASE = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
296
from pathlib import Path import fire def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
296
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase_ ( a_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? SCREAMING_SNAKE_CASE_ = 'ssube/stable-diffusion-x4-upscaler-onnx' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Union[str, Any]=0 ): '''simple docstring''' a = floats_tensor((1, 3, 1_28, 1_28) ,rng=random.Random(__a ) ) a = torch.manual_seed(__a ) a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__a ) a = self.get_dummy_inputs() a = pipe(**__a ).images a = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) a = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) a = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) a = self.get_dummy_inputs() a = pipe(**__a ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) a = self.get_dummy_inputs() a = pipe(**__a ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) a = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) a = self.get_dummy_inputs() a = pipe(**__a ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) a = self.get_dummy_inputs() a = pipe(**__a ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = ort.SessionOptions() a = False return options def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default a = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__a ) a = '''A fantasy landscape, trending on artstation''' a = torch.manual_seed(0 ) a = pipe( prompt=__a ,image=__a ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=__a ,output_type='''np''' ,) a = output.images a = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) a = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a = init_image.resize((1_28, 1_28) ) a = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' ,subfolder='''scheduler''' ) a = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' ,scheduler=__a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__a ) a = '''A fantasy landscape, trending on artstation''' a = torch.manual_seed(0 ) a = pipe( prompt=__a ,image=__a ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=__a ,output_type='''np''' ,) a = output.images a = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) a = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
362
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
0
"""simple docstring""" from __future__ import annotations __lowerCamelCase = [True] * 1_00_00_01 __lowerCamelCase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): __lowerCamelCase = False i += 1 def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return seive[n] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return any(digit in '02468' for digit in str(snake_case__ ) ) def UpperCAmelCase ( UpperCamelCase__ = 1_000_000 ): """simple docstring""" A__ = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(snake_case__ ) and not contains_an_even_digit(snake_case__ ): A__ = str(snake_case__ ) A__ = [int(str_num[j:] + str_num[:j] ) for j in range(len(snake_case__ ) )] if all(is_prime(snake_case__ ) for i in list_nums ): result.append(snake_case__ ) return result def UpperCAmelCase ( ): """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
221
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE : List[Any] = '''src/diffusers''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : Tuple = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __SCREAMING_SNAKE_CASE : Union[str, Any] = spec.loader.load_module() def lowerCAmelCase_( lowercase_ : str , lowercase_ : Tuple ) -> int: return line.startswith(lowercase_ ) or len(lowercase_ ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , lowercase_ ) is not None def lowerCAmelCase_( lowercase_ : Any ) -> Tuple: _lowerCamelCase = object_name.split('''.''' ) _lowerCamelCase = 0 # First let's find the module where our object lives. _lowerCamelCase = parts[i] while i < len(lowercase_ ) and not os.path.isfile(os.path.join(lowercase_ , F"""{module}.py""" ) ): i += 1 if i < len(lowercase_ ): _lowerCamelCase = os.path.join(lowercase_ , parts[i] ) if i >= len(lowercase_ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowercase_ , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase = '''''' _lowerCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase_ ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase_ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase = line_index while line_index < len(lowercase_ ) and _should_continue(lines[line_index] , lowercase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] return "".join(lowercase_ ) __SCREAMING_SNAKE_CASE : str = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') __SCREAMING_SNAKE_CASE : List[str] = re.compile(R'''<FILL\s+[^>]*>''') def lowerCAmelCase_( lowercase_ : List[Any] ) -> str: _lowerCamelCase = code.split('''\n''' ) _lowerCamelCase = 0 while idx < len(lowercase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase_ ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def lowerCAmelCase_( lowercase_ : List[Any] ) -> Union[str, Any]: _lowerCamelCase = len(get_indent(lowercase_ ) ) > 0 if has_indent: _lowerCamelCase = F"""class Bla:\n{code}""" _lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=lowercase_ ) _lowerCamelCase = black.format_str(lowercase_ , mode=lowercase_ ) _lowerCamelCase , _lowerCamelCase = style_docstrings_in_code(lowercase_ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : Union[str, Any]=False ) -> str: with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [] _lowerCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase_ ): _lowerCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = search.groups() _lowerCamelCase = find_code_in_diffusers(lowercase_ ) _lowerCamelCase = get_indent(lowercase_ ) _lowerCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase = theoretical_indent _lowerCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase = True while line_index < len(lowercase_ ) and should_continue: line_index += 1 if line_index >= len(lowercase_ ): break _lowerCamelCase = lines[line_index] _lowerCamelCase = _should_continue(lowercase_ , lowercase_ ) and re.search(F"""^{indent}# End copy""" , lowercase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] _lowerCamelCase = ''''''.join(lowercase_ ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(lowercase_ ) is None] _lowerCamelCase = '''\n'''.join(lowercase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase_ ) > 0: _lowerCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowerCamelCase = [_re_replace_pattern.search(lowercase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = pattern.groups() _lowerCamelCase = re.sub(lowercase_ , lowercase_ , lowercase_ ) if option.strip() == "all-casing": _lowerCamelCase = re.sub(obja.lower() , obja.lower() , lowercase_ ) _lowerCamelCase = re.sub(obja.upper() , obja.upper() , lowercase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase = start_index + 1 if overwrite and len(lowercase_ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(lowercase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowercase_ ) return diffs def lowerCAmelCase_( lowercase_ : bool = False ) -> Union[str, Any]: _lowerCamelCase = glob.glob(os.path.join(lowercase_ , '''**/*.py''' ) , recursive=lowercase_ ) _lowerCamelCase = [] for filename in all_files: _lowerCamelCase = is_copy_consistent(lowercase_ , lowercase_ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowercase_ ) > 0: _lowerCamelCase = '''\n'''.join(lowercase_ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __SCREAMING_SNAKE_CASE : str = parser.parse_args() check_copies(args.fix_and_overwrite)
73
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase__ ( lowercase ): def __init__( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : str = dataset _UpperCamelCase : Optional[Any] = process _UpperCamelCase : Optional[Any] = params def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.dataset[i] _UpperCamelCase : Dict = self.process(lowerCamelCase__ ,**self.params ) return processed class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int]=None ): '''simple docstring''' _UpperCamelCase : Optional[int] = loader _UpperCamelCase : Tuple = infer _UpperCamelCase : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCamelCase : Any = None _UpperCamelCase : Union[str, Any] = loader_batch_size # Internal bookkeeping _UpperCamelCase : Optional[Any] = None _UpperCamelCase : str = None def __len__( self : List[str] ): '''simple docstring''' return len(self.loader ) def __iter__( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = iter(self.loader ) return self def UpperCamelCase_ ( self : Any ): '''simple docstring''' if isinstance(self._loader_batch_data ,torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCamelCase : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCamelCase : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # Convert ModelOutput to tuple first _UpperCamelCase : str = element.to_tuple() if isinstance(element[0] ,torch.Tensor ): _UpperCamelCase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _UpperCamelCase : str = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] ,torch.Tensor ): _UpperCamelCase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _UpperCamelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCamelCase : Optional[int] = None elif isinstance(element[self._loader_batch_index] ,torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase : int = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] ,np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase : Optional[Any] = np.expand_dims(element[self._loader_batch_index] ,0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCamelCase : Union[str, Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCamelCase : Optional[int] = self._loader_batch_data.__class__(lowerCamelCase__ ) self._loader_batch_index += 1 return result def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCamelCase : Tuple = next(self.iterator ) _UpperCamelCase : List[str] = self.infer(lowerCamelCase__ ,**self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase__ ,torch.Tensor ): _UpperCamelCase : List[Any] = processed else: _UpperCamelCase : List[Any] = list(processed.keys() )[0] _UpperCamelCase : Optional[int] = processed[key] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = len(lowerCamelCase__ ) else: _UpperCamelCase : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase : int = observed_batch_size # Setting internal index to unwrap the batch _UpperCamelCase : Dict = processed _UpperCamelCase : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase__ ( lowercase ): def __init__( self : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def __iter__( self : Dict ): '''simple docstring''' _UpperCamelCase : str = iter(self.loader ) _UpperCamelCase : List[str] = None return self def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.subiterator is None: _UpperCamelCase : Tuple = self.infer(next(self.iterator ) ,**self.params ) try: # Try to return next item _UpperCamelCase : Optional[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params ) _UpperCamelCase : int = next(self.subiterator ) return processed class lowercase__ ( lowercase ): def __iter__( self : List[str] ): '''simple docstring''' _UpperCamelCase : Dict = iter(self.loader ) return self def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _UpperCamelCase : Dict = False _UpperCamelCase : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase : Dict = self.loader_batch_item() _UpperCamelCase : List[str] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator while not is_last: _UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase__ ,torch.Tensor ): _UpperCamelCase : str = processed else: _UpperCamelCase : Any = list(processed.keys() )[0] _UpperCamelCase : Tuple = processed[key] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Dict = len(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase : Any = observed_batch_size _UpperCamelCase : List[Any] = processed _UpperCamelCase : int = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase : List[Any] = self.loader_batch_item() _UpperCamelCase : Optional[Any] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator else: _UpperCamelCase : Any = processed _UpperCamelCase : List[Any] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) return accumulator class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = dataset _UpperCamelCase : str = key def __len__( self : Dict ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.dataset[i][self.key] class lowercase__ ( lowercase ): def __init__( self : List[Any] ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = dataset _UpperCamelCase : Optional[Any] = keya _UpperCamelCase : str = keya def __len__( self : List[Any] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
83
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 5_00_03 lowerCamelCase = 5_00_02 @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : int =PLBartTokenizer UpperCamelCase__ : Dict =None UpperCamelCase__ : Optional[Any] =False def lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Any =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) _lowerCamelCase : Optional[int] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : str =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : List[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : str =tokenizer.vocab_size _lowerCamelCase : List[str] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 4 , lowercase_ )] self.assertListEqual(lowercase_ , ['__java__', '__python__', '__en_XX__', '<mask>'] ) _lowerCamelCase : Optional[Any] ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Dict =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : Tuple =PLBartTokenizer(lowercase_ , language_codes='multi' , keep_accents=lowercase_ ) _lowerCamelCase : Any =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : Dict =tokenizer.vocab_size _lowerCamelCase : Optional[int] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 7 , lowercase_ )] self.assertListEqual( lowercase_ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) _lowerCamelCase : int ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Any =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] ='uclanlp/plbart-python-en_XX' UpperCamelCase__ : List[str] =[ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] UpperCamelCase__ : Optional[int] =[ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] UpperCamelCase__ : str =[ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase ( cls : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) _lowerCamelCase : Any =1 return cls def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) _lowerCamelCase : Dict =[EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCamelCase : Optional[int] =self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , lowercase_ ) _lowerCamelCase : Tuple =10 _lowerCamelCase : Optional[int] =self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =tempfile.mkdtemp() _lowerCamelCase : Dict =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) _lowerCamelCase : Any =PLBartTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='pt' ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCamelCase : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='pt' ) _lowerCamelCase : Dict =self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='pt' ) _lowerCamelCase : List[str] =targets['input_ids'] _lowerCamelCase : Optional[Any] =shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : Any =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
199
0
# flake8: noqa # Lint as: python3 SCREAMING_SNAKE_CASE__ : Any = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0