code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' snake_case_ : List[str] = feature_size snake_case_ : Optional[int] = sampling_rate snake_case_ : Dict = padding_value snake_case_ : Any = kwargs.pop('''padding_side''' , '''right''' ) snake_case_ : int = kwargs.pop('''return_attention_mask''' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ) -> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case_ : Tuple = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) snake_case_ : str = processed_features[self.model_input_names[0]] snake_case_ : Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__ ) == 0: if return_attention_mask: snake_case_ : List[str] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case_ : Optional[Any] = required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case_ : List[str] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__ ): snake_case_ : Any = 'tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): snake_case_ : Union[str, Any] = 'pt' elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ): snake_case_ : Union[str, Any] = 'np' else: raise ValueError( F'''type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. ''' '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case_ : Union[str, Any] = to_numpy(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Dict = [to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case_ : Tuple = self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = processed_features[self.model_input_names[0]] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) snake_case_ : Any = [] for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : int = {k: v[i] for k, v in processed_features.items()} # truncation snake_case_ : Union[str, Any] = self._truncate( SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) truncated_inputs.append(SCREAMING_SNAKE_CASE__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case_ : Any = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case_ : Optional[Any] = PaddingStrategy.MAX_LENGTH snake_case_ : Optional[Any] = {} for i in range(SCREAMING_SNAKE_CASE__ ): # padding snake_case_ : List[str] = self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case_ : Union[str, Any] = [] if value.dtype is np.dtype(np.floataa ): snake_case_ : Any = value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE__ ) return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = PaddingStrategy.DO_NOT_PAD , __magic_name__ = None , __magic_name__ = None , ) -> str: '''simple docstring''' snake_case_ : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case_ : int = np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa ) if needs_to_be_padded: snake_case_ : List[Any] = max_length - len(SCREAMING_SNAKE_CASE__ ) if self.padding_side == "right": if return_attention_mask: snake_case_ : Any = np.pad( processed_features['''attention_mask'''] , (0, difference) ) snake_case_ : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case_ : Tuple = np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case_ : List[Any] = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) snake_case_ : Any = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case_ : Union[str, Any] = np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ) -> List[Any]: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) snake_case_ : Union[str, Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) > max_length if needs_to_be_truncated: snake_case_ : Dict = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case_ : Optional[Any] = processed_features['attention_mask'][:max_length] return processed_features def lowerCamelCase (self , __magic_name__=False , __magic_name__=None ) -> List[str]: '''simple docstring''' if padding is not False: if padding is True: snake_case_ : Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = PaddingStrategy(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[Any] = padding else: snake_case_ : Union[str, Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
279
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Union[str, Any]): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding='utf-8' ,check=SCREAMING_SNAKE_CASE__ ,) assert hasattr(self ,'env') def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int): # configuration for running training on smdistributed Model Parallel __lowerCamelCase : Any = { 'enabled': True, 'processes_per_host': 8, } __lowerCamelCase : List[Any] = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __lowerCamelCase : str = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __lowerCamelCase : List[str] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" ,instance_count=SCREAMING_SNAKE_CASE__ ,instance_type=self.instance_type ,debugger_hook_config=SCREAMING_SNAKE_CASE__ ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_0_0, } ,metric_definitions=self.env.metric_definitions ,distribution=SCREAMING_SNAKE_CASE__ ,py_version='py36' ,) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any): TrainingJobAnalytics(SCREAMING_SNAKE_CASE__).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): # create estimator __lowerCamelCase : str = self.create_estimator(SCREAMING_SNAKE_CASE__) # run training estimator.fit() # result dataframe __lowerCamelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) __lowerCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase : str = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' ,9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" ,'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,SCREAMING_SNAKE_CASE__)
73
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _lowercase , _lowercase): @register_to_config def __init__( self : Tuple , __UpperCamelCase : bool , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None ) -> int: super().__init__() _UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCamelCase = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: _UpperCamelCase = None _UpperCamelCase = torch.nn.Parameter(__UpperCamelCase ) class UpperCAmelCase_ ( _lowercase): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self : List[str] , __UpperCamelCase : VQModel , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : TransformeraDModel , __UpperCamelCase : VQDiffusionScheduler , __UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , ) -> Optional[int]: super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) -> str: _UpperCamelCase = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt _UpperCamelCase = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings _UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: _UpperCamelCase = [''''''] * batch_size _UpperCamelCase = text_input_ids.shape[-1] _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCamelCase = negative_prompt_embeds.shape[1] _UpperCamelCase = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) _UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 100 , __UpperCamelCase : float = 5.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = len(__UpperCamelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}''' ) _UpperCamelCase = batch_size * num_images_per_prompt _UpperCamelCase = guidance_scale > 1.0 _UpperCamelCase = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__UpperCamelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCamelCase = self.transformer.num_vector_embeds - 1 _UpperCamelCase = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) _UpperCamelCase = self.scheduler.timesteps.to(self.device ) _UpperCamelCase = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance _UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCamelCase = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = model_output.chunk(2 ) _UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) _UpperCamelCase = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) _UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.vqvae.config.vq_embed_dim _UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCamelCase = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) _UpperCamelCase = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float ) -> torch.FloatTensor: _UpperCamelCase , _UpperCamelCase = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) _UpperCamelCase = torch.exp(__UpperCamelCase ) _UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) _UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) _UpperCamelCase = keep_mask[:, :-1, :] _UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _UpperCamelCase = log_p_x_0.clone() _UpperCamelCase = -torch.inf # -inf = log(0) return rv
54
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: Any = 1 __lowerCAmelCase: List[Any] = 2 while i * i <= n: __lowerCAmelCase: List[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def a__ ( ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = 1 __lowerCAmelCase: Tuple = 1 while True: i += 1 t_num += i if count_divisors(__SCREAMING_SNAKE_CASE ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
217
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } __A = { "google/rembert": 256, } __A = "▁" class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = RemBertTokenizer def __init__( self : Tuple , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int="[CLS]" , UpperCamelCase__ : Optional[Any]="[SEP]" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Dict="[SEP]" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Any="[CLS]" , UpperCamelCase__ : str="[MASK]" , **UpperCamelCase__ : Optional[Any] , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Optional[int] = do_lower_case __lowerCAmelCase: int = remove_space __lowerCAmelCase: int = keep_accents __lowerCAmelCase: str = vocab_file __lowerCAmelCase: Tuple = False if not self.vocab_file else True def lowercase_ ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False)-> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__)) + [1] + ([0] * len(UpperCamelCase__)) + [1] return [1] + ([0] * len(UpperCamelCase__)) + [1] def lowercase_ ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase__)) return __lowerCAmelCase: Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase__): copyfile(self.vocab_file , UpperCamelCase__) return (out_vocab_file,)
217
1
"""simple docstring""" from __future__ import annotations def _A (__a ) -> list[int]: # This function is recursive """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = len(__a ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE_ : List[str] = array[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Tuple = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE_ : str = longest_subsequence(__a ) if len(__a ) > len(__a ): SCREAMING_SNAKE_CASE_ : Optional[int] = temp_array else: i += 1 SCREAMING_SNAKE_CASE_ : Dict = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE_ : List[str] = [pivot, *longest_subsequence(__a )] if len(__a ) > len(__a ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _A (__a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A (__a ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _A (__a , __a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
318
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : Union[str, Any] = abs(_lowerCAmelCase ) snake_case : Union[str, Any] = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Optional[Any] = abs(_lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: return sum(int(_lowerCAmelCase ) for c in str(abs(_lowerCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase ,lowercase ) -> None: snake_case : str = f"""{func.__name__}({value})""" snake_case : Union[str, Any] = timeit(f"""__main__.{call}""" ,setup="""import __main__""" ) print(f"""{call:56} = {func(_lowerCAmelCase )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCAmelCase ,_lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = args.pruning_method lowercase__ : Tuple = args.threshold lowercase__ : str = args.model_name_or_path.rstrip('/' ) lowercase__ : List[Any] = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowercase__ : Optional[Any] = torch.load(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) lowercase__ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__ : Tuple = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowercase__ : List[str] = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowercase__ : Optional[Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowercase__ : Optional[Any] = MagnitudeBinarizer.apply(inputs=_lowerCAmelCase , threshold=_lowerCAmelCase ) lowercase__ : Optional[int] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__ : Optional[Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ : Any = TopKBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__ : Any = name[:-6] lowercase__ : Optional[Any] = model[f"""{prefix_}mask_scores"""] lowercase__ : Tuple = ThresholdBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__ : Union[str, Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ , lowercase__ : Tuple = -0.1, 1.1 lowercase__ : Optional[Any] = torch.sigmoid(_lowerCAmelCase ) lowercase__ : Optional[Any] = s * (r - l) + l lowercase__ : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__ : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowercase__ : Union[str, Any] = os.path.join( os.path.dirname(_lowerCAmelCase ) , f"""bertarized_{os.path.basename(_lowerCAmelCase )}""" ) if not os.path.isdir(_lowerCAmelCase ): shutil.copytree(_lowerCAmelCase , _lowerCAmelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _UpperCamelCase : Dict = parser.parse_args() main(args)
77
0
lowerCamelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
353
def lowerCamelCase_ ( _a = 4_000_000 ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = b, a + b return sum(_a ) if __name__ == "__main__": print(f'''{solution() = }''')
211
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
259
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __A ( nn.Module ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = (16, 32, 96, 256) lowerCAmelCase_ = jnp.floataa def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ = self.block_out_channels[i] lowerCamelCase__ = self.block_out_channels[i + 1] lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) lowerCamelCase__ = blocks lowerCamelCase__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.conv_in(__lowerCAmelCase ) lowerCamelCase__ = nn.silu(__lowerCAmelCase ) for block in self.blocks: lowerCamelCase__ = block(__lowerCAmelCase ) lowerCamelCase__ = nn.silu(__lowerCAmelCase ) lowerCamelCase__ = self.conv_out(__lowerCAmelCase ) return embedding @flax_register_to_config class __A ( nn.Module , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 32 lowerCAmelCase_ = 4 lowerCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase_ = False lowerCAmelCase_ = (320, 640, 1280, 1280) lowerCAmelCase_ = 2 lowerCAmelCase_ = 8 lowerCAmelCase_ = None lowerCAmelCase_ = 1280 lowerCAmelCase_ = 0.0 lowerCAmelCase_ = False lowerCAmelCase_ = jnp.floataa lowerCAmelCase_ = True lowerCAmelCase_ = 0 lowerCAmelCase_ = "rgb" lowerCAmelCase_ = (16, 32, 96, 256) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(__lowerCAmelCase ) lowerCamelCase__ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )["params"] def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.block_out_channels lowerCamelCase__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ = FlaxTimestepEmbedding(__lowerCAmelCase , dtype=self.dtype ) lowerCamelCase__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase__ = self.only_cross_attention if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = block_out_channels[0] lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ = output_channel lowerCamelCase__ = block_out_channels[i] lowerCamelCase__ = i == len(__lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ = FlaxCrossAttnDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase__ = FlaxDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) if not is_final_block: lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) lowerCamelCase__ = down_blocks lowerCamelCase__ = controlnet_down_blocks # mid lowerCamelCase__ = block_out_channels[-1] lowerCamelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = False , ): '''simple docstring''' lowerCamelCase__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ = jnp.flip(__lowerCAmelCase , axis=1 ) # 1. time if not isinstance(__lowerCAmelCase , jnp.ndarray ): lowerCamelCase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ = jnp.expand_dims(__lowerCAmelCase , 0 ) lowerCamelCase__ = self.time_proj(__lowerCAmelCase ) lowerCamelCase__ = self.time_embedding(__lowerCAmelCase ) # 2. pre-process lowerCamelCase__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ = self.conv_in(__lowerCAmelCase ) lowerCamelCase__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ = self.controlnet_cond_embedding(__lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = down_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ = down_block(__lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ = self.mid_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) # 5. contronet blocks lowerCamelCase__ = () for down_block_res_sample, controlnet_block in zip(__lowerCAmelCase , self.controlnet_down_blocks ): lowerCamelCase__ = controlnet_block(__lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ = controlnet_down_block_res_samples lowerCamelCase__ = self.controlnet_mid_block(__lowerCAmelCase ) # 6. scaling lowerCamelCase__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCAmelCase , mid_block_res_sample=__lowerCAmelCase )
209
0
"""simple docstring""" from string import ascii_uppercase UpperCAmelCase__ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase__ = dict(enumerate(ascii_uppercase)) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> str: _snake_case = len(__lowerCamelCase ) _snake_case = 0 while True: if x == i: _snake_case = 0 if len(__lowerCamelCase ) == len(__lowerCamelCase ): break key += key[i] i += 1 return key def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> str: _snake_case = '''''' _snake_case = 0 for letter in message: if letter == " ": cipher_text += " " else: _snake_case = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> str: _snake_case = '''''' _snake_case = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _snake_case = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _UpperCAmelCase ( ) -> None: _snake_case = '''THE GERMAN ATTACK''' _snake_case = '''SECRET''' _snake_case = generate_key(__lowerCamelCase , __lowerCamelCase ) _snake_case = cipher_text(__lowerCamelCase , __lowerCamelCase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(__lowerCamelCase , __lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
40
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } UpperCAmelCase__ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_INIT_CONFIGURATION __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = BertTokenizer def __init__( self : Optional[int] , _lowerCamelCase : int=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Tuple=True , _lowerCamelCase : Optional[int]="[UNK]" , _lowerCamelCase : Any="[SEP]" , _lowerCamelCase : Any="[PAD]" , _lowerCamelCase : List[Any]="[CLS]" , _lowerCamelCase : Dict="[MASK]" , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=None , **_lowerCamelCase : int , ): super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): _snake_case = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**_lowerCamelCase ) _snake_case = do_lower_case def lowercase ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]=None ): _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): _snake_case = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
40
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def lowercase_ ( self : List[str] ): '''simple docstring''' debug_launcher(test_ops.main )
181
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCamelCase__ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } UpperCamelCase__ = { '''facebook/xglm-564M''': 2_0_4_8, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , _A : Optional[Any] , _A : Optional[Any]="<s>" , _A : List[str]="</s>" , _A : Optional[Any]="</s>" , _A : List[str]="<s>" , _A : Tuple="<unk>" , _A : List[str]="<pad>" , _A : Optional[Dict[str, Any]] = None , **_A : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase__ : Optional[int] = 7 UpperCAmelCase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase__ : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) UpperCAmelCase__ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ : Any = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase__ : int = len(self.sp_model ) UpperCAmelCase__ : Optional[int] = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_A ) UpperCAmelCase__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = self.__dict__.copy() UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase__ : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowercase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) def lowercase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowercase_ ( self : Any ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : Optional[Any] , _A : str ): '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def lowercase_ ( self : List[str] , _A : List[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Union[str, Any] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self : List[Any] , _A : str ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self : int , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def lowercase_ ( self : Any , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : List[str] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: UpperCAmelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
181
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Optional[int] = 16 __A : Dict = 32 def UpperCamelCase_ ( A__ : Accelerator , A__ : int = 16 ): '''simple docstring''' lowerCAmelCase_ : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase_ : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : List[str] = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : List[str] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : int = 8 else: lowerCAmelCase_ : Dict = None return tokenizer.pad( A__ , padding="""longest""" , max_length=A__ , pad_to_multiple_of=A__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowerCAmelCase_ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : Tuple = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( A__ : List[str] , A__ : Dict ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , A__ ) == "1": lowerCAmelCase_ : str = 2 # Initialize accelerator lowerCAmelCase_ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Optional[int] = config["""lr"""] lowerCAmelCase_ : Any = int(config["""num_epochs"""] ) lowerCAmelCase_ : Dict = int(config["""seed"""] ) lowerCAmelCase_ : Optional[int] = int(config["""batch_size"""] ) lowerCAmelCase_ : List[str] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase_ : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase_ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase_ : List[str] = MAX_GPU_BATCH_SIZE set_seed(A__ ) lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = get_dataloaders(A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : Dict = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler lowerCAmelCase_ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=1_00 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[str] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ : List[str] = model(**A__ ) lowerCAmelCase_ : int = outputs.loss lowerCAmelCase_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase_ : str = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**A__ ) lowerCAmelCase_ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_, lowerCAmelCase_ : List[Any] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(A__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase_ : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=A__ , references=A__ , ) lowerCAmelCase_ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , A__ ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=A__ , default=A__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
89
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ : int | float | str , A__ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase_ : str = int(A__ ) lowerCAmelCase_ : Tuple = int(A__ ) lowerCAmelCase_ : list[str] = [] for temp in range(int(A__ ) ): series.append(f'1 / {pow(temp + 1 , int(A__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __A : str = int(input("Enter the last number (nth term) of the P-Series")) __A : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
89
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[str] = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
115
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : List[str] , **UpperCamelCase : Any ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Tuple = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(UpperCamelCase ) self.assertGreater(UpperCamelCase , 0 ) self.assertEqual( UpperCamelCase , [ { """score""": ANY(UpperCamelCase ), """label""": ANY(UpperCamelCase ), """box""": {"""xmin""": ANY(UpperCamelCase ), """ymin""": ANY(UpperCamelCase ), """xmax""": ANY(UpperCamelCase ), """ymax""": ANY(UpperCamelCase )}, } for i in range(UpperCamelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass @require_torch def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Tuple = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : int = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : List[str] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass @require_torch @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Union[str, Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[str] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
115
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : '''simple docstring''' def __init__( self : Any , a_ : Optional[Any] , a_ : Dict=13 , a_ : Union[str, Any]=32 , a_ : Dict=3 , a_ : Any=4 , a_ : Any=[10, 20, 30, 40] , a_ : Optional[int]=[2, 2, 3, 2] , a_ : Tuple=True , a_ : str=True , a_ : str=37 , a_ : Optional[int]="gelu" , a_ : Dict=10 , a_ : Union[str, Any]=0.02 , a_ : List[Any]=["stage2", "stage3", "stage4"] , a_ : Union[str, Any]=[2, 3, 4] , a_ : List[Any]=None , ): lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : List[str] = num_stages lowerCAmelCase_ : Union[str, Any] = hidden_sizes lowerCAmelCase_ : List[str] = depths lowerCAmelCase_ : Any = is_training lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : str = out_features lowerCAmelCase_ : List[str] = out_indices lowerCAmelCase_ : List[Any] = scope def lowerCamelCase ( self : str ): lowerCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Tuple ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase ( self : Dict , a_ : Optional[int] , a_ : Any , a_ : Tuple ): lowerCAmelCase_ : List[str] = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase_ : Optional[int] = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Dict ): lowerCAmelCase_ : int = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Optional[Any] , a_ : Dict , a_ : List[str] , a_ : Union[str, Any] ): lowerCAmelCase_ : Dict = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Any = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase_ : List[str] = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' a_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) a_ : Union[str, Any] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) a_ : Optional[int] = True a_ : str = False a_ : List[Any] = False a_ : Union[str, Any] = False a_ : int = False def lowerCamelCase ( self : int ): lowerCAmelCase_ : Dict = ConvNextModelTester(self ) lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def lowerCamelCase ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : int = model_class(a__ ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase_ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def lowerCamelCase ( self : Optional[int] ): def check_hidden_states_output(a_ : Optional[int] , a_ : List[str] , a_ : Optional[Any] ): lowerCAmelCase_ : Any = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) lowerCAmelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : List[str] = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : List[Any] = True check_hidden_states_output(a__ , a__ , a__ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def lowerCamelCase ( self : Union[str, Any] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Dict = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : Any ): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(a__ ) lowerCAmelCase_ : Union[str, Any] = self.default_image_processor lowerCAmelCase_ : Dict = prepare_img() lowerCAmelCase_ : Optional[Any] = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**a__ ) # verify the logits lowerCAmelCase_ : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a__ ) lowerCAmelCase_ : Dict = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase , __a ): '''simple docstring''' a_ : List[Any] = (ConvNextBackbone,) if is_torch_available() else () a_ : List[str] = ConvNextConfig a_ : int = False def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[str] = ConvNextModelTester(self )
360
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , a_ : Any , a_ : Any=None , a_ : int=None , a_ : str=None , a_ : Optional[int]="resnet50" , a_ : str=3 , a_ : str=32 , a_ : Union[str, Any]=3 , a_ : Tuple=True , a_ : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Dict = out_indices if out_indices is not None else [4] lowerCAmelCase_ : int = stage_names lowerCAmelCase_ : Optional[Any] = out_features lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Optional[int] = use_pretrained_backbone lowerCAmelCase_ : List[Any] = is_training def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values def lowerCamelCase ( self : Dict ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase ( self : Union[str, Any] , a_ : str , a_ : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () a_ : int = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ : Union[str, Any] = False a_ : str = False a_ : List[Any] = False a_ : Dict = False def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = TimmBackboneModelTester(self ) lowerCAmelCase_ : List[str] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self : Dict ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = "resnet18" lowerCAmelCase_ : List[Any] = "microsoft/resnet-18" lowerCAmelCase_ : Tuple = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) lowerCAmelCase_ : str = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase_ : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) lowerCAmelCase_ : Any = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCamelCase ( self : List[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Any ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : str ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : Any ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : List[str] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCamelCase ( self : int ): pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase_ : int = self.all_model_classes[0] lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : str = model(**a_ ) lowerCAmelCase_ : Any = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase_ : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCamelCase ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase_ : Optional[int] = copy.deepcopy(a_ ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase_ : str = copy.deepcopy(a_ ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(**a_ )
161
0
'''simple docstring''' from __future__ import annotations from cmath import sqrt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> tuple[complex, complex]: if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) UpperCAmelCase : List[Any] = b * b - 4 * a * c UpperCAmelCase : int = (-b + sqrt(_lowerCAmelCase )) / (2 * a) UpperCAmelCase : List[Any] = (-b - sqrt(_lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def snake_case_ ( ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : List[str] = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
23
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.get_dummy_input() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _lowerCamelCase ( self : Optional[int] , a : List[Any]=True , a : Any=False , a : Dict=False , a : Union[str, Any]=False , ): '''simple docstring''' lowerCAmelCase__ : Tuple = 4 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : Tuple = (32, 32) lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = torch.device(a ) lowerCAmelCase__ : str = (batch_size, num_channels) + sizes lowerCAmelCase__ : Tuple = randn_tensor(a , generator=a , device=a ) lowerCAmelCase__ : Optional[Any] = {'hidden_states': hidden_states} if include_temb: lowerCAmelCase__ : int = 128 lowerCAmelCase__ : List[str] = randn_tensor((batch_size, temb_channels) , generator=a , device=a ) if include_res_hidden_states_tuple: lowerCAmelCase__ : int = torch.manual_seed(1 ) lowerCAmelCase__ : str = (randn_tensor(a , generator=a , device=a ),) if include_encoder_hidden_states: lowerCAmelCase__ : Any = floats_tensor((batch_size, 32, 32) ).to(a ) if include_skip_sample: lowerCAmelCase__ : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) , generator=a , device=a ) return dummy_input def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": lowerCAmelCase__ : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCAmelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : str , a : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : int = self.block_class(**a ) unet_block.to(a ) unet_block.eval() with torch.no_grad(): lowerCAmelCase__ : int = unet_block(**a ) if isinstance(a , a ): lowerCAmelCase__ : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:] lowerCAmelCase__ : Any = torch.tensor(a ).to(a ) assert torch_all_close(output_slice.flatten() , a , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Any = self.block_class(**a ) model.to(a ) model.train() lowerCAmelCase__ : int = model(**a ) if isinstance(a , a ): lowerCAmelCase__ : Dict = output[0] lowerCAmelCase__ : Optional[int] = torch.device(a ) lowerCAmelCase__ : List[Any] = randn_tensor(output.shape , device=a ) lowerCAmelCase__ : List[Any] = torch.nn.functional.mse_loss(a , a ) loss.backward()
212
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCAmelCase = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' __lowerCAmelCase = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> List[Any]: '''simple docstring''' lowercase__: str = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowercase__: List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] lowercase__: Union[str, Any] = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: str = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
368
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowerCAmelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowerCAmelCase = {'''vinai/bartpho-syllable''': 10_24} class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: Dict = vocab_file lowercase__: str = monolingual_vocab_file lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: str = cnt cnt += 1 with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowercase__: Optional[Any] = line.strip().split()[0] lowercase__: Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Tuple = None lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Union[str, Any] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] lowercase__: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Dict = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowerCAmelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
288
0
'''simple docstring''' from statistics import mean import numpy as np def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = 0 # Number of processes finished lowerCAmelCase__ : Tuple = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowerCAmelCase__ : List[str] = [0] * no_of_process # List to include calculation results lowerCAmelCase__ : str = [0] * no_of_process # Sort by arrival time. lowerCAmelCase__ : Optional[int] = [burst_time[i] for i in np.argsort(UpperCamelCase )] lowerCAmelCase__ : Tuple = [process_name[i] for i in np.argsort(UpperCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowerCAmelCase__ : Union[str, Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowerCAmelCase__ : int = arrival_time[i] lowerCAmelCase__ : Dict = 0 # Index showing the location of the process being performed lowerCAmelCase__ : Tuple = 0 # Saves the current response ratio. lowerCAmelCase__ : List[str] = 0 for i in range(0 , UpperCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowerCAmelCase__ : Union[str, Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowerCAmelCase__ : Tuple = temp lowerCAmelCase__ : Any = i # Calculate the turn around time lowerCAmelCase__ : Dict = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowerCAmelCase__ : str = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = [0] * no_of_process for i in range(0 , UpperCamelCase ): lowerCAmelCase__ : str = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowerCAmelCase = 5 _lowerCAmelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _lowerCAmelCase = [1, 2, 3, 4, 5] _lowerCAmelCase = [1, 2, 3, 4, 5] _lowerCAmelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowerCAmelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
37
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any]=13 , lowerCamelCase_ :Any=7 , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Any=True , lowerCamelCase_ :List[str]=99 , lowerCamelCase_ :Dict=32 , lowerCamelCase_ :Union[str, Any]=5 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Optional[Any]="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :List[Any]=512 , lowerCamelCase_ :List[str]=16 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Tuple=0.02 , lowerCamelCase_ :Tuple=4 , ): """simple docstring""" lowerCamelCase__ : Optional[Any] =parent lowerCamelCase__ : List[Any] =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Optional[int] =is_training lowerCamelCase__ : Optional[Any] =use_attention_mask lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : List[Any] =use_labels lowerCamelCase__ : Any =vocab_size lowerCamelCase__ : int =hidden_size lowerCamelCase__ : Dict =num_hidden_layers lowerCamelCase__ : int =num_attention_heads lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : Dict =hidden_act lowerCamelCase__ : str =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : List[Any] =max_position_embeddings lowerCamelCase__ : Tuple =type_vocab_size lowerCamelCase__ : Any =type_sequence_label_size lowerCamelCase__ : Dict =initializer_range lowerCamelCase__ : str =num_choices def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any =None if self.use_attention_mask: lowerCamelCase__ : Any =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any =None if self.use_token_type_ids: lowerCamelCase__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : str =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Dict =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =config_and_inputs lowerCamelCase__ : int ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : int =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =config_and_inputs lowerCamelCase__ : Optional[Any] =True lowerCamelCase__ : Any =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : str =FlaxBertModelTester(self ) @slow def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Dict =FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCamelCase__ : List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
126
0
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : set ): '''simple docstring''' __snake_case , __snake_case : Any = len(__SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __snake_case : List[Any] = 0 count += depth_first_search(__SCREAMING_SNAKE_CASE , row + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , row - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col + 1 , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col - 1 , __SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase: List[str] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: str = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Any = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _UpperCamelCase: Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCamelCase: List[Any] = logging.getLogger(__name__) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether tp freeze the encoder.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _lowerCamelCase = field( default='summarization', metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'}, ) _lowerCamelCase = field( default=1_024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=128, metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=142, metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) }, ) _lowerCamelCase = field( default=142, metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field(default=-1, metadata={'help': '# training examples. -1 means use all.'} ) _lowerCamelCase = field(default=-1, metadata={'help': '# validation examples. -1 means use all.'} ) _lowerCamelCase = field(default=-1, metadata={'help': '# test examples. -1 means use all.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Source language id for translation.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Target language id for translation.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': '# num_beams to use for evaluation.'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'}, ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , f'''{split}_results.json''' ) ) def lowercase__ ( ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : int = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): assert hasattr(_UpperCAmelCase , _UpperCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase : Optional[int] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase : Dict = SeqaSeqDataset # Get datasets lowercase : int = ( dataset_class( _UpperCAmelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) lowercase : str = ( dataset_class( _UpperCAmelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase : Optional[Any] = ( dataset_class( _UpperCAmelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase : List[Any] = ( build_compute_metrics_fn(data_args.task , _UpperCAmelCase ) if training_args.predict_with_generate else None ) lowercase : List[Any] = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , data_collator=SeqaSeqDataCollator( _UpperCAmelCase , _UpperCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) lowercase : List[Any] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) lowercase : Union[str, Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase : List[str] = train_result.metrics lowercase : Dict = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase : Tuple = trainer.evaluate(metric_key_prefix='val' ) lowercase : Dict = data_args.n_val lowercase : Tuple = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) lowercase : List[Any] = trainer.predict(test_dataset=_UpperCAmelCase , metric_key_prefix='test' ) lowercase : str = test_output.metrics lowercase : Dict = data_args.n_test if trainer.is_world_process_zero(): lowercase : Tuple = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.predict_with_generate: lowercase : str = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) lowercase : Tuple = lmap(str.strip , _UpperCAmelCase ) write_txt_file(_UpperCAmelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_UpperCAmelCase , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def lowercase__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
255
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "falcon" __snake_case : Optional[int] = ["past_key_values"] def __init__( self: int , UpperCAmelCase_: int=65_024 , UpperCAmelCase_: Union[str, Any]=4_544 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: str=71 , UpperCAmelCase_: Optional[int]=1E-5 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Optional[Any]=0.0 , UpperCAmelCase_: int=0.0 , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: List[Any]=False , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Any=True , UpperCAmelCase_: str=True , UpperCAmelCase_: int=False , UpperCAmelCase_: int=11 , UpperCAmelCase_: List[Any]=11 , **UpperCAmelCase_: Any , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg _SCREAMING_SNAKE_CASE = kwargs.pop("""n_embed""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = num_attention_heads if num_kv_heads is None else num_kv_heads _SCREAMING_SNAKE_CASE = alibi _SCREAMING_SNAKE_CASE = new_decoder_architecture _SCREAMING_SNAKE_CASE = multi_query # Ignored when new_decoder_architecture is True _SCREAMING_SNAKE_CASE = parallel_attn _SCREAMING_SNAKE_CASE = bias super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return not self.alibi
125
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCamelCase = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.bias'] _SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] _SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] _SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] _SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] _SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = channels_list[i] _SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.downsamplers.0' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 _SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now _SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" _SCREAMING_SNAKE_CASE = """middle_block.0""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" _SCREAMING_SNAKE_CASE = """middle_block.1""" _SCREAMING_SNAKE_CASE = convert_attention(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" _SCREAMING_SNAKE_CASE = """middle_block.2""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.1' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.2' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') UpperCamelCase = parser.parse_args() UpperCamelCase = strabool(args.class_cond) UpperCamelCase = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: UpperCamelCase = None UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
125
1
from collections import namedtuple _lowerCamelCase : Tuple = namedtuple("""from_to""", """from_ to""") _lowerCamelCase : Dict = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(lowercase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(lowercase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
14
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( snake_case__ ): _a : Optional[int] = """decision_transformer""" _a : Optional[int] = ["""past_key_values"""] _a : Dict = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _A=1_7 , _A=4 , _A=1_2_8 , _A=4_0_9_6 , _A=True , _A=1 , _A=1_0_2_4 , _A=3 , _A=1 , _A=None , _A="relu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=1E-5 , _A=0.02 , _A=True , _A=True , _A=5_0_2_5_6 , _A=5_0_2_5_6 , _A=False , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A )
92
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCamelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
"""simple docstring""" from manim import * class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase__ : List[Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase__ : str = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Optional[int] = VGroup(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Dict = Text('''CPU''' ,font_size=2_4 ) lowerCAmelCase__ : Optional[int] = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) lowerCAmelCase__ : Tuple = [mem.copy() for i in range(4 )] lowerCAmelCase__ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Any = Text('''GPU''' ,font_size=2_4 ) lowerCAmelCase__ : str = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) lowerCAmelCase__ : str = [mem.copy() for i in range(6 )] lowerCAmelCase__ : List[str] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Tuple = Text('''Model''' ,font_size=2_4 ) lowerCAmelCase__ : List[str] = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) lowerCAmelCase__ : Tuple = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCAmelCase__ : List[Any] = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] ,direction=lowercase_ ,buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] ,direction=lowercase_ ,buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) lowerCAmelCase__ : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[int] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Dict = Text('''Loaded Checkpoint''' ,font_size=2_4 ) lowerCAmelCase__ : List[str] = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,aligned_edge=lowercase_ ,buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCAmelCase__ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ : Optional[Any] = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=1_8 ,) blue_text.next_to(lowercase_ ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) lowerCAmelCase__ : Tuple = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) ,Write(lowercase_ ) ) self.play(Write(lowercase_ ,run_time=1 ) ,Create(lowercase_ ,run_time=1 ) ) lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[Any] = [] for i, rect in enumerate(lowercase_ ): lowerCAmelCase__ : List[str] = fill.copy().set_fill(lowercase_ ,opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ ,run_time=1 ) ) lowerCAmelCase__ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ ,run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
74
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] =JukeboxTokenizer UpperCAmelCase__ : Optional[int] ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _lowercase ( self : Optional[int] ) ->str: """simple docstring""" import torch SCREAMING_SNAKE_CASE : Dict = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) SCREAMING_SNAKE_CASE : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off SCREAMING_SNAKE_CASE : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowercase ( self : str ) ->Optional[Any]: """simple docstring""" import torch SCREAMING_SNAKE_CASE : List[str] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off SCREAMING_SNAKE_CASE : int = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
245
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = ["image_processor", "tokenizer"] __A : Dict = "BridgeTowerImageProcessor" __A : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __A , __A ): """simple docstring""" super().__init__(__A , __A ) def __call__( self , __A , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ): """simple docstring""" lowerCamelCase : str = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel_values + pixel_mask lowerCamelCase : int = self.image_processor( __A , return_tensors=__A , do_normalize=__A , do_center_crop=__A , **__A ) encoding.update(__A ) return encoding def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
283
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
81
def snake_case ( ) -> Any: for n in range(1 , 1_000_000): yield n * (n + 1) // 2 def snake_case ( snake_case__ :Dict) -> Optional[Any]: _A = 1 _A = 2 while i * i <= n: _A = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case ( ) -> Optional[Any]: return next(i for i in triangle_number_generator() if count_divisors(snake_case__) > 500) if __name__ == "__main__": print(solution())
81
1
'''simple docstring''' from __future__ import annotations def a__ ( lowercase : int ) -> list[int]: """simple docstring""" _UpperCamelCase = 2 _UpperCamelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase ) if n > 1: factors.append(lowercase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
324
'''simple docstring''' import os import numpy import onnx def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]: """simple docstring""" _UpperCamelCase = a.name _UpperCamelCase = b.name _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = a == b _UpperCamelCase = name_a _UpperCamelCase = name_b return res def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase, lowercase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase ) _graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase ) def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowercase, lowercase, lowercase ) def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple: """simple docstring""" _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _UpperCamelCase = inits[i].name _UpperCamelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, lowercase, lowercase ) def a__ ( lowercase : Dict ) -> Dict: """simple docstring""" _UpperCamelCase = os.path.dirname(lowercase ) _UpperCamelCase = os.path.basename(lowercase ) _UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) ) _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = set() _UpperCamelCase = {} _UpperCamelCase = [] _UpperCamelCase = 0 for i in range(len(lowercase ) ): if i in dup_set: continue for j in range(i + 1, len(lowercase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j] ): dup_set.add(lowercase ) dup_set.add(lowercase ) _UpperCamelCase = inits[j].data_type _UpperCamelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''', lowercase ) total_reduced_size += mem_size _UpperCamelCase = inits[i].name _UpperCamelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase ) else: _UpperCamelCase = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' ) _UpperCamelCase = sorted(lowercase ) _remove_dup_initializers_from_model(lowercase, lowercase, lowercase ) _UpperCamelCase = '''optimized_''' + model_file_name _UpperCamelCase = os.path.join(lowercase, lowercase ) onnx.save(lowercase, lowercase ) return new_model
324
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A_ ( _lowerCamelCase ): def __init__(self :List[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :str )-> Tuple: super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__(self :Dict , _UpperCamelCase :int = 1 , _UpperCamelCase :Optional[torch.Generator] = None , _UpperCamelCase :int = 50 , _UpperCamelCase :Optional[str] = "pil" , _UpperCamelCase :bool = True , **_UpperCamelCase :List[Any] , )-> Union[ImagePipelineOutput, Tuple]: __A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCamelCase , ) __A = image.to(self.device ) # set step values self.scheduler.set_timesteps(_UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample __A = (image / 2 + 0.5).clamp(0 , 1 ) __A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_UpperCamelCase ), "This is a local test"
250
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[int] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct_text_model""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self :Any , _UpperCamelCase :int=5_0244 , _UpperCamelCase :Optional[Any]=768 , _UpperCamelCase :Optional[Any]=64 , _UpperCamelCase :Dict=2048 , _UpperCamelCase :int=12 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Optional[int]=32 , _UpperCamelCase :Dict=128 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :List[str]=1e-6 , _UpperCamelCase :Optional[Any]=1.0 , _UpperCamelCase :Union[str, Any]="gelu_new" , _UpperCamelCase :int=0 , _UpperCamelCase :int=False , _UpperCamelCase :int=0 , _UpperCamelCase :Dict=1 , _UpperCamelCase :Any=False , _UpperCamelCase :Optional[Any]=True , **_UpperCamelCase :Tuple , )-> Dict: __A = vocab_size __A = hidden_size __A = d_kv __A = d_ff __A = num_layers __A = num_heads __A = relative_attention_num_buckets __A = relative_attention_max_distance __A = dropout_rate __A = layer_norm_epsilon __A = initializer_factor __A = use_cache __A = eos_token_id __A = decoder_start_token_id # for backwards compatibility __A = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , is_decoder=_UpperCamelCase , **_UpperCamelCase , ) @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :Union[str, os.PathLike] , **_UpperCamelCase :List[Any] )-> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCamelCase ) __A , __A = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __A = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct_vision_model""" def __init__(self :Dict , _UpperCamelCase :Optional[Any]=768 , _UpperCamelCase :List[str]=768 , _UpperCamelCase :Any=2048 , _UpperCamelCase :Tuple=64 , _UpperCamelCase :int=12 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Tuple="gelu_new" , _UpperCamelCase :Dict=1e-6 , _UpperCamelCase :int=0.0 , _UpperCamelCase :int=0.0 , _UpperCamelCase :Union[str, Any]=1e-10 , _UpperCamelCase :Tuple=1.0 , _UpperCamelCase :Tuple=4096 , _UpperCamelCase :List[str]=32 , _UpperCamelCase :Optional[Any]=128 , **_UpperCamelCase :List[str] , )-> Any: super().__init__(**_UpperCamelCase ) __A = hidden_size __A = patch_embed_hidden_size __A = d_ff __A = dropout_rate __A = num_hidden_layers __A = num_attention_heads __A = initializer_range __A = initializer_factor __A = attention_dropout __A = layer_norm_eps __A = dense_act_fn __A = seq_len __A = relative_attention_num_buckets __A = relative_attention_max_distance __A = d_kv @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :Union[str, os.PathLike] , **_UpperCamelCase :List[str] )-> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCamelCase ) __A , __A = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __A = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct""" lowerCAmelCase__ = True def __init__(self :List[Any] , _UpperCamelCase :str=None , _UpperCamelCase :int=None , _UpperCamelCase :List[Any]=1.0 , _UpperCamelCase :int=0.0_2 , _UpperCamelCase :List[str]=False , _UpperCamelCase :Optional[Any]=False , _UpperCamelCase :int=True , **_UpperCamelCase :Any , )-> Optional[Any]: super().__init__(tie_word_embeddings=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) if text_config is None: __A = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __A = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __A = PixaStructTextConfig(**_UpperCamelCase ) __A = PixaStructVisionConfig(**_UpperCamelCase ) __A = self.text_config.decoder_start_token_id __A = self.text_config.pad_token_id __A = self.text_config.eos_token_id __A = initializer_factor __A = initializer_range __A = self.initializer_range __A = self.initializer_range __A = is_vqa @classmethod def _lowerCAmelCase (cls :str , _UpperCamelCase :PixaStructTextConfig , _UpperCamelCase :PixaStructVisionConfig , **_UpperCamelCase :Union[str, Any] )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] )-> int: __A = copy.deepcopy(self.__dict__ ) __A = self.text_config.to_dict() __A = self.vision_config.to_dict() __A = self.__class__.model_type return output
250
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['image_processor', 'tokenizer'] __UpperCAmelCase = 'CLIPImageProcessor' __UpperCAmelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Any ,snake_case : Tuple=None ,snake_case : Optional[Any]=None ,**snake_case : str ): SCREAMING_SNAKE_CASE =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,snake_case ,) SCREAMING_SNAKE_CASE =kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case ,snake_case ) def __call__( self : int ,snake_case : Tuple=None ,snake_case : Optional[Any]=None ,snake_case : Union[str, Any]=None ,**snake_case : Optional[int] ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE =self.tokenizer(snake_case ,return_tensors=snake_case ,**snake_case ) if images is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,return_tensors=snake_case ,**snake_case ) if text is not None and images is not None: SCREAMING_SNAKE_CASE =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case ) ,tensor_type=snake_case ) def _lowerCAmelCase ( self : str ,*snake_case : List[Any] ,**snake_case : str ): return self.tokenizer.batch_decode(*snake_case ,**snake_case ) def _lowerCAmelCase ( self : Optional[Any] ,*snake_case : Dict ,**snake_case : Tuple ): return self.tokenizer.decode(*snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.tokenizer.model_input_names SCREAMING_SNAKE_CASE =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : Any ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,snake_case ,) return self.image_processor_class @property def _lowerCAmelCase ( self : Dict ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,snake_case ,) return self.image_processor
334
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE_ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: '''simple docstring''' require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
352
from __future__ import annotations import math def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = str(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 11 ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def __lowercase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(1_1)) = }''')
193
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a :str = logging.get_logger(__name__) a :Union[str, Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __a (lowerCAmelCase__ , lowerCAmelCase__): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = """swin""" _SCREAMING_SNAKE_CASE :Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=[2, 2, 6, 2] , _a=[3, 6, 12, 24] , _a=7 , _a=4.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> int: """simple docstring""" super().__init__(**__a ) SCREAMING_SNAKE_CASE__ : int = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : int = embed_dim SCREAMING_SNAKE_CASE__ : Optional[int] = depths SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__a ) SCREAMING_SNAKE_CASE__ : Tuple = num_heads SCREAMING_SNAKE_CASE__ : int = window_size SCREAMING_SNAKE_CASE__ : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE__ : Optional[int] = qkv_bias SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = drop_path_rate SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ : Dict = int(embed_dim * 2 ** (len(__a ) - 1) ) SCREAMING_SNAKE_CASE__ : List[str] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__a ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class __a (lowerCAmelCase__): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = version.parse("""1.11""") @property def _a ( self ) -> Optional[Any]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ) -> Optional[int]: """simple docstring""" return 1E-4
132
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if len(a_ ) == 0: return array _UpperCAmelCase , _UpperCAmelCase : List[str] = min(a_ ), max(a_ ) # Compute the variables _UpperCAmelCase : str = _max - _min + 1 _UpperCAmelCase , _UpperCAmelCase : Dict = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _UpperCAmelCase : int = i - _min _UpperCAmelCase : List[str] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _UpperCAmelCase : Tuple = 0 for i in range(a_ ): while holes_repeat[i] > 0: _UpperCAmelCase : Tuple = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __a = input('Enter numbers separated by comma:\n') __a = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
17
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase_ : str = logging.get_logger(__name__) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Optional[int] = ["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = 0.9 , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = True , snake_case_ = None , snake_case_ = 1 / 2_5_5 , snake_case_ = True , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ): """simple docstring""" super().__init__(**snake_case_ ) A_ : Union[str, Any] = size if size is not None else {'shortest_edge': 2_2_4} A_ : Tuple = get_size_dict(snake_case_ , default_to_square=snake_case_ ) A_ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} A_ : List[str] = get_size_dict(snake_case_ , param_name='crop_size' ) A_ : Optional[Any] = do_resize A_ : Tuple = size A_ : Dict = crop_pct A_ : Optional[Any] = resample A_ : Optional[int] = do_center_crop A_ : Tuple = crop_size A_ : Union[str, Any] = do_rescale A_ : Any = rescale_factor A_ : Any = do_normalize A_ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A_ : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ): """simple docstring""" A_ : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: A_ : int = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: A_ : List[Any] = int(size['height'] / crop_pct ) else: A_ : str = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(snake_case_ ) ) A_ : Union[str, Any] = get_resize_output_image_size(snake_case_ , size=snake_case_ , default_to_square=snake_case_ ) else: if "shortest_edge" in size: A_ : Optional[Any] = get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) elif "height" in size and "width" in size: A_ : Dict = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(snake_case_ ) ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): """simple docstring""" A_ : Union[str, Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): """simple docstring""" return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): """simple docstring""" return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): """simple docstring""" A_ : List[Any] = do_resize if do_resize is not None else self.do_resize A_ : str = crop_pct if crop_pct is not None else self.crop_pct A_ : Tuple = resample if resample is not None else self.resample A_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = do_rescale if do_rescale is not None else self.do_rescale A_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : Any = image_std if image_std is not None else self.image_std A_ : Tuple = size if size is not None else self.size A_ : List[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) A_ : int = crop_size if crop_size is not None else self.crop_size A_ : Optional[Any] = get_size_dict(snake_case_ , param_name='crop_size' ) A_ : Optional[Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A_ : int = [to_numpy_array(snake_case_ ) for image in images] if do_resize: A_ : Optional[Any] = [self.resize(image=snake_case_ , size=snake_case_ , crop_pct=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: A_ : Any = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: A_ : Union[str, Any] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] A_ : str = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] A_ : List[str] = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
286
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCamelCase_ : Any = HfArgumentParser(InitializationArguments) lowerCamelCase_ : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCamelCase_ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCamelCase_ : Tuple = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCamelCase_ : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCamelCase_ : Any = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
286
1
def __magic_name__ ( __lowerCAmelCase : str ) -> str: __lowerCamelCase = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __magic_name__ ( __lowerCAmelCase : str ) -> dict[str, str]: __lowerCamelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowerCamelCase = remove_duplicates(key.upper() ) __lowerCamelCase = len(UpperCamelCase__ ) # First fill cipher with key characters __lowerCamelCase = {alphabet[i]: char for i, char in enumerate(UpperCamelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCamelCase__ ) , 26 ): __lowerCamelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowerCamelCase = alphabet[i - offset] __lowerCamelCase = char return cipher_alphabet def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : dict[str, str] ) -> str: __lowerCamelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __magic_name__ ( ) -> None: __lowerCamelCase = input('''Enter message to encode or decode: ''' ).strip() __lowerCamelCase = input('''Enter keyword: ''' ).strip() __lowerCamelCase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __lowerCamelCase = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __lowerCamelCase = create_cipher_map(UpperCamelCase__ ) print(func(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F"""down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F"""up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F"""up_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowerCAmelCase = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = '''mid_block.attentions.0.''' _lowerCAmelCase = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F"""mid_block.resnets.{j}.""" _lowerCAmelCase = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ : Optional[int] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ : Any = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ : List[Any] = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v lowerCAmelCase__ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.""" _lowerCAmelCase = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F"""mid_block.resnets.{i}.""" _lowerCAmelCase = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ : str = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ : Dict = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ : Tuple = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowerCAmelCase__ : Optional[int] = reshape_weight_for_sd(UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {'''q''': 0, '''k''': 1, '''v''': 2} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCAmelCase__ : Optional[int] = k[: -len(""".q_proj.weight""" )] lowerCAmelCase__ : Tuple = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ : List[Any] = [None, None, None] lowerCAmelCase__ : Dict = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCAmelCase__ : str = k[: -len(""".q_proj.bias""" )] lowerCAmelCase__ : List[str] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ : Union[str, Any] = [None, None, None] lowerCAmelCase__ : Any = v continue lowerCAmelCase__ : Dict = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : Any = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.cat(UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : str = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.cat(UpperCamelCase ) return new_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') _lowerCAmelCase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
37
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase__ : def __init__( self ): """simple docstring""" lowercase_ : int = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = probability def _snake_case ( self ): """simple docstring""" return list(self.connections ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = 0 lowercase_ : Tuple = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = Counter(graph.get_nodes() ) lowercase_ : Any = start for _ in range(__SCREAMING_SNAKE_CASE ): lowercase_ : int = graph.transition(__SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
93
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ): # Construct model if openai_config_file == "": lowercase_ : Any = OpenAIGPTConfig() else: lowercase_ : str = OpenAIGPTConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = OpenAIGPTModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_openai_gpt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model lowercase_ : Dict = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase_ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
import os def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple = "input.txt" ) -> Tuple: with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: __lowercase = [ [int(_UpperCAmelCase ) for element in line.split(',' )] for line in input_file.readlines() ] __lowercase = len(_UpperCAmelCase ) __lowercase = len(matrix[0] ) __lowercase = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): __lowercase = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): __lowercase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): __lowercase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __lowercase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
325
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ : str = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if self.framework == "tf": A_ : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A_ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = self.get_masked_index(snake_case_ ) A_ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_=None , **snake_case_ ): """simple docstring""" if return_tensors is None: A_ : Any = self.framework A_ : Dict = self.tokenizer(snake_case_ , return_tensors=snake_case_ ) self.ensure_exactly_one_mask_token(snake_case_ ) return model_inputs def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Dict = self.model(**snake_case_ ) A_ : Optional[int] = model_inputs['input_ids'] return model_outputs def lowerCamelCase_ ( self , snake_case_ , snake_case_=5 , snake_case_=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: A_ : str = target_ids.shape[0] A_ : Optional[Any] = model_outputs['input_ids'][0] A_ : List[Any] = model_outputs['logits'] if self.framework == "tf": A_ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A_ : Union[str, Any] = outputs.numpy() A_ : Optional[int] = outputs[0, masked_index, :] A_ : Optional[Any] = stable_softmax(snake_case_ , axis=-1 ) if target_ids is not None: A_ : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case_ , 0 ) , target_ids.reshape(-1 , 1 ) ) A_ : Optional[int] = tf.expand_dims(snake_case_ , 0 ) A_ : Any = tf.math.top_k(snake_case_ , k=snake_case_ ) A_ , A_ : str = topk.values.numpy(), topk.indices.numpy() else: A_ : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A_ : Tuple = outputs[0, masked_index, :] A_ : List[str] = logits.softmax(dim=-1 ) if target_ids is not None: A_ : str = probs[..., target_ids] A_ , A_ : List[str] = probs.topk(snake_case_ ) A_ : List[Any] = [] A_ : int = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A_ : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: A_ : str = target_ids[p].tolist() A_ : Union[str, Any] = p # Filter padding out: A_ : Any = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A_ : Any = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) A_ : Any = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(snake_case_ ) result.append(snake_case_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self , snake_case_ , snake_case_=None ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A_ : List[str] = [targets] try: A_ : Optional[int] = self.tokenizer.get_vocab() except Exception: A_ : int = {} A_ : Tuple = [] for target in targets: A_ : int = vocab.get(snake_case_ , snake_case_ ) if id_ is None: A_ : Tuple = self.tokenizer( snake_case_ , add_special_tokens=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , max_length=1 , truncation=snake_case_ , )['input_ids'] if len(snake_case_ ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue A_ : str = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) A_ : Tuple = list(set(snake_case_ ) ) if len(snake_case_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) A_ : Optional[Any] = np.array(snake_case_ ) return target_ids def lowerCamelCase_ ( self , snake_case_=None , snake_case_=None ): """simple docstring""" A_ : List[str] = {} if targets is not None: A_ : Any = self.get_target_ids(snake_case_ , snake_case_ ) A_ : Optional[Any] = target_ids if top_k is not None: A_ : int = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : List[str] = super().__call__(snake_case_ , **snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) == 1: return outputs[0] return outputs
286
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = ["input_ids", "attention_mask"] lowerCAmelCase : Any = None def __init__( self : Optional[int] ,_snake_case : List[Any]=None ,_snake_case : Optional[Any]=None ,_snake_case : int=None ,_snake_case : List[str]="<unk>" ,_snake_case : Optional[int]="<s>" ,_snake_case : Optional[Any]="</s>" ,_snake_case : Optional[Any]="<pad>" ,_snake_case : Optional[int]=False ,_snake_case : Tuple=False ,**_snake_case : List[str] ,) -> Tuple: """simple docstring""" super().__init__( _snake_case ,_snake_case ,tokenizer_file=_snake_case ,unk_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,pad_token=_snake_case ,add_prefix_space=_snake_case ,clean_up_tokenization_spaces=_snake_case ,**_snake_case ,) lowercase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_snake_case ) != add_prefix_space: lowercase__ : str = getattr(_snake_case ,pre_tok_state.pop('''type''' ) ) lowercase__ : int = add_prefix_space lowercase__ : Optional[int] = pre_tok_class(**_snake_case ) lowercase__ : Any = add_prefix_space def UpperCAmelCase ( self : Tuple ,*_snake_case : List[Any] ,**_snake_case : Optional[Any] ) -> BatchEncoding: """simple docstring""" lowercase__ : Optional[Any] = kwargs.get('''is_split_into_words''' ,_snake_case ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,*_snake_case : Optional[int] ,**_snake_case : Optional[Any] ) -> BatchEncoding: """simple docstring""" lowercase__ : List[Any] = kwargs.get('''is_split_into_words''' ,_snake_case ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : Union[str, Any] = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : "Conversation" ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case ,add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: lowercase__ : Optional[int] = input_ids[-self.model_max_length :] return input_ids
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _snake_case ( lowerCAmelCase__ ): lowerCAmelCase_ : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCAmelCase_ : Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case_ = v.to_dict() return d
85
import random from .binary_exp_mod import bin_exp_mod def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=1000 ) -> List[str]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCamelCase : List[Any] = n - 1 lowerCamelCase : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCamelCase : Optional[Any] = 0 while count < prec: lowerCamelCase : str = random.randint(2 ,n - 1 ) lowerCamelCase : Dict = bin_exp_mod(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if b != 1: lowerCamelCase : str = True for _ in range(_SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCamelCase : Tuple = False break lowerCamelCase : int = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
48
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' snake_case_ = None @experimental def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a_ , a_ , a_ , a_ , a_ , a_ , a_ ) return _map_with_joblib(a_ , a_ , a_ , a_ , a_ , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" __A = num_proc if num_proc <= len(a_ ) else len(a_ ) __A = [] # We organize the splits ourselve (contiguous splits) for index in range(a_ ): __A = len(a_ ) // num_proc __A = len(a_ ) % num_proc __A = div * index + min(a_ , a_ ) __A = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(a_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'''Error dividing inputs iterable among processes. ''' F'''Total number of objects {len(a_ )}, ''' F'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( F'''Spawning {num_proc} processes for {len(a_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) __A , __A = None, None if not disable_tqdm: __A , __A = (RLock(),), tqdm.set_lock with Pool(a_ , initargs=a_ , initializer=a_ ) as pool: __A = pool.map(a_ , a_ ) logger.info(F'''Finished {num_proc} processes''' ) __A = [obj for proc_res in mapped for obj in proc_res] logger.info(F'''Unpacked {len(a_ )} objects''' ) return mapped def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a_ ): return joblib.Parallel()( joblib.delayed(a_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __A = None
354
from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE :Dict = 300 # TEMPERATURE (unit = K) def UpperCAmelCase ( a_ , a_ , a_ , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "speech_to_text" __UpperCamelCase = ["past_key_values"] __UpperCamelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , lowercase_ : Optional[Any]=10000 , lowercase_ : Any=12 , lowercase_ : List[str]=2048 , lowercase_ : str=4 , lowercase_ : List[str]=6 , lowercase_ : Optional[int]=2048 , lowercase_ : Any=4 , lowercase_ : List[str]=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Optional[Any]=True , lowercase_ : List[str]=True , lowercase_ : str="relu" , lowercase_ : List[str]=256 , lowercase_ : Any=0.1 , lowercase_ : str=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=0.02 , lowercase_ : Tuple=2 , lowercase_ : List[Any]=True , lowercase_ : Dict=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=6000 , lowercase_ : List[Any]=1024 , lowercase_ : Optional[int]=2 , lowercase_ : Union[str, Any]=(5, 5) , lowercase_ : Any=1024 , lowercase_ : int=80 , lowercase_ : str=1 , **lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : List[Any] = decoder_layers SCREAMING_SNAKE_CASE_ : str = decoder_attention_heads SCREAMING_SNAKE_CASE_ : Any = dropout SCREAMING_SNAKE_CASE_ : List[str] = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = activation_dropout SCREAMING_SNAKE_CASE_ : Tuple = activation_function SCREAMING_SNAKE_CASE_ : Optional[Any] = init_std SCREAMING_SNAKE_CASE_ : Any = encoder_layerdrop SCREAMING_SNAKE_CASE_ : List[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Any = use_cache SCREAMING_SNAKE_CASE_ : Tuple = encoder_layers SCREAMING_SNAKE_CASE_ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : Any = max_source_positions SCREAMING_SNAKE_CASE_ : Optional[Any] = max_target_positions SCREAMING_SNAKE_CASE_ : Tuple = num_conv_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(lowercase_) SCREAMING_SNAKE_CASE_ : str = conv_channels SCREAMING_SNAKE_CASE_ : Optional[int] = input_feat_per_channel SCREAMING_SNAKE_CASE_ : List[str] = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.') super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
91
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = GenerationConfig() SCREAMING_SNAKE_CASE_ : Any = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig() SCREAMING_SNAKE_CASE_ : List[str] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str]): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
91
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Tuple , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any]=7 , UpperCamelCase: List[Any]=3 , UpperCamelCase: Tuple=30 , UpperCamelCase: Any=4_00 , UpperCamelCase: str=True , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[int]=True , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: str=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: int=1 / 2_55 , UpperCamelCase: Dict=True , ): """simple docstring""" A__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: List[str] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: int , UpperCamelCase: Any , UpperCamelCase: Optional[Any]=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(_a , Image.Image ): A__ = image.size else: A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["shortest_edge"] elif w > h: A__ = self.size["shortest_edge"] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["shortest_edge"] A__ = self.size["shortest_edge"] else: A__ = [] for image in image_inputs: A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(_a , key=lambda UpperCamelCase : item[0] )[0] A__ = max(_a , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = DetaImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Any ): """simple docstring""" A__ = DetaImageProcessingTester(self ) @property def UpperCamelCase ( self: Any ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """do_rescale""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , _a ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" pass def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = self.image_processor_tester.get_expected_values(_a , batched=_a ) A__ = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(_a , return_tensors="""pt""" ).pixel_values A__ = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(_a , return_tensors="""pt""" ).pixel_values A__ = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"image_id": 3_97_69, "annotations": target} # encode them A__ = DetaImageProcessor() A__ = image_processing(images=_a , annotations=_a , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , _a ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area A__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _a ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _a ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _a , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _a ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _a ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _a ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _a ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _a ) ) @slow def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = DetaImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , _a ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area A__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _a ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _a ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _a , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _a ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _a ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _a ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _a ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _a ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _a ) )
369
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Union[str, Any] , *UpperCamelCase: List[str] , **UpperCamelCase: Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Any=None ): """simple docstring""" A__ = {} if top_k is not None: A__ = top_k return {}, {}, postprocess_params def __call__( self: Union[str, Any] , UpperCamelCase: Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCamelCase: Dict ): """simple docstring""" return super().__call__(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Any , UpperCamelCase: int ): """simple docstring""" A__ = load_image(UpperCamelCase ) A__ = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) return model_inputs def UpperCamelCase ( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = self.model(**UpperCamelCase ) return model_outputs def UpperCamelCase ( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: int=5 ): """simple docstring""" if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(UpperCamelCase ) elif self.framework == "tf": A__ = stable_softmax(model_outputs.logits , axis=-1 )[0] A__ = tf.math.top_k(UpperCamelCase , k=UpperCamelCase ) A__ , A__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase , UpperCamelCase )]
69
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = "x" , __lowerCAmelCase = 10**-10 , __lowerCAmelCase = 1 , )-> complex: """simple docstring""" _UpperCAmelCase = symbols(__lowerCAmelCase ) _UpperCAmelCase = lambdify(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = lambdify(__lowerCAmelCase , diff(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(__lowerCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(__lowerCAmelCase ) / diff_function( __lowerCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F'''{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
39
from datetime import datetime as dt import os from github import Github __A : Dict = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase : List[str] = g.get_repo('huggingface/transformers' ) lowerCAmelCase : Tuple = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase : Dict = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
138
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __lowerCamelCase ( __magic_name__ : Dict , __magic_name__ : Tuple ): a__: Optional[int] =k_size // 2 a__: Optional[int] =mgrid[0 - center : k_size - center, 0 - center : k_size - center] a__: int =1 / (2 * pi * sigma) * exp(-(square(lowerCamelCase__ ) + square(lowerCamelCase__ )) / (2 * square(lowerCamelCase__ )) ) return g def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ): a__: Optional[Any] =image.shape[0], image.shape[1] # dst image height and width a__: int =height - k_size + 1 a__: int =width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows a__: Dict =zeros((dst_height * dst_width, k_size * k_size) ) a__: List[Any] =0 for i, j in product(range(lowerCamelCase__ ) , range(lowerCamelCase__ ) ): a__: Any =ravel(image[i : i + k_size, j : j + k_size] ) a__: List[str] =window row += 1 # turn the kernel into shape(k*k, 1) a__: str =gen_gaussian_kernel(lowerCamelCase__ , lowerCamelCase__ ) a__: List[Any] =ravel(lowerCamelCase__ ) # reshape and get the dst image a__: List[str] =dot(lowerCamelCase__ , lowerCamelCase__ ).reshape(lowerCamelCase__ , lowerCamelCase__ ).astype(lowerCamelCase__ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value __UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
354
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } __UpperCAmelCase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = '''left''' def __init__( self : Dict , _a : List[Any] , _a : Any=False , _a : int=True , _a : Union[str, Any]=False , _a : Dict="<s>" , _a : str="</s>" , _a : Optional[int]="<unk>" , _a : Union[str, Any]="<sep>" , _a : List[Any]="<pad>" , _a : Optional[Any]="<cls>" , _a : str="<mask>" , _a : Any=["<eop>", "<eod>"] , _a : Optional[Dict[str, Any]] = None , **_a : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it a__: Dict =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token a__: Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) a__: Dict =3 a__: Tuple =do_lower_case a__: int =remove_space a__: List[Any] =keep_accents a__: List[str] =vocab_file a__: Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _lowerCamelCase ( self : Any ): return len(self.sp_model ) def _lowerCamelCase ( self : List[Any] ): a__: Dict ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: List[Any] =None return state def __setstate__( self : Optional[Any] , _a : Tuple ): a__: List[Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: List[str] ={} a__: int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : Dict , _a : str ): if self.remove_space: a__: Optional[int] =" ".join(inputs.strip().split() ) else: a__: Optional[int] =inputs a__: Dict =outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__: Optional[int] =unicodedata.normalize("NFKD" , _a ) a__: int ="".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: a__: Dict =outputs.lower() return outputs def _lowerCamelCase ( self : List[Any] , _a : str ): a__: Dict =self.preprocess_text(_a ) a__: Dict =self.sp_model.encode(_a , out_type=_a ) a__: str =[] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__: Optional[Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__: Optional[int] =cur_pieces[1:] else: a__: Tuple =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def _lowerCamelCase ( self : Dict , _a : Dict ): return self.sp_model.PieceToId(_a ) def _lowerCamelCase ( self : Dict , _a : Optional[Any] ): return self.sp_model.IdToPiece(_a ) def _lowerCamelCase ( self : Optional[Any] , _a : Tuple ): a__: Tuple ="".join(_a ).replace(_a , " " ).strip() return out_string def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : bool = False , _a : bool = None , _a : bool = True , **_a : Union[str, Any] , ): a__: Optional[int] =kwargs.pop("use_source_tokenizer" , _a ) a__: Any =self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a__: List[str] =[] a__: Any =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) a__: List[str] =[] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens a__: Union[str, Any] ="".join(_a ) a__: List[Any] =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a__: Optional[int] =self.clean_up_tokenization(_a ) return clean_text else: return text def _lowerCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ): a__: Dict =[self.sep_token_id] a__: Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def _lowerCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None ): a__: Any =[self.sep_token_id] a__: List[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , _a : str , _a : Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__: List[Any] =os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: a__: Optional[Any] =self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
42
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case_ : Any = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_UpperCamelCase , id=_UpperCamelCase )
279
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A , A , A=0.0 , A = None , A = "geglu" , A = None , A = False , A = False , A = False , A = False , A = True , A = "layer_norm" , A = False , ) -> str: super().__init__() snake_case : Tuple = only_cross_attention snake_case : Optional[int] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case : List[str] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case : str = AdaLayerNorm(A , A ) elif self.use_ada_layer_norm_zero: snake_case : str = AdaLayerNormZero(A , A ) else: snake_case : Tuple = nn.LayerNorm(A , elementwise_affine=A ) snake_case : int = Attention( query_dim=A , heads=A , dim_head=A , dropout=A , bias=A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case : int = ( AdaLayerNorm(A , A ) if self.use_ada_layer_norm else nn.LayerNorm(A , elementwise_affine=A ) ) snake_case : List[Any] = Attention( query_dim=A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=A , dim_head=A , dropout=A , bias=A , upcast_attention=A , ) # is self-attn if encoder_hidden_states is none else: snake_case : Any = None snake_case : Any = None # 3. Feed-forward snake_case : Optional[Any] = nn.LayerNorm(A , elementwise_affine=A ) snake_case : List[str] = FeedForward(A , dropout=A , activation_fn=A , final_dropout=A ) # let chunk size default to None snake_case : List[Any] = None snake_case : List[str] = 0 def UpperCAmelCase ( self , A , A ) -> int: # Sets chunk feed-forward snake_case : Any = chunk_size snake_case : Optional[int] = dim def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , ) -> Optional[int]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case : str = self.norma(A , A ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case : Union[str, Any] = self.norma( A , A , A , hidden_dtype=hidden_states.dtype ) else: snake_case : Union[str, Any] = self.norma(A ) snake_case : List[str] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case : List[Any] = self.attna( A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=A , **A , ) if self.use_ada_layer_norm_zero: snake_case : Any = gate_msa.unsqueeze(1 ) * attn_output snake_case : Optional[Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case : str = ( self.norma(A , A ) if self.use_ada_layer_norm else self.norma(A ) ) snake_case : List[str] = self.attna( A , encoder_hidden_states=A , attention_mask=A , **A , ) snake_case : int = attn_output + hidden_states # 3. Feed-forward snake_case : int = self.norma(A ) if self.use_ada_layer_norm_zero: snake_case : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case : Dict = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case : Optional[Any] = torch.cat( [self.ff(A ) for hid_slice in norm_hidden_states.chunk(A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case : Tuple = self.ff(A ) if self.use_ada_layer_norm_zero: snake_case : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case : int = ff_output + hidden_states return hidden_states class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A = None , A = 4 , A = 0.0 , A = "geglu" , A = False , ) -> str: super().__init__() snake_case : Union[str, Any] = int(dim * mult ) snake_case : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case : Optional[int] = GELU(A , A ) if activation_fn == "gelu-approximate": snake_case : str = GELU(A , A , approximate="""tanh""" ) elif activation_fn == "geglu": snake_case : Union[str, Any] = GEGLU(A , A ) elif activation_fn == "geglu-approximate": snake_case : Any = ApproximateGELU(A , A ) snake_case : List[Any] = nn.ModuleList([] ) # project in self.net.append(A ) # project dropout self.net.append(nn.Dropout(A ) ) # project out self.net.append(nn.Linear(A , A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(A ) ) def UpperCAmelCase ( self , A ) -> Any: for module in self.net: snake_case : Dict = module(A ) return hidden_states class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A , A = "none" ) -> str: super().__init__() snake_case : int = nn.Linear(A , A ) snake_case : Dict = approximate def UpperCAmelCase ( self , A ) -> int: if gate.device.type != "mps": return F.gelu(A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case : List[str] = self.proj(A ) snake_case : Tuple = self.gelu(A ) return hidden_states class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A ) -> List[str]: super().__init__() snake_case : List[str] = nn.Linear(A , dim_out * 2 ) def UpperCAmelCase ( self , A ) -> Union[str, Any]: if gate.device.type != "mps": return F.gelu(A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case , snake_case : Tuple = self.proj(A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(A ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A ) -> int: super().__init__() snake_case : Any = nn.Linear(A , A ) def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Any = self.proj(A ) return x * torch.sigmoid(1.7_02 * x ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A ) -> List[Any]: super().__init__() snake_case : List[Any] = nn.Embedding(A , A ) snake_case : List[str] = nn.SiLU() snake_case : Union[str, Any] = nn.Linear(A , embedding_dim * 2 ) snake_case : List[str] = nn.LayerNorm(A , elementwise_affine=A ) def UpperCAmelCase ( self , A , A ) -> Optional[int]: snake_case : Any = self.linear(self.silu(self.emb(A ) ) ) snake_case , snake_case : Union[str, Any] = torch.chunk(A , 2 ) snake_case : Optional[int] = self.norm(A ) * (1 + scale) + shift return x class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A ) -> Any: super().__init__() snake_case : Any = CombinedTimestepLabelEmbeddings(A , A ) snake_case : int = nn.SiLU() snake_case : str = nn.Linear(A , 6 * embedding_dim , bias=A ) snake_case : str = nn.LayerNorm(A , elementwise_affine=A , eps=1e-6 ) def UpperCAmelCase ( self , A , A , A , A=None ) -> Tuple: snake_case : Optional[Any] = self.linear(self.silu(self.emb(A , A , hidden_dtype=A ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case : str = emb.chunk(6 , dim=1 ) snake_case : List[str] = self.norm(A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A , A , A = None , A = 1e-5 ) -> str: super().__init__() snake_case : Optional[Any] = num_groups snake_case : List[str] = eps if act_fn is None: snake_case : List[str] = None else: snake_case : Optional[Any] = get_activation(A ) snake_case : Tuple = nn.Linear(A , out_dim * 2 ) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: if self.act: snake_case : Any = self.act(A ) snake_case : List[str] = self.linear(A ) snake_case : Optional[Any] = emb[:, :, None, None] snake_case , snake_case : int = emb.chunk(2 , dim=1 ) snake_case : int = F.group_norm(A , self.num_groups , eps=self.eps ) snake_case : str = x * (1 + scale) + shift return x
176
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[str] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
176
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( A__ ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def __lowerCamelCase ( A__ , A__ ) -> XGBClassifier: """simple docstring""" UpperCamelCase = XGBClassifier() classifier.fit(A__ , A__ ) return classifier def __lowerCamelCase ( ) -> None: """simple docstring""" UpperCamelCase = load_iris() UpperCamelCase , UpperCamelCase = data_handling(A__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = train_test_split( A__ , A__ , test_size=0.25 ) UpperCamelCase = iris['target_names'] # Create an XGBoost Classifier from the training data UpperCamelCase = xgboost(A__ , A__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A__ , A__ , A__ , display_labels=A__ , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
28
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase__ : List[str] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCamelCase__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCamelCase__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def __snake_case ( self , _A , _A , _A=None ) -> str: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
246
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __A (snake_case__): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[dict] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : int , ) ->Tuple: """simple docstring""" super().__init__( features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = Generator( cache_dir=UpperCAmelCase_ , features=UpperCAmelCase_ , generator=UpperCAmelCase_ , gen_kwargs=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" if self.streaming: snake_case_ = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) snake_case_ = self.builder.as_dataset( split="""train""" , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset
359
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __A : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int ) ->None: """simple docstring""" snake_case_ = value snake_case_ = None snake_case_ = None class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Node ) ->None: """simple docstring""" snake_case_ = tree def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Node | None ) ->int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : str ) ->Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
233
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a_ = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase )-> None: '''simple docstring''' warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
340
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Tuple ) -> None: """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
145
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any=[] ) -> str: """simple docstring""" lowerCAmelCase = size[0] - overlap_pixels * 2 lowerCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCAmelCase = np.pad(_SCREAMING_SNAKE_CASE , mode="""linear_ramp""" , pad_width=_SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: lowerCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _snake_case ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" return max(_SCREAMING_SNAKE_CASE , min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : [int] , _SCREAMING_SNAKE_CASE : [int] , _SCREAMING_SNAKE_CASE : [int] ) -> List[str]: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _snake_case ( _SCREAMING_SNAKE_CASE : [int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : [int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCAmelCase = clamp_rect(_SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ) -> Dict: """simple docstring""" lowerCAmelCase = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _snake_case ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" lowerCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCAmelCase = tile.crop(_SCREAMING_SNAKE_CASE ) return tile def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" lowerCAmelCase = n % d return n - divisor class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ = 350 , ) -> List[str]: super().__init__( vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , low_res_scheduler=A_ , scheduler=A_ , max_noise_level=A_ , ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , **A_ ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCAmelCase = add_overlap_rect(A_ , A_ , image.size ) lowerCAmelCase = image.crop(A_ ) lowerCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCAmelCase = translated_slice_x - (original_image_slice / 2) lowerCAmelCase = max(0 , A_ ) lowerCAmelCase = squeeze_tile(A_ , A_ , A_ , A_ ) lowerCAmelCase = to_input.size lowerCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCAmelCase = super(A_ , self ).__call__(image=A_ , **A_ ).images[0] lowerCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCAmelCase = unsqueeze_tile(A_ , A_ ) lowerCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCAmelCase = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) lowerCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=A_ ) , mode="""L""" , ) final_image.paste( A_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , A_ ) @torch.no_grad() def __call__( self , A_ , A_ , A_ = 75 , A_ = 9.0 , A_ = 50 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = None , A_ = 1 , A_ = 128 , A_ = 32 , A_ = 32 , ) -> Dict: lowerCAmelCase = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) lowerCAmelCase = math.ceil(image.size[0] / tile_size ) lowerCAmelCase = math.ceil(image.size[1] / tile_size ) lowerCAmelCase = tcx * tcy lowerCAmelCase = 0 for y in range(A_ ): for x in range(A_ ): self._process_tile( A_ , A_ , A_ , A_ , A_ , A_ , A_ , prompt=A_ , num_inference_steps=A_ , guidance_scale=A_ , noise_level=A_ , negative_prompt=A_ , num_images_per_prompt=A_ , eta=A_ , generator=A_ , latents=A_ , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def _snake_case ( ) -> Union[str, Any]: """simple docstring""" # Run a demo lowerCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" lowerCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(_SCREAMING_SNAKE_CASE , revision="""fp16""" , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to("""cuda""" ) lowerCAmelCase = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(_SCREAMING_SNAKE_CASE : Union[str, Any] ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save("""diffusers_library_progress.jpg""" ) lowerCAmelCase = pipe(image=_SCREAMING_SNAKE_CASE , prompt="""Black font, white background, vector""" , noise_level=40 , callback=_SCREAMING_SNAKE_CASE ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
187
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ["image_processor", "tokenizer"] UpperCAmelCase : Tuple = "BlipImageProcessor" UpperCAmelCase : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , A_ , A_ ) -> Dict: lowerCAmelCase = False super().__init__(A_ , A_ ) lowerCAmelCase = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase = self.tokenizer lowerCAmelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values lowerCAmelCase = self.image_processor(A_ , return_tensors=A_ ) if text is not None: lowerCAmelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __snake_case ( self , *A_ , **A_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A_ , **A_ ) def __snake_case ( self , *A_ , **A_ ) -> Tuple: return self.tokenizer.decode(*A_ , **A_ ) @property def __snake_case ( self ) -> str: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
187
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] snake_case_ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] snake_case_ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): snake_case_ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , lowercase_ ).groups()[0] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :List[str] , lowercase_ :Dict , lowercase_ :List[str]=None , lowercase_ :Optional[Any]=None ) -> Optional[int]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self :Optional[int] ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self :int , lowercase_ :str ) -> List[str]: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowercase_ ) UpperCAmelCase = raw_image.convert('RGB' ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowercase_ ) UpperCAmelCase = extract_label(lowercase_ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['lr'] UpperCAmelCase = int(config['num_epochs'] ) UpperCAmelCase = int(config['seed'] ) UpperCAmelCase = int(config['batch_size'] ) UpperCAmelCase = config['image_size'] if not isinstance(lowercase_ , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(lowercase_ )[-1].split('.' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences UpperCAmelCase = [extract_label(lowercase_ ) for fname in file_names] UpperCAmelCase = list(set(lowercase_ ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(lowercase_ )} # Set the seed before splitting the data. np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(lowercase_ ) ) UpperCAmelCase = int(0.8 * len(lowercase_ ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(lowercase_ ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model('resnet50d' , pretrained=lowercase_ , num_classes=len(lowercase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(lowercase_ )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace('step_' , '' ) ) UpperCAmelCase = resume_step // len(lowercase_ ) resume_step -= starting_epoch * len(lowercase_ ) # Now we train the model for epoch in range(lowercase_ , lowercase_ ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std with torch.no_grad(): UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(lowercase_ ), 'epoch': epoch, } , step=lowercase_ , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=lowercase_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=lowercase_ , default=lowercase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=lowercase_ , default=lowercase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=lowercase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase_ , default=lowercase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=lowercase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
78
1
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
1
"""simple docstring""" from scipy.stats import pearsonr import datasets _a : str = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _a : List[str] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _a : List[Any] = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def __A ( self , a__ , a__ , a__=False ): if return_pvalue: _lowerCAmelCase : List[Any] = pearsonr(a__ , a__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a__ , a__ )[0] )}
44
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : int ) -> list[int]: lowerCamelCase_ = [True] * limit lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < limit: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def lowerCamelCase__ ( _lowerCamelCase : int = 1000000 ) -> int: lowerCamelCase_ = prime_sieve(_lowerCamelCase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): lowerCamelCase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ = j - i lowerCamelCase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
183
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Dict = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase_ :List[Any] = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Dict = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase_ :List[str] = get_activation("""gelu""" ) lowerCAmelCase_ :Optional[int] = get_activation("""gelu_10""" ) lowerCAmelCase_ :Tuple = torch_builtin(__A ) lowerCAmelCase_ :Optional[int] = geluaa(__A ) lowerCAmelCase_ :str = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(__A ): get_activation("""bogus""" ) with self.assertRaises(__A ): get_activation(__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[Any] = get_activation("""gelu""" ) lowerCAmelCase_ :List[str] = 1 lowerCAmelCase_ :List[Any] = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): lowerCAmelCase_ :Union[str, Any] = acta.a
351
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Union[str, Any]: if isinstance(__A , __A ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase_ :Tuple = deepcopy(__A ) elif os.path.exists(__A ): with io.open(__A , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :str = json.load(__A ) else: try: lowerCAmelCase_ :Dict = baseaa.urlsafe_baadecode(__A ).decode("""utf-8""" ) lowerCAmelCase_ :int = json.loads(__A ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase_ :Optional[Any] = config self.set_stage_and_offload() def __lowerCAmelCase ( self ) -> Tuple: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase_ :Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowerCAmelCase_ :Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase_ :Optional[int] = set(["""cpu""", """nvme"""] ) lowerCAmelCase_ :Union[str, Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase_ :Optional[int] = True def __lowerCAmelCase ( self , __A ) -> Optional[Any]: lowerCAmelCase_ :str = self.config # find the config node of interest if it exists lowerCAmelCase_ :Tuple = ds_key_long.split(""".""" ) lowerCAmelCase_ :List[str] = nodes.pop() for node in nodes: lowerCAmelCase_ :Tuple = config.get(__A ) if config is None: return None, ds_key return config, ds_key def __lowerCAmelCase ( self , __A , __A=None ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.find_config_node(__A ) if config is None: return default return config.get(__A , __A ) def __lowerCAmelCase ( self , __A , __A=False ) -> Optional[Any]: lowerCAmelCase_ :Tuple = self.config # find the config node of interest if it exists lowerCAmelCase_ :Union[str, Any] = ds_key_long.split(""".""" ) for node in nodes: lowerCAmelCase_ :int = config lowerCAmelCase_ :Any = config.get(__A ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__A ) def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = self.get_value(__A ) return False if value is None else bool(__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[str] = self.get_value(__A ) return False if value is None else not bool(__A ) def __lowerCAmelCase ( self ) -> str: return self._stage == 2 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._stage == 3 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._offload class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Optional[int]: lowerCAmelCase_ :Dict = engine def __lowerCAmelCase ( self , __A , **__A ) -> str: # runs backpropagation and handles mixed precision self.engine.backward(__A , **__A ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> List[str]: super().__init__(__A , device_placement=__A , scaler=__A ) lowerCAmelCase_ :List[str] = hasattr(self.optimizer , """overflow""" ) def __lowerCAmelCase ( self , __A=None ) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __lowerCAmelCase ( self ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __lowerCAmelCase ( self ) -> int: if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A ) -> Optional[int]: super().__init__(__A , __A ) def __lowerCAmelCase ( self ) -> Any: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=0.0_0_1 , __A=0 , **__A ) -> List[Any]: lowerCAmelCase_ :str = params lowerCAmelCase_ :Any = lr lowerCAmelCase_ :List[Any] = weight_decay lowerCAmelCase_ :Any = kwargs class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=None , __A=0 , **__A ) -> List[str]: lowerCAmelCase_ :Optional[int] = optimizer lowerCAmelCase_ :int = total_num_steps lowerCAmelCase_ :List[Any] = warmup_num_steps lowerCAmelCase_ :int = kwargs
1
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __snake_case = logging.get_logger(__name__) @add_end_docstrings(_a ) class lowercase ( _a ): """simple docstring""" def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCAmelCase__ ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Tuple = {} UpperCamelCase__ :List[Any] = {} if prompt is not None: UpperCamelCase__ :List[str] = prompt if generate_kwargs is not None: UpperCamelCase__ :Optional[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase__ :str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) UpperCamelCase__ :Union[str, Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Any = load_image(UpperCamelCase_ ) if prompt is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'''Received an invalid text input, got - {type(UpperCamelCase_ )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) UpperCamelCase__ :int = self.model.config.model_type if model_type == "git": UpperCamelCase__ :Optional[int] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) UpperCamelCase__ :str = self.tokenizer(text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ).input_ids UpperCamelCase__ :Optional[int] = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase__ :int = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": UpperCamelCase__ :List[Any] = self.image_processor(images=UpperCamelCase_ , header_text=UpperCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase__ :Optional[int] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) UpperCamelCase__ :Optional[int] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: UpperCamelCase__ :int = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase__ :Optional[Any] = None return model_inputs def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , UpperCamelCase_ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): UpperCamelCase__ :List[Any] = None if generate_kwargs is None: UpperCamelCase__ :int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase__ :Optional[int] = model_inputs.pop(self.model.main_input_name ) UpperCamelCase__ :Optional[Any] = self.model.generate(UpperCamelCase_ , **UpperCamelCase_ , **UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = [] for output_ids in model_outputs: UpperCamelCase__ :List[str] = { 'generated_text': self.tokenizer.decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , ) } records.append(UpperCamelCase_ ) return records
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Optional[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[Any] = { """google/electra-small-generator""": 5_12, """google/electra-base-generator""": 5_12, """google/electra-large-generator""": 5_12, """google/electra-small-discriminator""": 5_12, """google/electra-base-discriminator""": 5_12, """google/electra-large-discriminator""": 5_12, } lowerCAmelCase : Dict = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ElectraTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) _lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): _lowerCAmelCase : Tuple = getattr(snake_case__ , normalizer_state.pop('type' ) ) _lowerCAmelCase : List[Any] = do_lower_case _lowerCAmelCase : List[Any] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Optional[int] = normalizer_class(**snake_case__ ) _lowerCAmelCase : List[Any] = do_lower_case def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
"""simple docstring""" import numpy as np def _snake_case ( UpperCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def _snake_case ( UpperCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
109
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase = "\\n Text data.\n Second line of data." lowercase = "file" @pytest.fixture(scope='session') def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / (FILE_PATH + '.zstd') snake_case_ = bytes(a_ , 'utf-8') with zstd.open(a_ , 'wb') as f: f.write(a_) return path @pytest.fixture def __UpperCAmelCase ( a_): with open(os.path.join(tmpfs.local_root_dir , a_) , 'w') as f: f.write(a_) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd']) def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_): snake_case_ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / 'cache' snake_case_ = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_) snake_case_ = cached_path(a_ , download_config=a_) with open(a_) as f: snake_case_ = f.read() with open(a_) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False]) @pytest.mark.parametrize('default_cache_dir' , [True, False]) def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_): snake_case_ = 'custom_cache' snake_case_ = 'custom_extracted_dir' snake_case_ = tmp_path / 'custom_extracted_path' if default_extracted: snake_case_ = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , a_) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(a_)) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=a_) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_) ) snake_case_ = cached_path(a_ , download_config=a_) assert Path(a_).parent.parts[-2:] == expected def __UpperCAmelCase ( a_): # absolute path snake_case_ = str(Path(a_).resolve()) assert cached_path(a_) == text_file # relative path snake_case_ = str(Path(a_).resolve().relative_to(Path(os.getcwd()))) assert cached_path(a_) == text_file def __UpperCAmelCase ( a_): # absolute path snake_case_ = str(tmp_path.resolve() / '__missing_file__.txt') with pytest.raises(a_): cached_path(a_) # relative path snake_case_ = './__missing_file__.txt' with pytest.raises(a_): cached_path(a_) def __UpperCAmelCase ( a_): snake_case_ = get_from_cache(f'''tmp://{tmpfs_file}''') with open(a_) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( ): with pytest.raises(a_): cached_path('https://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): http_get('https://huggingface.co' , temp_file=a_) with pytest.raises(a_): http_head('https://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): ftp_get('ftp://huggingface.co' , temp_file=a_) with pytest.raises(a_): ftp_head('ftp://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): fsspec_get('s3://huggingface.co' , temp_file=a_) with pytest.raises(a_): fsspec_head('s3://huggingface.co')
178
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase , output_loading_info=lowerCAmelCase ) else: UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase , output_loading_info=lowerCAmelCase ) UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": UpperCAmelCase = prophet UpperCAmelCase = prophet_old else: UpperCAmelCase = prophet.prophetnet UpperCAmelCase = prophet_old.model UpperCAmelCase = False for attribute in attributes: if attribute in mapping: UpperCAmelCase = mapping[attribute] if not hasattr(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) > 0: UpperCAmelCase = attribute elif hasattr(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCAmelCase = old_model.weight logger.info(F'''{attribute} is initialized.''' ) UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCAmelCase = old_model.bias logger.info(F'''{attribute} is initialized''' ) UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowerCAmelCase , """in_proj_weight""" ): UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 UpperCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:512, :] ) UpperCAmelCase = True break if attribute.isdigit(): UpperCAmelCase = model[int(lowerCAmelCase )] UpperCAmelCase = old_model[int(lowerCAmelCase )] else: UpperCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) if old_attribute == "": UpperCAmelCase = old_model else: if not hasattr(lowerCAmelCase , lowerCAmelCase ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) UpperCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
248
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase , lowerCAmelCase ) # Predict target for test data UpperCAmelCase = xgb.predict(lowerCAmelCase ) UpperCAmelCase = predictions.reshape(len(lowerCAmelCase ) , 1 ) return predictions def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( lowerCAmelCase , lowerCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase , lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCAmelCase , lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' _A : Tuple = DistilBertTokenizer _A : Dict = DistilBertTokenizerFast _A : Optional[Any] = True @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowercase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowercase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowercase : int = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
233
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowerCAmelCase = False if num < 0: lowerCAmelCase = True lowerCAmelCase = -num lowerCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Tuple ) -> str: __UpperCAmelCase : List[Any] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase : Union[str, Any] = """The dog is cute and lives in the garden house""" __UpperCAmelCase : int = jnp.array([tokenizer.encode(snake_case )] ) __UpperCAmelCase : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase : Optional[int] = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) __UpperCAmelCase : Optional[Any] = model(snake_case )["""last_hidden_state"""] self.assertEqual(output.shape , snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case , atol=1E-3 ) )
351
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __UpperCAmelCase :Dict = logging.get_logger(__name__) __UpperCAmelCase :str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase :Optional[int] = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase :Union[str, Any] = { "bert-base-uncased": 5_1_2, "bert-large-uncased": 5_1_2, "bert-base-cased": 5_1_2, "bert-large-cased": 5_1_2, "bert-base-multilingual-uncased": 5_1_2, "bert-base-multilingual-cased": 5_1_2, "bert-base-chinese": 5_1_2, "bert-base-german-cased": 5_1_2, "bert-large-uncased-whole-word-masking": 5_1_2, "bert-large-cased-whole-word-masking": 5_1_2, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_1_2, "bert-large-cased-whole-word-masking-finetuned-squad": 5_1_2, "bert-base-cased-finetuned-mrpc": 5_1_2, "bert-base-german-dbmdz-cased": 5_1_2, "bert-base-german-dbmdz-uncased": 5_1_2, "TurkuNLP/bert-base-finnish-cased-v1": 5_1_2, "TurkuNLP/bert-base-finnish-uncased-v1": 5_1_2, "wietsedv/bert-base-dutch-cased": 5_1_2, } __UpperCAmelCase :str = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = BertTokenizer def __init__( self : Optional[int] , snake_case : Union[str, Any]=None , snake_case : str=None , snake_case : Any=True , snake_case : Tuple="[UNK]" , snake_case : int="[SEP]" , snake_case : Optional[Any]="[PAD]" , snake_case : int="[CLS]" , snake_case : Optional[Any]="[MASK]" , snake_case : Union[str, Any]=True , snake_case : List[Any]=None , **snake_case : int , ) -> str: super().__init__( snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , tokenize_chinese_chars=snake_case , strip_accents=snake_case , **snake_case , ) __UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case ) != tokenize_chinese_chars ): __UpperCAmelCase : List[Any] = getattr(snake_case , normalizer_state.pop('''type''' ) ) __UpperCAmelCase : List[Any] = do_lower_case __UpperCAmelCase : List[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : List[str] = normalizer_class(**snake_case ) __UpperCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[Any] , snake_case : Tuple , snake_case : List[str]=None ) -> str: __UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : List[str] = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase : Optional[int] = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case )
240
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Dict = """Hello, World!""" _UpperCAmelCase : Any = """en_XX""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase__ : Optional[Any] = Path('data_bin' ) lowerCamelCase__ : Optional[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_UpperCAmelCase ).parent ) , checkpoint_file=Path(_UpperCAmelCase ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(_UpperCAmelCase ) , bpe='sentencepiece' , sentencepiece_model=str(Path(_UpperCAmelCase ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(_UpperCAmelCase ) lowerCamelCase__ : Any = xmod.model.encoder.sentence_encoder lowerCamelCase__ : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase__ : Optional[int] = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , _UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = XmodForSequenceClassification(_UpperCAmelCase ) if classification_head else XmodForMaskedLM(_UpperCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__ : Any = xmod_sent_encoder.embed_tokens.weight lowerCamelCase__ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase__ : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase__ : Any = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase__ : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase__ : Dict = xmod_sent_encoder.layers[i] # self attention lowerCamelCase__ : Union[str, Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) lowerCamelCase__ : Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase__ : Any = xmod_layer.self_attn.q_proj.bias lowerCamelCase__ : Tuple = xmod_layer.self_attn.k_proj.weight lowerCamelCase__ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase__ : int = xmod_layer.self_attn.v_proj.weight lowerCamelCase__ : Any = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__ : str = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) lowerCamelCase__ : Optional[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase__ : Tuple = xmod_layer.self_attn.out_proj.bias lowerCamelCase__ : Dict = xmod_layer.self_attn_layer_norm.weight lowerCamelCase__ : Tuple = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase__ : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) lowerCamelCase__ : Tuple = xmod_layer.fca.weight lowerCamelCase__ : List[str] = xmod_layer.fca.bias # output lowerCamelCase__ : List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) lowerCamelCase__ : Union[str, Any] = xmod_layer.fca.weight lowerCamelCase__ : int = xmod_layer.fca.bias lowerCamelCase__ : List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase__ : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase__ : Dict = xmod_layer.adapter_layer_norm.weight lowerCamelCase__ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase__ : Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase__ : List[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase__ : Dict = from_adapter.fca.weight lowerCamelCase__ : Any = from_adapter.fca.bias lowerCamelCase__ : Optional[Any] = from_adapter.fca.weight lowerCamelCase__ : List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase__ : List[Any] = xmod_sent_encoder.layer_norm.weight lowerCamelCase__ : List[str] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase__ : Union[str, Any] = xmod.model.classification_heads['mnli'].dense.weight lowerCamelCase__ : Any = xmod.model.classification_heads['mnli'].dense.bias lowerCamelCase__ : int = xmod.model.classification_heads['mnli'].out_proj.weight lowerCamelCase__ : Union[str, Any] = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCamelCase__ : Optional[int] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase__ : Any = xmod.model.encoder.lm_head.dense.bias lowerCamelCase__ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase__ : str = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase__ : str = xmod.model.encoder.lm_head.weight lowerCamelCase__ : Optional[Any] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__ : Optional[Any] = xmod.encode(_UpperCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model(_UpperCAmelCase )[0] if classification_head: lowerCamelCase__ : int = xmod.model.classification_heads['mnli'](xmod.extract_features(_UpperCAmelCase ) ) else: lowerCamelCase__ : Any = xmod.model(_UpperCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__ : Any = torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(_UpperCAmelCase ).mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) _UpperCAmelCase : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
50
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
1
import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__(self , __a=None , **__a ) -> List[Any]: """simple docstring""" super().__init__(features=__A ) UpperCAmelCase__ = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" import torch if isinstance(__A , __A ) and column: if all( isinstance(__A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__A ) return column def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" import torch if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase__ = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase__ = {"""dtype""": torch.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase__ = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): UpperCAmelCase__ = np.asarray(__A ) return torch.tensor(__A , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(__A , '__array__' ) and not isinstance(__A , torch.Tensor ): UpperCAmelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" return map_nested(self._recursive_tensorize , __A , map_list=__A ) def UpperCamelCase__ (self , __a ) -> Mapping: """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(__A ) UpperCAmelCase__ = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def UpperCamelCase__ (self , __a ) -> "torch.Tensor": """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(__A ) UpperCAmelCase__ = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) UpperCAmelCase__ = self.recursive_tensorize(__A ) UpperCAmelCase__ = self._consolidate(__A ) return column def UpperCamelCase__ (self , __a ) -> Mapping: """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(__A ) UpperCAmelCase__ = self.python_features_decoder.decode_batch(__A ) UpperCAmelCase__ = self.recursive_tensorize(__A ) for column_name in batch: UpperCAmelCase__ = self._consolidate(batch[column_name] ) return batch
351
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=3 , __A=32 , __A=3 , __A=10 , __A=[10, 20, 30, 40] , __A=[1, 1, 2, 1] , __A=True , __A=True , __A="relu" , __A=3 , __A=None , ) -> Any: a =parent a =batch_size a =image_size a =num_channels a =embeddings_size a =hidden_sizes a =depths a =is_training a =use_labels a =hidden_act a =num_labels a =scope a =len(__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Tuple: a =FlaxRegNetModel(config=__A ) a =model(__A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Any: a =self.num_labels a =FlaxRegNetForImageClassification(config=__A ) a =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.prepare_config_and_inputs() a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> None: a =FlaxRegNetModelTester(self ) a =ConfigTester(self , config_class=__A , has_text_modality=__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self ) -> Any: return def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self ) -> str: pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a =self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a =self._prepare_for_class(__A , __A ) a =model_class(__A ) @jax.jit def model_jitted(__A , **__A ): return model(pixel_values=__A , **__A ) with self.subTest('''JIT Enabled''' ): a =model_jitted(**__A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): a =model_jitted(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) ) for jitted_output, output in zip(__A , __A ): self.assertEqual(jitted_output.shape , output.shape ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: a =FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__A , return_tensors='''np''' ) a =model(**__A ) # verify the logits a =(1, 1000) self.assertEqual(outputs.logits.shape , __A ) a =jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) )
81
"""simple docstring""" from __future__ import annotations import math def _A ( lowercase ): """simple docstring""" if num <= 0: a =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase ) a =[True] * (num + 1) a =[] a =2 a =int(math.sqrt(lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase ): if sieve[i] is True: a =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
81
1
class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , _lowerCAmelCase : Dict ): # we need a list not a string, so do something to change the type __snake_case : Any = arr.split(""",""" ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Optional[Any] = [int(self.array[0] )] * len(self.array ) __snake_case : Union[str, Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __snake_case : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __snake_case : int = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase_ = input("please input some numbers:") lowercase_ = SubArray(whole_array) lowercase_ = array.solve_sub_array() print(("the results is:", re))
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__="None" , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> List[str]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = TFDebertaVaModel(config=__a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(__a ) __lowerCamelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = TFDebertaVaForMaskedLM(config=__a ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFDebertaVaForSequenceClassification(config=__a ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFDebertaVaForTokenClassification(config=__a ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = TFDebertaVaForQuestionAnswering(config=__a ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( __lowerCamelCase ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __a , __a , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = TFDebertaVaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(__a ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @slow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) __lowerCamelCase = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCamelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCamelCase = model(__a , attention_mask=__a )[0] __lowerCamelCase = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __a , atol=1e-4 )
90
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , ): if attention_mask is None: __lowercase : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowercase : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowercase : Any = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCAmelCase_ ) if decoder_head_mask is None: __lowercase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) if cross_attn_head_mask is None: __lowercase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : str , __a : Tuple=13 , __a : List[Any]=7 , __a : Any=True , __a : List[str]=False , __a : Optional[Any]=99 , __a : Tuple=16 , __a : int=2 , __a : Optional[Any]=4 , __a : int=4 , __a : Any="relu" , __a : Optional[int]=0.1 , __a : List[str]=0.1 , __a : Dict=0.0 , __a : List[str]=0.0 , __a : Union[str, Any]=20 , __a : str=2 , __a : str=1 , __a : Optional[int]=0 , ) -> Optional[int]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = batch_size __lowercase : Any = seq_length __lowercase : Tuple = is_training __lowercase : Optional[Any] = use_labels __lowercase : Dict = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Tuple = encoder_layerdrop __lowercase : List[str] = decoder_layerdrop __lowercase : Any = max_position_embeddings __lowercase : Any = eos_token_id __lowercase : Dict = pad_token_id __lowercase : List[str] = bos_token_id def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = self.eos_token_id # Eos Token __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase : Tuple = input_ids.clamp(self.pad_token_id + 1 ) __lowercase : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowercase : List[str] = self.get_config() __lowercase : str = prepare_mam_aaa_inputs_dict(__a , __a , __a ) return config, inputs_dict def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase , __lowercase : int = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : int , __a : str , __a : str ) -> int: """simple docstring""" __lowercase : Optional[Any] = MaMaaaModel(config=__a ).get_decoder().to(__a ).eval() __lowercase : List[str] = inputs_dict["""input_ids"""] __lowercase : Dict = inputs_dict["""attention_mask"""] __lowercase : List[Any] = inputs_dict["""head_mask"""] # first forward pass __lowercase : List[str] = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __lowercase , __lowercase : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowercase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowercase : Optional[int] = model(__a , attention_mask=__a )["""last_hidden_state"""] __lowercase : Union[str, Any] = model(__a , attention_mask=__a , past_key_values=__a )[ """last_hidden_state""" ] # select random slice __lowercase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : int = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-2 ) ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : List[str] ) -> str: """simple docstring""" __lowercase : Dict = MaMaaaModel(config=__a ).to(__a ).eval() __lowercase : Any = model(**__a ) __lowercase : str = outputs.encoder_last_hidden_state __lowercase : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : str = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[Any] = MaMaaaEncoder.from_pretrained(__a ).to(__a ) __lowercase : Tuple = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Tuple = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = MaMaaaDecoder.from_pretrained(__a ).to(__a ) __lowercase : Tuple = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__a , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _A : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _A : Union[str, Any] = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _A : Optional[int] = True _A : Union[str, Any] = True _A : Any = False _A : int = False def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : int = MaMaaaModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : str = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __lowercase : Union[str, Any] = model_class(__a ) model.to(__a ) model.eval() __lowercase : Any = copy.deepcopy(self._prepare_for_class(__a , __a ) ) if not self.is_encoder_decoder: __lowercase : int = inputs["""input_ids"""] del inputs["input_ids"] else: __lowercase : Optional[int] = inputs["""input_ids"""] __lowercase : Optional[Any] = inputs.get("""decoder_input_ids""" , __a ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , __a ) __lowercase : Union[str, Any] = model.get_input_embeddings() if not self.is_encoder_decoder: __lowercase : Dict = wte(__a ) else: __lowercase : str = wte(__a ) __lowercase : Union[str, Any] = wte(__a ) with torch.no_grad(): model(**__a )[0] def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = input_dict["""input_ids"""] __lowercase : Optional[int] = input_ids.ne(1 ).to(__a ) __lowercase : List[Any] = MaMaaaForConditionalGeneration(__a ).eval().to(__a ) if torch_device == "cuda": model.half() model.generate(__a , attention_mask=__a ) model.generate(num_beams=4 , do_sample=__a , early_stopping=__a , num_return_sequences=3 ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): return torch.tensor(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ ) lowerCamelCase : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : List[str] = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) __lowercase : Union[str, Any] = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __lowercase : int = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __lowercase : int = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): __lowercase : int = model(**__a )[0] __lowercase : int = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __a ) # change to expected output here __lowercase : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) # change to intended input __lowercase : Any = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __lowercase : Union[str, Any] = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __lowercase : Tuple = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): __lowercase : Optional[Any] = model(**__a )[0] __lowercase : Tuple = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __a ) # change to expected output here __lowercase : Union[str, Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : List[str] = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) __lowercase : Tuple = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) __lowercase : Dict = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams __lowercase : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors="""pt""" ) __lowercase : Dict = model.generate( input_ids=dct["""input_ids"""].to(__a ) , attention_mask=dct["""attention_mask"""].to(__a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) __lowercase : Any = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] __lowercase : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__a , skip_special_tokens=__a ) assert generated == expected_en
233
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Optional[int]: a_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/")) a_ = self.transformer_dir shutil.copy( os.path.join(__UpperCAmelCase , "src/transformers/models/bert/modeling_bert.py") , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py") , ) def UpperCAmelCase__ ( self) ->int: a_ = "src/transformers" shutil.rmtree(self.transformer_dir) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Dict: a_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: a_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19) a_ = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase) a_ = os.path.join(self.transformer_dir , "new_code.py") with open(__UpperCAmelCase , "w" , newline="\n") as f: f.write(__UpperCAmelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCAmelCase)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCAmelCase) with open(__UpperCAmelCase , "r") as f: self.assertTrue(f.read() , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __UpperCAmelCase) , ) # Copy consistency with a really long name a_ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("Bert" , __UpperCAmelCase , __UpperCAmelCase) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __UpperCAmelCase , overwrite_result=re.sub("Bert" , "TestModel" , __UpperCAmelCase) , ) def UpperCAmelCase__ ( self) ->int: a_ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) self.assertFalse(__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__UpperCAmelCase) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(__UpperCAmelCase , __UpperCAmelCase)
364
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A ( _lowerCamelCase="" ): '''simple docstring''' _lowerCAmelCase : Tuple = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : List[str] = AgentAudio(__a) _lowerCAmelCase : int = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a, agent_type.to_raw(), atol=1E-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__a)) # Ensure that the file contains the same value as the original tensor _lowerCAmelCase , _lowerCAmelCase : List[str] = sf.read(__a) self.assertTrue(torch.allclose(__a, torch.tensor(__a), atol=1E-4)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : Optional[int] = get_new_path(suffix=".wav") sf.write(__a, __a, 1_6000) _lowerCAmelCase : Any = AgentAudio(__a) self.assertTrue(torch.allclose(__a, agent_type.to_raw(), atol=1E-4)) self.assertEqual(agent_type.to_string(), __a) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.randint(0, 256, (64, 64, 3)) _lowerCAmelCase : str = AgentImage(__a) _lowerCAmelCase : Optional[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a, agent_type._tensor, atol=1E-4)) self.assertIsInstance(agent_type.to_raw(), Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _lowerCAmelCase : Tuple = Image.open(__a) _lowerCAmelCase : Optional[Any] = AgentImage(__a) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _lowerCAmelCase : Optional[Any] = Image.open(__a) _lowerCAmelCase : Any = AgentImage(__a) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "Hey!" _lowerCAmelCase : Any = AgentText(__a) self.assertEqual(__a, agent_type.to_string()) self.assertEqual(__a, agent_type.to_raw()) self.assertEqual(__a, __a)
36
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( _a ): _A : Optional[int] = '''t5''' _A : Union[str, Any] = ['''past_key_values'''] _A : Dict = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=32_128 ,SCREAMING_SNAKE_CASE__ : List[str]=512 ,SCREAMING_SNAKE_CASE__ : Any=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=128 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : int="relu" ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): SCREAMING_SNAKE_CASE:int = vocab_size SCREAMING_SNAKE_CASE:Any = d_model SCREAMING_SNAKE_CASE:Union[str, Any] = d_kv SCREAMING_SNAKE_CASE:Optional[int] = d_ff SCREAMING_SNAKE_CASE:Tuple = num_layers SCREAMING_SNAKE_CASE:str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE:Union[str, Any] = num_heads SCREAMING_SNAKE_CASE:int = relative_attention_num_buckets SCREAMING_SNAKE_CASE:Tuple = relative_attention_max_distance SCREAMING_SNAKE_CASE:Dict = dropout_rate SCREAMING_SNAKE_CASE:List[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE:List[str] = initializer_factor SCREAMING_SNAKE_CASE:Tuple = feed_forward_proj SCREAMING_SNAKE_CASE:str = use_cache SCREAMING_SNAKE_CASE:Optional[Any] = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE:Any = act_info[-1] SCREAMING_SNAKE_CASE:Tuple = act_info[0] == "gated" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE:int = "gelu_new" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) class _snake_case ( _a ): @property def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:int = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: SCREAMING_SNAKE_CASE:Optional[int] = "past_encoder_sequence + sequence" SCREAMING_SNAKE_CASE:str = {0: "batch"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE:Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction="inputs" ) return common_inputs @property def __UpperCamelCase ( self : Optional[int] ): return 13
139
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : List[Any] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "speech_to_text" _UpperCamelCase : List[Any] = ["past_key_values"] _UpperCamelCase : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=10000 , a__=12 , a__=2048 , a__=4 , a__=6 , a__=2048 , a__=4 , a__=0.0 , a__=0.0 , a__=True , a__=True , a__="relu" , a__=256 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=2 , a__=True , a__=1 , a__=0 , a__=2 , a__=6000 , a__=1024 , a__=2 , a__=(5, 5) , a__=1024 , a__=80 , a__=1 , **a__ , ): _lowerCAmelCase : int = vocab_size _lowerCAmelCase : str = d_model _lowerCAmelCase : List[str] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : List[str] = encoder_attention_heads _lowerCAmelCase : Tuple = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : Tuple = decoder_attention_heads _lowerCAmelCase : Dict = dropout _lowerCAmelCase : Union[str, Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Any = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Union[str, Any] = encoder_layerdrop _lowerCAmelCase : str = decoder_layerdrop _lowerCAmelCase : int = use_cache _lowerCAmelCase : Optional[Any] = encoder_layers _lowerCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : str = max_source_positions _lowerCAmelCase : List[Any] = max_target_positions _lowerCAmelCase : List[str] = num_conv_layers _lowerCAmelCase : int = list(a__ ) _lowerCAmelCase : Any = conv_channels _lowerCAmelCase : Union[str, Any] = input_feat_per_channel _lowerCAmelCase : Tuple = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , **a__ , )
126
"""simple docstring""" from manim import * class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Dict = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Dict = [mem.copy() for i in range(4 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : List[str] = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : Tuple = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : int = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase : List[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : Tuple = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _lowerCAmelCase : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
126
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = HfArgumentParser(_UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE : int = TensorFlowBenchmark(args=_UpperCamelCase ) try: SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: SCREAMING_SNAKE_CASE : int = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' SCREAMING_SNAKE_CASE : Any = ''' '''.join(str(_UpperCamelCase ).split(""" """ )[:-1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' SCREAMING_SNAKE_CASE : Any = eval(str(_UpperCamelCase ).split(""" """ )[-1] ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : List[str] = full_error_msg + begin_error_msg + str(_UpperCamelCase ) raise ValueError(_UpperCamelCase ) benchmark.run() if __name__ == "__main__": main()
323
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = [[float('''inf''' ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_UpperCamelCase ): # looping through rows of graph array for i in range(_UpperCamelCase ): # looping through columns of graph array for j in range(_UpperCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : List[Any] = dist[i][k] + dist[k][j] _print_dist(_UpperCamelCase , _UpperCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('''Enter number of vertices: ''')) lowerCAmelCase_ = int(input('''Enter number of edges: ''')) lowerCAmelCase_ = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowerCAmelCase_ = int(input('''Enter source:''')) lowerCAmelCase_ = int(input('''Enter destination:''')) lowerCAmelCase_ = float(input('''Enter weight:''')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
279
0
"""simple docstring""" from collections import defaultdict def a__ ( lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : Union[str, Any] = first_str.lower().strip() UpperCAmelCase__ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase__ : Optional[int] = first_str.replace(""" """ , """""" ) UpperCAmelCase__ : Tuple = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False # Default values for count should be 0 UpperCAmelCase__ : defaultdict[str, int] = defaultdict(__lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _A = input("""Enter the first string """).strip() _A = input("""Enter the second string """).strip() _A = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
360
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = dataset UpperCAmelCase__ : Union[str, Any] = process UpperCAmelCase__ : List[Any] = params def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = self.dataset[i] UpperCAmelCase__ : Any = self.process(_lowerCamelCase , **self.params ) return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" UpperCAmelCase__ : Tuple = loader UpperCAmelCase__ : int = infer UpperCAmelCase__ : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Any = loader_batch_size # Internal bookkeeping UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Union[str, Any] = None def __len__(self ): """simple docstring""" return len(self.loader ) def __iter__(self ): """simple docstring""" UpperCAmelCase__ : List[str] = iter(self.loader ) return self def _a (self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase__ : Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase__ : List[str] = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): # Convert ModelOutput to tuple first UpperCAmelCase__ : List[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCamelCase , _lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : Optional[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase__ : str = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Tuple = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Dict = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase__ : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase__ : Union[str, Any] = self._loader_batch_data.__class__(_lowerCamelCase ) self._loader_batch_index += 1 return result def _a (self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase__ : str = next(self.iterator ) UpperCAmelCase__ : Union[str, Any] = self.infer(_lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : List[Any] = processed else: UpperCAmelCase__ : List[str] = list(processed.keys() )[0] UpperCAmelCase__ : List[str] = processed[key] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : Any = len(_lowerCamelCase ) else: UpperCAmelCase__ : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase__ : List[Any] = processed UpperCAmelCase__ : Optional[int] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" super().__init__(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __iter__(self ): """simple docstring""" UpperCAmelCase__ : Tuple = iter(self.loader ) UpperCAmelCase__ : List[Any] = None return self def _a (self ): """simple docstring""" if self.subiterator is None: UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase__ : List[str] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase__ : List[str] = next(self.subiterator ) return processed class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __iter__(self ): """simple docstring""" UpperCAmelCase__ : str = iter(self.loader ) return self def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : List[Any] = self.loader_batch_item() UpperCAmelCase__ : Dict = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) if is_last: return accumulator while not is_last: UpperCAmelCase__ : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : Dict = processed else: UpperCAmelCase__ : List[Any] = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : int = len(_lowerCamelCase ) else: UpperCAmelCase__ : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : str = observed_batch_size UpperCAmelCase__ : Union[str, Any] = processed UpperCAmelCase__ : List[Any] = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Union[str, Any] = self.loader_batch_item() UpperCAmelCase__ : int = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) if is_last: return accumulator else: UpperCAmelCase__ : Any = processed UpperCAmelCase__ : Any = item.pop("""is_last""" ) accumulator.append(_lowerCamelCase ) return accumulator class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = dataset UpperCAmelCase__ : Union[str, Any] = key def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" return self.dataset[i][self.key] class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = dataset UpperCAmelCase__ : Any = keya UpperCAmelCase__ : str = keya def __len__(self ): """simple docstring""" return len(self.dataset ) def __getitem__(self , _lowerCamelCase ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
166
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __snake_case ( _lowerCAmelCase : List[str] ) -> List[str]: monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def __snake_case ( _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = metric_id class __magic_name__ : """simple docstring""" __UpperCamelCase = [MetricMock(UpperCamelCase__ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ) -> Optional[int]: if "tmp_path" in args: A_ : int = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(snake_case_ , match="https://huggingface.co/docs/evaluate" ): func(*snake_case_ )
300
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __A = random.Random() def __A ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ): '''simple docstring''' if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str]=7 , __A: Optional[Any]=4_00 , __A: List[Any]=20_00 , __A: Tuple=24 , __A: Any=24 , __A: Union[str, Any]=0.0 , __A: Union[str, Any]=1_60_00 , __A: Dict=True , __A: Dict=True , ) -> int: _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = feature_size _A = num_mel_bins _A = padding_value _A = sampling_rate _A = return_attention_mask _A = do_normalize def __A ( self: Optional[Any] ) -> Union[str, Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self: int , __A: str=False , __A: Optional[Any]=False ) -> Tuple: def _flatten(__A: List[str] ): return list(itertools.chain(*__A ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self: Dict ) -> Union[str, Any]: _A = SpeechaTextFeatureExtractionTester(self ) def __A ( self: Dict , __A: Tuple ) -> List[str]: self.assertTrue(np.all(np.mean(__A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self: str ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _A = [np.asarray(__A ) for speech_input in speech_inputs] # Test feature size _A = feature_extractor(__A , padding=__A , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _A = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _A = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test batched _A = feature_extractor(__A , return_tensors='''np''' ).input_features _A = feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _A = np.asarray(__A ) _A = feature_extractor(__A , return_tensors='''np''' ).input_features _A = feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) def __A ( self: List[str] ) -> List[Any]: _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _A = ['''longest''', '''max_length''', '''do_not_pad'''] _A = [None, 16, None] for max_length, padding in zip(__A , __A ): _A = feature_extractor( __A , padding=__A , max_length=__A , return_attention_mask=__A ) _A = inputs.input_features _A = inputs.attention_mask _A = [np.sum(__A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self: str ) -> Dict: _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _A = ['''longest''', '''max_length''', '''do_not_pad'''] _A = [None, 16, None] for max_length, padding in zip(__A , __A ): _A = feature_extractor( __A , max_length=__A , padding=__A , return_tensors='''np''' , return_attention_mask=__A ) _A = inputs.input_features _A = inputs.attention_mask _A = [np.sum(__A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self: Dict ) -> int: _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _A = feature_extractor( __A , padding='''max_length''' , max_length=4 , truncation=__A , return_tensors='''np''' , return_attention_mask=__A , ) _A = inputs.input_features _A = inputs.attention_mask _A = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self: List[Any] ) -> str: _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _A = feature_extractor( __A , padding='''longest''' , max_length=4 , truncation=__A , return_tensors='''np''' , return_attention_mask=__A , ) _A = inputs.input_features _A = inputs.attention_mask _A = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) _A = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _A = feature_extractor( __A , padding='''longest''' , max_length=16 , truncation=__A , return_tensors='''np''' , return_attention_mask=__A , ) _A = inputs.input_features _A = inputs.attention_mask _A = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self: Dict ) -> List[Any]: import torch _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = np.random.rand(1_00 , 32 ).astype(np.floataa ) _A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self: int , __A: Dict ) -> Union[str, Any]: from datasets import load_dataset _A = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _A = ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __A ( self: Optional[int] ) -> Dict: # fmt: off _A = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on _A = self._load_datasamples(1 ) _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __A , atol=1e-4 ) )
356
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
75
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = 0 for ch in input_str: UpperCamelCase__ = ord(lowerCAmelCase__ ) UpperCamelCase__ = pow(2 , lowerCAmelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
80
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ :str = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = '''huggingface/label-files''' lowercase = '''imagenet-1k-id2label.json''' lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = {v: k for k, v in idalabel.items()} lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if "stem.conv" in name: lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase = '''bit.encoder.''' + name return name def UpperCamelCase ( ): '''simple docstring''' lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_config(lowerCAmelCase__ ) # load original model from timm lowercase = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowercase = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowercase = transform.transforms lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase = prepare_img() lowercase = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowercase = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowercase = model(lowerCAmelCase__ ) lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowercase__ :List[str] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
101
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00_00_00 ): '''simple docstring''' lowerCamelCase_ = set(range(3 , lowercase , 2 ) ) primes.add(2 ) for p in range(3 , lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase , lowercase ) ) ) lowerCamelCase_ = [float(lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase , limit + 1 , lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
362
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase : int = logging.getLogger() lowerCamelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : List[str] , A_ : Optional[Any] ) -> int: """simple docstring""" os.makedirs(A_ , exist_ok=A_ ) lowerCamelCase_ = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase_ = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase_ = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(A_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(A_ ) def a__ ( self : Optional[Any] , A_ : int , A_ : str = "pytorch" ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = os.path.join(A_ , 'output' ) lowerCamelCase_ = os.path.join(A_ , 'data' ) self._create_dummy_data(data_dir=A_ ) lowerCamelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(A_ , env=self.get_env() ) lowerCamelCase_ = os.path.join(A_ , 'metrics.json' ) with open(A_ ) as f: lowerCamelCase_ = json.load(A_ ) return result @require_torch_gpu def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
208
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( __snake_case , unittest.TestCase): __lowerCAmelCase : List[str] = MobileBertTokenizer __lowerCAmelCase : int = MobileBertTokenizerFast __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Dict = filter_non_english __lowerCAmelCase : str = """google/mobilebert-uncased""" def a_ ( self : List[str] ): """simple docstring""" super().setUp() A_ : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : int = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a_ ( self : List[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Dict = '''UNwant\u00E9d,running''' A_ : Optional[int] = '''unwanted, running''' return input_text, output_text def a_ ( self : Dict ): """simple docstring""" A_ : str = self.tokenizer_class(self.vocab_file ) A_ : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] ) def a_ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return A_ : Optional[Any] = self.get_tokenizer() A_ : Optional[int] = self.get_rust_tokenizer() A_ : Optional[Any] = '''UNwant\u00E9d,running''' A_ : List[Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) A_ : Optional[int] = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ : str = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : List[str] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ : int = self.get_rust_tokenizer() A_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # With lower casing A_ : Any = self.get_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) A_ : str = self.get_rust_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) A_ : Tuple = '''UNwant\u00E9d,running''' A_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) A_ : List[str] = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ : Any = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : List[Any] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.get_rust_tokenizer() A_ : Any = tokenizer.encode(__SCREAMING_SNAKE_CASE ) A_ : str = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def a_ ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a_ ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a_ ( self : Any ): """simple docstring""" A_ : Tuple = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a_ ( self : Optional[int] ): """simple docstring""" A_ : int = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a_ ( self : Tuple ): """simple docstring""" A_ : Union[str, Any] = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a_ ( self : List[str] ): """simple docstring""" A_ : str = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a_ ( self : Tuple ): """simple docstring""" A_ : Union[str, Any] = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a_ ( self : List[str] ): """simple docstring""" A_ : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A_ : int = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): A_ : Optional[int] = i A_ : Dict = WordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def a_ ( self : List[Any] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a_ ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a_ ( self : str ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def a_ ( self : int ): """simple docstring""" A_ : Dict = self.get_tokenizer() A_ : str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def a_ ( self : Dict ): """simple docstring""" A_ : Any = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) A_ : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) A_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def a_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : Dict = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) A_ : Any = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" A_ : List[Any] = tokenizer_r.encode_plus( __SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , ) A_ : List[Any] = tokenizer_r.do_lower_case if hasattr(__SCREAMING_SNAKE_CASE , '''do_lower_case''' ) else False A_ : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def a_ ( self : Any ): """simple docstring""" A_ : int = ['''的''', '''人''', '''有'''] A_ : Tuple = ''''''.join(__SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : List[str] = True A_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) A_ : str = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : Dict = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) A_ : Tuple = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ : Any = False A_ : Dict = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) A_ : str = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : Tuple = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) A_ : List[str] = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) A_ : int = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". A_ : Tuple = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__SCREAMING_SNAKE_CASE ) ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
167
"""simple docstring""" import string def lowerCamelCase__ ( _lowerCamelCase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase_ = string.ascii_uppercase.find(_lowerCamelCase ) lowerCamelCase_ = num - key if num < 0: lowerCamelCase_ = num + len(string.ascii_uppercase ) lowerCamelCase_ = translated + string.ascii_uppercase[num] else: lowerCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = input('Encrypted message: ' ) lowerCamelCase_ = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
183
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase__ :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ :str = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __a ( UpperCAmelCase ): _a : Dict = 'bloom' _a : List[str] = ['past_key_values'] _a : Tuple = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self , _SCREAMING_SNAKE_CASE=250880 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('n_embed' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = pretraining_tp _UpperCAmelCase = apply_residual_connection_post_layernorm _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class __a ( UpperCAmelCase ): _a : Union[str, Any] = version.parse('1.12' ) def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "default" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Union[str, Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE ) if not getattr(self._config , 'pad_token_id' , _SCREAMING_SNAKE_CASE ): # TODO: how to do that better? _UpperCAmelCase = 0 @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _UpperCAmelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='inputs' , inverted_values_shape=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return self._config.n_layer @property def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return self._config.n_head @property def UpperCAmelCase__ ( self ) -> float: """simple docstring""" return 1e-3 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = self._config.hidden_size // self.num_attention_heads _UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCAmelCase = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] _UpperCAmelCase = common_inputs['attention_mask'] if self.use_past: _UpperCAmelCase = ordered_inputs['attention_mask'].dtype _UpperCAmelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return 13
361
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ :List[str] = logging.get_logger(__name__) class __a ( UpperCAmelCase ): _a : Optional[int] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = size if size is not None else {'height': 256, 'width': 256} _UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) _UpperCAmelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
185
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Dict = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Any = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } lowerCAmelCase : Dict = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } lowerCAmelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } lowerCAmelCase : Union[str, Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCAmelCase : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCAmelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = DPRContextEncoderTokenizer class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase : Optional[int] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowerCAmelCase : Optional[Any] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowerCAmelCase : Any = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class __magic_name__ : '''simple docstring''' def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: lowerCamelCase = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) lowerCamelCase = titles if not isinstance(_a , _a ) else [titles] lowerCamelCase = texts if not isinstance(_a , _a ) else [texts] lowerCamelCase = len(_a ) lowerCamelCase = questions if not isinstance(_a , _a ) else [questions] * n_passages assert len(_a ) == len( _a ), f'There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.' lowerCamelCase = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] lowerCamelCase = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] lowerCamelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: lowerCamelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def _lowerCAmelCase ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ): """simple docstring""" lowerCamelCase = reader_input["""input_ids"""] lowerCamelCase , lowerCamelCase , lowerCamelCase = reader_output[:3] lowerCamelCase = len(_a ) lowerCamelCase = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) lowerCamelCase = [] for doc_id in sorted_docs: lowerCamelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase = len(_a ) lowerCamelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCAmelCase ( self , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase = sorted(_a , key=lambda _a : x[1] , reverse=_a ) lowerCamelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' lowerCamelCase = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DPRReaderTokenizer
291
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , _a=2_048 , _a=1 , _a=[16, 16] , _a=128 , _a=44_100 , _a=86 , _a=2_048 , _a=0.0 , **_a , ): """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , **_a , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=_a , norm="""slaney""" , mel_scale="""slaney""" , ).T def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = spectrogram( _a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _a , _a = None , _a = True , _a = None , _a = False , _a = False , **_a , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _a ): lowerCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(_a ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(_a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(_a ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
291
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =0 for i in range(len(__UpperCamelCase ) ): if lista[i] != lista[i]: count += 1 __UpperCamelCase ='''_''' if count > 1: return False else: return "".join(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : list[str] ): """simple docstring""" __UpperCamelCase =[] while True: __UpperCamelCase =['''$'''] * len(__UpperCamelCase ) __UpperCamelCase =[] for i in range(len(__UpperCamelCase ) ): for j in range(i + 1 , len(__UpperCamelCase ) ): __UpperCamelCase =compare_string(binary[i] , binary[j] ) if k is False: __UpperCamelCase ='''*''' __UpperCamelCase ='''*''' temp.append('''X''' ) for i in range(len(__UpperCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__UpperCamelCase ) == 0: return pi __UpperCamelCase =list(set(__UpperCamelCase ) ) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Sequence[float] ): """simple docstring""" __UpperCamelCase =[] for minterm in minterms: __UpperCamelCase ='''''' for _ in range(__UpperCamelCase ): __UpperCamelCase =str(minterm % 2 ) + string minterm //= 2 temp.append(__UpperCamelCase ) return temp def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =list(__UpperCamelCase ) __UpperCamelCase =0 for i in range(len(__UpperCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase (__UpperCamelCase : list[list[int]] , __UpperCamelCase : list[str] ): """simple docstring""" __UpperCamelCase =[] __UpperCamelCase =[0] * len(__UpperCamelCase ) for i in range(len(chart[0] ) ): __UpperCamelCase =0 __UpperCamelCase =-1 for j in range(len(__UpperCamelCase ) ): if chart[j][i] == 1: count += 1 __UpperCamelCase =j if count == 1: __UpperCamelCase =1 for i in range(len(__UpperCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__UpperCamelCase ) ): __UpperCamelCase =0 temp.append(prime_implicants[i] ) while True: __UpperCamelCase =0 __UpperCamelCase =-1 __UpperCamelCase =0 for i in range(len(__UpperCamelCase ) ): __UpperCamelCase =chart[i].count(1 ) if count_n > max_n: __UpperCamelCase =count_n __UpperCamelCase =i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__UpperCamelCase ) ): __UpperCamelCase =0 def lowerCAmelCase (__UpperCamelCase : list[str] , __UpperCamelCase : list[str] ): """simple docstring""" __UpperCamelCase =[[0 for x in range(len(__UpperCamelCase ) )] for x in range(len(__UpperCamelCase ) )] for i in range(len(__UpperCamelCase ) ): __UpperCamelCase =prime_implicants[i].count('''_''' ) for j in range(len(__UpperCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , __UpperCamelCase ): __UpperCamelCase =1 return chart def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =int(input('''Enter the no. of variables\n''' ) ) __UpperCamelCase =[ float(__UpperCamelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] __UpperCamelCase =decimal_to_binary(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =check(__UpperCamelCase ) print('''Prime Implicants are:''' ) print(__UpperCamelCase ) __UpperCamelCase =prime_implicant_chart(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =selection(__UpperCamelCase , __UpperCamelCase ) print('''Essential Prime Implicants are:''' ) print(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
85
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowercase : """simple docstring""" def __init__( self : int , UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =data __UpperCamelCase =None class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =None __UpperCamelCase =None def __iter__( self : int ) -> Iterator[Any]: '''simple docstring''' __UpperCamelCase =self.head while self.head: yield node.data __UpperCamelCase =node.next if node == self.head: break def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ) -> Union[str, Any]: '''simple docstring''' return "->".join(str(UpperCamelCase__ ) for item in iter(self ) ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Any ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __UpperCamelCase =Node(UpperCamelCase__ ) if self.head is None: __UpperCamelCase =new_node # first node points itself __UpperCamelCase =__UpperCamelCase =new_node elif index == 0: # insert at head __UpperCamelCase =self.head __UpperCamelCase =__UpperCamelCase =new_node else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =new_node if index == len(self ) - 1: # insert at tail __UpperCamelCase =new_node def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __UpperCamelCase =self.head if self.head == self.tail: # just one node __UpperCamelCase =__UpperCamelCase =None elif index == 0: # delete head node __UpperCamelCase =self.tail.next.next __UpperCamelCase =self.head.next else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =temp.next.next if index == len(self ) - 1: # delete at tail __UpperCamelCase =temp return delete_node.data def UpperCAmelCase_ ( self : str ) -> bool: '''simple docstring''' return len(self ) == 0 def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =CircularLinkedList() assert len(__UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCamelCase ) == i circular_linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
85
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
217
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class snake_case ( __snake_case ): # to overwrite at feature extractactor specific tests SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = None @property def lowercase_ ( self : str)-> Any: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def lowercase_ ( self : Tuple)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(UpperCamelCase__ , "feature_size")) self.assertTrue(hasattr(UpperCamelCase__ , "sampling_rate")) self.assertTrue(hasattr(UpperCamelCase__ , "padding_value")) def lowercase_ ( self : Dict)-> Any: '''simple docstring''' __lowerCAmelCase: Tuple = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: str = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: int = feat_extract.model_input_names[0] __lowerCAmelCase: List[Any] = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(UpperCamelCase__) == len(UpperCamelCase__) for x, y in zip(UpperCamelCase__ , processed_features[input_name]))) __lowerCAmelCase: Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase__) __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="np") __lowerCAmelCase: Optional[int] = processed_features[input_name] if len(batch_features_input.shape) < 3: __lowerCAmelCase: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def lowercase_ ( self : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase__) __lowerCAmelCase: int = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Any = BatchFeature({input_name: speech_inputs} , tensor_type="pt") __lowerCAmelCase: str = processed_features[input_name] if len(batch_features_input.shape) < 3: __lowerCAmelCase: Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase__) __lowerCAmelCase: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="tf") __lowerCAmelCase: int = processed_features[input_name] if len(batch_features_input.shape) < 3: __lowerCAmelCase: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : List[str]=False)-> Optional[int]: '''simple docstring''' def _inputs_have_equal_length(UpperCamelCase__ : Tuple): __lowerCAmelCase: Optional[int] = len(input[0]) for input_slice in input[1:]: if len(UpperCamelCase__) != length: return False return True def _inputs_are_equal(UpperCamelCase__ : str , UpperCamelCase__ : str): if len(UpperCamelCase__) != len(UpperCamelCase__): return False for input_slice_a, input_slice_a in zip(UpperCamelCase__ , UpperCamelCase__): if not np.allclose(np.asarray(UpperCamelCase__) , np.asarray(UpperCamelCase__) , atol=1e-3): return False return True __lowerCAmelCase: List[str] = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCamelCase__) __lowerCAmelCase: Tuple = feat_extract.model_input_names[0] __lowerCAmelCase: List[Any] = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: Optional[int] = self.feat_extract_tester.seq_length_diff __lowerCAmelCase: str = self.feat_extract_tester.max_seq_length + pad_diff __lowerCAmelCase: Tuple = self.feat_extract_tester.min_seq_length __lowerCAmelCase: Union[str, Any] = self.feat_extract_tester.batch_size __lowerCAmelCase: Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowerCAmelCase: Optional[int] = feat_extract.pad(UpperCamelCase__ , padding=UpperCamelCase__) __lowerCAmelCase: Optional[int] = input_a[input_name] __lowerCAmelCase: List[Any] = feat_extract.pad(UpperCamelCase__ , padding="longest") __lowerCAmelCase: int = input_a[input_name] __lowerCAmelCase: Tuple = feat_extract.pad(UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[-1])) __lowerCAmelCase: Optional[Any] = input_a[input_name] __lowerCAmelCase: Union[str, Any] = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np") __lowerCAmelCase: Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="max_length")[input_name] __lowerCAmelCase: Any = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=UpperCamelCase__ , return_tensors="np") __lowerCAmelCase: Optional[Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_are_equal(UpperCamelCase__ , UpperCamelCase__)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase: Dict = feat_extract.pad(UpperCamelCase__ , pad_to_multiple_of=1_0) __lowerCAmelCase: Tuple = input_a[input_name] __lowerCAmelCase: Tuple = feat_extract.pad(UpperCamelCase__ , padding="longest" , pad_to_multiple_of=1_0) __lowerCAmelCase: List[str] = input_a[input_name] __lowerCAmelCase: str = feat_extract.pad( UpperCamelCase__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=UpperCamelCase__) __lowerCAmelCase: str = input_a[input_name] __lowerCAmelCase: Dict = feat_extract.pad( UpperCamelCase__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=UpperCamelCase__ , return_tensors="np" , ) __lowerCAmelCase: List[str] = input_a[input_name] self.assertTrue(all(len(UpperCamelCase__) % 1_0 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(UpperCamelCase__ , UpperCamelCase__)) __lowerCAmelCase: Optional[Any] = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(UpperCamelCase__) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct __lowerCAmelCase: Any = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1e-3) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[int]=False)-> str: '''simple docstring''' def _inputs_have_equal_length(UpperCamelCase__ : List[Any]): __lowerCAmelCase: List[str] = len(input[0]) for input_slice in input[1:]: if len(UpperCamelCase__) != length: return False return True def _inputs_are_equal(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any]): if len(UpperCamelCase__) != len(UpperCamelCase__): return False for input_slice_a, input_slice_a in zip(UpperCamelCase__ , UpperCamelCase__): if not np.allclose(np.asarray(UpperCamelCase__) , np.asarray(UpperCamelCase__) , atol=1e-3): return False return True __lowerCAmelCase: Dict = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCamelCase__) __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs}) # truncate to smallest __lowerCAmelCase: int = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , truncation=UpperCamelCase__) __lowerCAmelCase: Any = input_a[input_name] __lowerCAmelCase: str = feat_extract.pad(UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0])) __lowerCAmelCase: Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) # truncate to smallest with np __lowerCAmelCase: Optional[int] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , return_tensors="np" , truncation=UpperCamelCase__ , ) __lowerCAmelCase: List[str] = input_a[input_name] __lowerCAmelCase: List[str] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , return_tensors="np") __lowerCAmelCase: Any = input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) # truncate to middle __lowerCAmelCase: Union[str, Any] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1]) , truncation=UpperCamelCase__ , return_tensors="np" , ) __lowerCAmelCase: int = input_a[input_name] __lowerCAmelCase: List[Any] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1]) , truncation=UpperCamelCase__) __lowerCAmelCase: Dict = input_a[input_name] __lowerCAmelCase: List[Any] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1]) , return_tensors="np") __lowerCAmelCase: str = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_are_equal(UpperCamelCase__ , UpperCamelCase__)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , truncation=UpperCamelCase__)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="longest" , truncation=UpperCamelCase__)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="longest" , truncation=UpperCamelCase__)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="max_length" , truncation=UpperCamelCase__)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase: Tuple = 1_2 __lowerCAmelCase: Optional[int] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , pad_to_multiple_of=UpperCamelCase__ , truncation=UpperCamelCase__ , ) __lowerCAmelCase: Dict = input_a[input_name] __lowerCAmelCase: List[str] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , pad_to_multiple_of=UpperCamelCase__ , ) __lowerCAmelCase: str = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowerCAmelCase: Optional[Any] = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: __lowerCAmelCase: Optional[Any] = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) def lowercase_ ( self : Union[str, Any])-> Optional[Any]: '''simple docstring''' self._check_padding(numpify=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' self._check_padding(numpify=UpperCamelCase__) def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' self._check_truncation(numpify=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' self._check_truncation(numpify=UpperCamelCase__) @require_torch def lowercase_ ( self : Dict)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: str = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: str = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np")[input_name] __lowerCAmelCase: Dict = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="pt")[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) @require_tf def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Dict = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Tuple = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: List[Any] = feat_extract.model_input_names[0] __lowerCAmelCase: Any = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: Dict = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np")[input_name] __lowerCAmelCase: Any = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="tf")[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1e-2) def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_dict __lowerCAmelCase: Any = True __lowerCAmelCase: str = self.feature_extraction_class(**UpperCamelCase__) __lowerCAmelCase: List[Any] = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: Tuple = [len(UpperCamelCase__) for x in speech_inputs] __lowerCAmelCase: Optional[Any] = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: Optional[Any] = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np") self.assertIn("attention_mask" , UpperCamelCase__) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , UpperCamelCase__) def lowercase_ ( self : List[str])-> Any: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_dict __lowerCAmelCase: str = True __lowerCAmelCase: int = self.feature_extraction_class(**UpperCamelCase__) __lowerCAmelCase: int = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: str = [len(UpperCamelCase__) for x in speech_inputs] __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: List[str] = min(UpperCamelCase__) __lowerCAmelCase: List[str] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="np") self.assertIn("attention_mask" , UpperCamelCase__) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
217
1
import numpy as np def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
200
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Dict = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
200
1
"""simple docstring""" from math import pi, sqrt def _A ( UpperCamelCase_ : float) -> float: '''simple docstring''' if num <= 0: raise ValueError("math domain error") if num > 171.5: raise OverflowError("math range error") elif num - int(UpperCamelCase_) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer") elif num == 0.5: return sqrt(UpperCamelCase_) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1) def _A ( ) -> None: '''simple docstring''' assert gamma(0.5) == sqrt(UpperCamelCase_) assert gamma(1) == 1.0 assert gamma(2) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _a = 1.0 while num: _a = float(input('Gamma of: ')) print(F"gamma({num}) = {gamma(num)}") print('\nEnter 0 to exit...')
17
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore __UpperCAmelCase :Dict = namedtuple("covid_data", "cases deaths recovered") def _a ( _lowercase : str = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' __UpperCAmelCase : Tuple = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(_lowercase ).content ).xpath(_lowercase ) ) __UpperCAmelCase :List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
240
'''simple docstring''' import requests __UpperCAmelCase :Union[str, Any] = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
240
1
from __future__ import annotations def UpperCAmelCase_ ( _A ): # This function is recursive '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE__ = array[0] SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE__ = longest_subsequence(_A ) if len(_A ) > len(_A ): SCREAMING_SNAKE_CASE__ = temp_array else: i += 1 SCREAMING_SNAKE_CASE__ = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE__ = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Dict =PriorTransformer UpperCamelCase_ : List[str] ='''hidden_states''' @property def _A (self ): __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _A (self ): return (4, 8) @property def _A (self ): return (4, 8) def _A (self ): __lowercase= { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __lowercase= self.dummy_input return init_dict, inputs_dict def _A (self ): __lowercase, __lowercase= PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase ) __lowercase= model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _A (self ): __lowercase, __lowercase= self.prepare_init_args_and_inputs_for_common() __lowercase= self.model_class(**lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase ) def _A (self ): __lowercase= PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowercase= model.to(lowerCAmelCase ) if hasattr(lowerCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowercase= self.get_dummy_seed_input() with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] __lowercase= output[0, :5].flatten().cpu() print(lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase= torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): def _A (self , lowerCAmelCase=1 , lowerCAmelCase=7_6_8 , lowerCAmelCase=7_7 , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= batch_size __lowercase= embedding_dim __lowercase= num_embeddings __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase ) __lowercase= self.get_dummy_seed_input(seed=lowerCAmelCase ) with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] assert list(sample.shape ) == [1, 7_6_8] __lowercase= sample[0, :8].flatten().cpu() print(lowerCAmelCase ) __lowercase= torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1E-3 )
304
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase( __a ): '''simple docstring''' lowercase__ = field(default=__a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase__ = field( default=__a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase__ = field( default=__a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase__ = field( default=__a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase__ = field( default=__a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = super().to_dict() for k, v in d.items(): if isinstance(a_, a_ ): _snake_case : int = v.to_dict() return d
64
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0_0_0_0_0_0 ): """simple docstring""" _a : List[Any] = set(range(3 , __a , 2 ) ) primes.add(2 ) for p in range(3 , __a , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __a , __a ) ) ) _a : Optional[int] = [float(__a ) for n in range(limit + 1 )] for p in primes: for n in range(__a , limit + 1 , __a ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = {"facebook/bart-base": BartForConditionalGeneration} lowerCamelCase_ = {"facebook/bart-base": BartTokenizer} def __lowerCamelCase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=a_ , default=a_ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=a_ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=a_ , default=a_ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=a_ , ) parser.add_argument( '''--config_name''' , type=a_ , default=a_ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=a_ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=a_ , default=a_ , help='''Where to store the final ONNX file.''' ) __SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() return args def __lowerCamelCase ( a_ : Optional[Any] , a_ : List[Any]="cpu" ) -> str: __SCREAMING_SNAKE_CASE :Tuple = model_dict[model_name].from_pretrained(a_ ).to(a_ ) __SCREAMING_SNAKE_CASE :Any = tokenizer_dict[model_name].from_pretrained(a_ ) if model_name in ["facebook/bart-base"]: __SCREAMING_SNAKE_CASE :Dict = 0 __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Optional[int] = 0 return huggingface_model, tokenizer def __lowerCamelCase ( a_ : Dict , a_ : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : Tuple ) -> Optional[int]: model.eval() __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :Tuple = torch.jit.script(BARTBeamSearchGenerator(a_ ) ) with torch.no_grad(): __SCREAMING_SNAKE_CASE :List[Any] = '''My friends are cool but they eat too many carbs.''' __SCREAMING_SNAKE_CASE :Any = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''' ).to(model.device ) __SCREAMING_SNAKE_CASE :int = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=a_ , max_length=a_ , early_stopping=a_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( a_ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , a_ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=a_ , ) logger.info('''Model exported to {}'''.format(a_ ) ) __SCREAMING_SNAKE_CASE :str = remove_dup_initializers(os.path.abspath(a_ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(a_ ) ) __SCREAMING_SNAKE_CASE :Optional[Any] = onnxruntime.InferenceSession(a_ ) __SCREAMING_SNAKE_CASE :Tuple = ort_sess.run( a_ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(a_ ), '''max_length''': np.array(a_ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def __lowerCamelCase ( ) -> List[str]: __SCREAMING_SNAKE_CASE :int = parse_args() __SCREAMING_SNAKE_CASE :List[str] = 5 __SCREAMING_SNAKE_CASE :str = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.device(args.device ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :int = load_model_tokenizer(args.model_name_or_path , a_ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(a_ ) if args.max_length: __SCREAMING_SNAKE_CASE :List[str] = args.max_length if args.num_beams: __SCREAMING_SNAKE_CASE :Tuple = args.num_beams if args.output_file_path: __SCREAMING_SNAKE_CASE :List[str] = args.output_file_path else: __SCREAMING_SNAKE_CASE :List[str] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(a_ , a_ , a_ , a_ , a_ ) if __name__ == "__main__": main()
191
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def __lowerCamelCase ( a_ : SplitDict ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Tuple = split_dict._to_yaml_list() assert len(a_ ) == len(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = SplitDict._from_yaml_list(a_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __SCREAMING_SNAKE_CASE :int = None # the split name of split_dict takes over the name of the split info object __SCREAMING_SNAKE_CASE :Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=a_ ), SplitInfo(dataset_name='''my_dataset''' )] ) def __lowerCamelCase ( a_ : Dict ) -> Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __SCREAMING_SNAKE_CASE :Union[str, Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
191
1
from ...configuration_utils import PretrainedConfig UpperCamelCase__ : Tuple = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = 'tapas' def __init__( self : Optional[int] ,__lowerCamelCase : List[Any]=3_05_22 ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : int=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : str="gelu" ,__lowerCamelCase : Union[str, Any]=0.1 ,__lowerCamelCase : Union[str, Any]=0.1 ,__lowerCamelCase : Union[str, Any]=10_24 ,__lowerCamelCase : int=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : str=0 ,__lowerCamelCase : Dict=10.0 ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : Dict=1.0 ,__lowerCamelCase : str=None ,__lowerCamelCase : List[Any]=1.0 ,__lowerCamelCase : Union[str, Any]=False ,__lowerCamelCase : Any=None ,__lowerCamelCase : Optional[Any]=1.0 ,__lowerCamelCase : Dict=1.0 ,__lowerCamelCase : Dict=False ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : List[Any]="ratio" ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : str=None ,__lowerCamelCase : Dict=64 ,__lowerCamelCase : str=32 ,__lowerCamelCase : List[Any]=False ,__lowerCamelCase : int=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : Any=False ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Dict=False ,__lowerCamelCase : int=None ,__lowerCamelCase : Optional[int]=None ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=__a ,**__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_sizes a = initializer_range a = layer_norm_eps # Fine-tuning task hyperparameters a = positive_label_weight a = num_aggregation_labels a = aggregation_loss_weight a = use_answer_as_supervision a = answer_loss_importance a = use_normalized_answer_loss a = huber_loss_delta a = temperature a = aggregation_temperature a = use_gumbel_for_cells a = use_gumbel_for_aggregation a = average_approximation_function a = cell_selection_preference a = answer_loss_cutoff a = max_num_rows a = max_num_columns a = average_logits_per_cell a = select_one_column a = allow_empty_column_selection a = init_cell_selection_weights_to_zero a = reset_position_index_per_cell a = disable_per_token_loss # Aggregation hyperparameters a = aggregation_labels a = no_aggregation_label_index if isinstance(self.aggregation_labels ,__a ): a = {int(__a ): v for k, v in aggregation_labels.items()}
350
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=3,out_channels=3,down_block_types=("DownBlock2D", "AttnDownBlock2D"),up_block_types=("AttnUpBlock2D", "UpBlock2D"),) return model def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE_ : Optional[Any] = PNDMScheduler() SCREAMING_SNAKE_CASE_ : Union[str, Any] = PNDMPipeline(unet=_A,scheduler=_A ) pndm.to(_A ) pndm.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pndm(generator=_A,num_inference_steps=20,output_type="numpy" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = pndm(generator=_A,num_inference_steps=20,output_type="numpy",return_dict=_A )[0] SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "google/ddpm-cifar10-32" SCREAMING_SNAKE_CASE_ : Dict = UNetaDModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = PNDMScheduler() SCREAMING_SNAKE_CASE_ : Union[str, Any] = PNDMPipeline(unet=_A,scheduler=_A ) pndm.to(_A ) pndm.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple = pndm(generator=_A,output_type="numpy" ).images SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[torch.FloatTensor] = None _lowerCamelCase : torch.FloatTensor = None _lowerCamelCase : Optional[Tuple[torch.FloatTensor]] = None _lowerCamelCase : Optional[Tuple[torch.FloatTensor]] = None class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : Optional[Any]=1 , snake_case_ : Union[str, Any]=0 , snake_case_ : Union[str, Any]=2 , snake_case_ : Tuple=5_1_2 , snake_case_ : Tuple="cls" , snake_case_ : List[str]=False , snake_case_ : Any=True , **snake_case_ : Optional[int] , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _UpperCAmelCase = project_dim _UpperCAmelCase = pooler_fn _UpperCAmelCase = learn_encoder _UpperCAmelCase = use_attention_mask class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[Any] = [R"""pooler""", R"""logit_scale"""] _lowerCamelCase : List[Any] = [R"""position_ids""", R"""predictions.decoder.bias"""] _lowerCamelCase : Optional[Any] = """roberta""" _lowerCamelCase : List[str] = RobertaSeriesConfig def __init__( self : List[Any] , snake_case_ : Any ): super().__init__(snake_case_ ) _UpperCAmelCase = XLMRobertaModel(snake_case_ ) _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase = getattr(snake_case_ , "has_pre_transformation" , snake_case_ ) if self.has_pre_transformation: _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowercase ( self : Union[str, Any] , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , ): _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.base_model( input_ids=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_attentions=snake_case_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=snake_case_ , ) if self.has_pre_transformation: _UpperCAmelCase = outputs["hidden_states"][-2] _UpperCAmelCase = self.pre_LN(snake_case_ ) _UpperCAmelCase = self.transformation_pre(snake_case_ ) return TransformationModelOutput( projection_state=snake_case_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=snake_case_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
156
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict=True , __lowercase : Dict="pt" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(__lowercase , __lowercase ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=__lowercase , padding="max_length" if pad_to_max_length else None , truncation=__lowercase , return_tensors=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple=None , ) -> Dict: '''simple docstring''' _UpperCAmelCase = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : int="train" , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : Optional[Any]=None , snake_case_ : Any="" , ): super().__init__() _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : List[Any] ): return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case_ : List[Any] ): _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case_ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case_ ).rstrip("\n" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( snake_case_ : Optional[Any] ): return [len(snake_case_ ) for x in Path(snake_case_ ).open().readlines()] def lowercase ( self : List[str] , snake_case_ : Optional[int] ): _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __SCREAMING_SNAKE_CASE :Union[str, Any] = getLogger(__name__) def UpperCAmelCase_ ( __lowercase : List[List] ) -> List[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(__lowercase , os.path.join(__lowercase , "git_log.json" ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : Union[str, Any]=4 , **__lowercase : Any ) -> int: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=__lowercase , **__lowercase ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> List[str]: '''simple docstring''' with open(__lowercase ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=__lowercase ) _UpperCAmelCase = { "repo_id": str(__lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowercase : Callable , __lowercase : Iterable ) -> List: '''simple docstring''' return list(map(__lowercase , __lowercase ) ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : str ) -> List[Any]: '''simple docstring''' with open(__lowercase , "wb" ) as f: return pickle.dump(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : str ) -> int: '''simple docstring''' def remove_articles(__lowercase : Union[str, Any] ): return re.sub(r"\b(a|an|the)\b" , " " , __lowercase ) def white_space_fix(__lowercase : str ): return " ".join(text.split() ) def remove_punc(__lowercase : Union[str, Any] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = Counter(__lowercase ) & Counter(__lowercase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] ) -> int: '''simple docstring''' return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Dict: '''simple docstring''' assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = 0 for hypo, pred in zip(__lowercase , __lowercase ): em += exact_match_score(__lowercase , __lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def UpperCAmelCase_ ( __lowercase : Tuple ) -> List[str]: '''simple docstring''' return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : int , __lowercase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(__lowercase , __lowercase , __lowercase ): if not hasattr(__lowercase , __lowercase ) and not hasattr(__lowercase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowercase ) ) delattr(__lowercase , __lowercase ) continue _UpperCAmelCase = p if hasattr(__lowercase , __lowercase ) else equivalent_param[p] setattr(__lowercase , __lowercase , getattr(__lowercase , __lowercase ) ) delattr(__lowercase , __lowercase ) return hparams, config
156
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = LDMTextToImagePipeline __UpperCAmelCase : str = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } __UpperCAmelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } __UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase : List[str] = False def _lowercase ( self : str ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, ) __lowercase = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=(3_2, 6_4), in_channels=3, out_channels=3, down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), latent_channels=4, ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) __lowercase = CLIPTextModel(UpperCAmelCase__ ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowercase = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any]=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): __lowercase = torch.manual_seed(UpperCAmelCase__ ) else: __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self : int ): __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = LDMTextToImagePipeline(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) __lowercase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict=torch.floataa, UpperCAmelCase__ : Dict=0 ): __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) ) __lowercase = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self : Tuple ): __lowercase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_inputs(UpperCAmelCase__ ) __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) __lowercase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=torch.floataa, UpperCAmelCase__ : List[str]=0 ): __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) ) __lowercase = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 5_0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self : int ): __lowercase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_inputs(UpperCAmelCase__ ) __lowercase = pipe(**UpperCAmelCase__ ).images[0] __lowercase = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) __lowercase = np.abs(expected_image - image ).max() assert max_diff < 1E-3
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None) -> List[Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' a = nn.Parameter(__UpperCamelCase) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' a = nn.Parameter(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[Any]: # set torch weights for 1-to-1 comparison a = np.asarray(weights[0]) a = np.asarray(weights[1]) a = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key , torch.tensor(__UpperCamelCase).transpose(1 , 2).contiguous().view(-1 , __UpperCamelCase) , ) set_param( torch_layer.self_attention.value , torch.tensor(__UpperCamelCase).transpose(1 , 2).contiguous().view(-1 , __UpperCamelCase) , ) set_param( torch_layer.output.dense , torch.tensor(__UpperCamelCase).view(-1 , __UpperCamelCase).contiguous().transpose(0 , 1) , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Dict: # set torch weights for 1-to-1 comparison a = np.asarray(weights[0]) a = np.asarray(weights[1]) a = np.asarray(weights[2]) a = np.asarray(weights[3]) set_param( torch_layer.self_attention.query , torch.tensor(__UpperCamelCase).transpose(1 , 2).contiguous().view(-1 , __UpperCamelCase) , ) set_param( torch_layer.self_attention.key , torch.tensor(__UpperCamelCase).transpose(1 , 2).contiguous().view(-1 , __UpperCamelCase) , ) set_param( torch_layer.self_attention.value , torch.tensor(__UpperCamelCase).transpose(1 , 2).contiguous().view(-1 , __UpperCamelCase) , ) set_param( torch_layer.output.dense , torch.tensor(__UpperCamelCase).view(-1 , __UpperCamelCase).contiguous().transpose(0 , 1) , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Tuple: # layernorm 1 a = weights[0][0][0] a = np.asarray(layer_norm_a[0]) a = np.asarray(layer_norm_a[1]) set_param( torch_block.attention.layer_norm , torch.tensor(__UpperCamelCase) , torch.tensor(__UpperCamelCase) , ) # lsh weights + output a = weights[0][1] if len(__UpperCamelCase) < 4: set_layer_weights_in_torch_lsh(__UpperCamelCase , torch_block.attention , __UpperCamelCase) else: set_layer_weights_in_torch_local(__UpperCamelCase , torch_block.attention , __UpperCamelCase) # intermediate weighs a = weights[2][0][1][2] # Chunked Feed Forward if len(__UpperCamelCase) == 4: a = intermediate_weights[2] # layernorm 2 a = np.asarray(intermediate_weights[0][0]) a = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__UpperCamelCase) , torch.tensor(__UpperCamelCase) , ) # intermediate dense a = np.asarray(intermediate_weights[1][0]) a = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__UpperCamelCase).transpose(0 , 1).contiguous() , torch.tensor(__UpperCamelCase) , ) # intermediate out a = np.asarray(intermediate_weights[4][0]) a = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense , torch.tensor(__UpperCamelCase).transpose(0 , 1).contiguous() , torch.tensor(__UpperCamelCase) , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[Any]: # reformer model a = torch_model.reformer # word embeds a = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__UpperCamelCase) , ) if isinstance(weights[3] , __UpperCamelCase): a = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): a = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' a = nn.Parameter(torch.tensor(__UpperCamelCase)) a = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( __UpperCamelCase), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): a = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) # output layer norm a = np.asarray(weights[7][0]) a = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__UpperCamelCase) , torch.tensor(__UpperCamelCase) , ) # output embeddings a = np.asarray(weights[9][0]) a = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder , torch.tensor(__UpperCamelCase).transpose(0 , 1).contiguous() , torch.tensor(__UpperCamelCase) , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Union[str, Any]: # Initialise PyTorch model a = ReformerConfig.from_json_file(__UpperCamelCase) print(f'''Building PyTorch model from configuration: {config}''') a = ReformerModelWithLMHead(__UpperCamelCase) with open(__UpperCamelCase , "rb") as f: a = pickle.load(__UpperCamelCase)["weights"] set_model_weights_in_torch(__UpperCamelCase , __UpperCamelCase , config.hidden_size) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , __UpperCamelCase) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
180
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): if len(snake_case__ ) != 2 or len(a[0] ) != 2 or len(snake_case__ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) snake_case_ : List[Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( __a , __a ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case__ ) ) ] def SCREAMING_SNAKE_CASE__ ( __a , __a ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case__ ) ) ] def SCREAMING_SNAKE_CASE__ ( __a ): if len(snake_case__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) snake_case_ : Optional[Any] = len(snake_case__ ) snake_case_ : List[str] = matrix_length // 2 snake_case_ : Union[str, Any] = [[a[i][j] for j in range(snake_case__ , snake_case__ )] for i in range(snake_case__ )] snake_case_ : Optional[Any] = [ [a[i][j] for j in range(snake_case__ , snake_case__ )] for i in range(snake_case__ , snake_case__ ) ] snake_case_ : int = [[a[i][j] for j in range(snake_case__ )] for i in range(snake_case__ )] snake_case_ : Union[str, Any] = [[a[i][j] for j in range(snake_case__ )] for i in range(snake_case__ , snake_case__ )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( __a ): return len(snake_case__ ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( __a ): print('\n'.join(str(snake_case__ ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): if matrix_dimensions(snake_case__ ) == (2, 2): return default_matrix_multiplication(snake_case__ , snake_case__ ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Union[str, Any] = split_matrix(snake_case__ ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : List[str] = split_matrix(snake_case__ ) snake_case_ : Optional[Any] = actual_strassen(snake_case__ , matrix_subtraction(snake_case__ , snake_case__ ) ) snake_case_ : Union[str, Any] = actual_strassen(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) snake_case_ : Optional[int] = actual_strassen(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) snake_case_ : List[Any] = actual_strassen(snake_case__ , matrix_subtraction(snake_case__ , snake_case__ ) ) snake_case_ : Tuple = actual_strassen(matrix_addition(snake_case__ , snake_case__ ) , matrix_addition(snake_case__ , snake_case__ ) ) snake_case_ : Optional[Any] = actual_strassen(matrix_subtraction(snake_case__ , snake_case__ ) , matrix_addition(snake_case__ , snake_case__ ) ) snake_case_ : List[Any] = actual_strassen(matrix_subtraction(snake_case__ , snake_case__ ) , matrix_addition(snake_case__ , snake_case__ ) ) snake_case_ : Union[str, Any] = matrix_addition(matrix_subtraction(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) , snake_case__ ) snake_case_ : str = matrix_addition(snake_case__ , snake_case__ ) snake_case_ : Tuple = matrix_addition(snake_case__ , snake_case__ ) snake_case_ : List[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) , snake_case__ ) # construct the new matrix from our 4 quadrants snake_case_ : int = [] for i in range(len(snake_case__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( __a , __a ): if matrix_dimensions(snake_case__ )[1] != matrix_dimensions(snake_case__ )[0]: snake_case_ : Tuple = ( 'Unable to multiply these matrices, please check the dimensions.\n' f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(snake_case__ ) snake_case_ : Union[str, Any] = matrix_dimensions(snake_case__ ) snake_case_ : Dict = matrix_dimensions(snake_case__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ : List[Any] = max(*snake_case__ , *snake_case__ ) snake_case_ : int = int(math.pow(2 , math.ceil(math.loga(snake_case__ ) ) ) ) snake_case_ : Optional[Any] = matrixa snake_case_ : str = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ : Any = actual_strassen(snake_case__ , snake_case__ ) # Removing the additional zeros for i in range(0 , snake_case__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _SCREAMING_SNAKE_CASE = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : List[Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = len(lowercase ) __lowercase = [] for i in range(len(lowercase ) - pat_len + 1 ): __lowercase = True for j in range(lowercase ): if s[i + j] != pattern[j]: __lowercase = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
210
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
210
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : List[Any] = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
313
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''image''': Image()} ) lowerCamelCase__ = Features({'''labels''': ClassLabel} ) lowerCamelCase__ = "image" lowerCamelCase__ = "labels" def __A ( self : Dict , __magic_name__ : Union[str, Any] ) -> Any: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __magic_name__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE_ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ = self.label_schema.copy() SCREAMING_SNAKE_CASE_ = features[self.label_column] SCREAMING_SNAKE_CASE_ = label_schema return task_template @property def __A ( self : Optional[Any] ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
118
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[Any] = VideoToVideoSDPipeline UpperCAmelCase__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'}) - {'image', 'width', 'height'} UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'}) - {'image'} UpperCAmelCase__ : Dict = PipelineTesterMixin.required_optional_params - {'latents'} UpperCAmelCase__ : Optional[int] = False # No `output_type`. UpperCAmelCase__ : Union[str, Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any]=0 ): # 3 frames __lowerCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = VideoToVideoSDPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = """np""" __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).frames __lowerCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __lowerCamelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: str ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase__ ( self: Tuple ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase__ ( self: Tuple ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCAmelCase__ ( self: Tuple ): pass def lowerCAmelCase__ ( self: str ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __lowerCamelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCamelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=UpperCamelCase_ ) __lowerCamelCase = video.to("""cuda""" ) __lowerCamelCase = """Spiderman is surfing""" __lowerCamelCase = pipe(UpperCamelCase_ , video=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=3 , output_type="""pt""" ).frames __lowerCamelCase = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
353
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case : int = logging.get_logger(__name__) snake_case : Optional[int] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case : str = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } snake_case : List[str] = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowercase ( ): a__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a__ = bs[:] a__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 a__ = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : str ): a__ = set() a__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ = char return pairs class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = ['''input_ids''', '''attention_mask'''] def __init__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :Optional[Any]="replace" ,__snake_case :Tuple="<s>" ,__snake_case :List[str]="</s>" ,__snake_case :List[Any]="</s>" ,__snake_case :Optional[int]="<s>" ,__snake_case :str="<unk>" ,__snake_case :Tuple="<pad>" ,__snake_case :str="<mask>" ,__snake_case :List[str]=False ,**__snake_case :Tuple ,) -> str: a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else bos_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else eos_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else sep_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else cls_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else unk_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else mask_token super().__init__( errors=__snake_case ,bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,cls_token=__snake_case ,pad_token=__snake_case ,mask_token=__snake_case ,add_prefix_space=__snake_case ,**__snake_case ,) with open(__snake_case ,encoding='utf-8' ) as vocab_handle: a__ = json.load(__snake_case ) a__ = {v: k for k, v in self.encoder.items()} a__ = errors # how to handle errors in decoding a__ = bytes_to_unicode() a__ = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case ,encoding='utf-8' ) as merges_handle: a__ = merges_handle.read().split('\n' )[1:-1] a__ = [tuple(merge.split() ) for merge in bpe_merges] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = {} a__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: return len(self.encoder ) def lowerCamelCase__( self :Any ) -> int: return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCamelCase__( self :Dict ,__snake_case :Optional[Any] ) -> Optional[int]: if token in self.cache: return self.cache[token] a__ = tuple(__snake_case ) a__ = get_pairs(__snake_case ) if not pairs: return token while True: a__ = min(__snake_case ,key=lambda __snake_case : self.bpe_ranks.get(__snake_case ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ = bigram a__ = [] a__ = 0 while i < len(__snake_case ): try: a__ = word.index(__snake_case ,__snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ = tuple(__snake_case ) a__ = new_word if len(__snake_case ) == 1: break else: a__ = get_pairs(__snake_case ) a__ = ' '.join(__snake_case ) a__ = word return word def lowerCamelCase__( self :Any ,__snake_case :Any ) -> Tuple: a__ = [] for token in re.findall(self.pat ,__snake_case ): a__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(' ' ) ) return bpe_tokens def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[str] ) -> Any: return self.encoder.get(__snake_case ,self.encoder.get(self.unk_token ) ) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[int] ) -> Optional[int]: return self.decoder.get(__snake_case ) def lowerCamelCase__( self :List[str] ,__snake_case :Dict ) -> List[Any]: a__ = ''.join(__snake_case ) a__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def lowerCamelCase__( self :int ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__snake_case ,ensure_ascii=__snake_case ) + '\n' ) a__ = 0 with open(__snake_case ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) a__ = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase__( self :Optional[int] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ,__snake_case :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case ,token_ids_a=__snake_case ,already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase__( self :Any ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__( self :str ,__snake_case :List[Any] ,__snake_case :Dict=False ,**__snake_case :Optional[int] ) -> List[str]: a__ = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): a__ = ' ' + text return (text, kwargs) def lowerCamelCase__( self :str ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> str: return token_ids_a + [self.eos_token_id] def lowerCamelCase__( self :Dict ,__snake_case :"Conversation" ) -> List[int]: a__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__snake_case ) a__ = ' '.join(__snake_case ) a__ = self.encode(__snake_case ) if len(__snake_case ) > self.model_max_length: a__ = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
240
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowercase ( ): print('Making key files...' ) make_key_files('rsa' , 1_0_2_4 ) print('Key files generation successful.' ) def __lowercase ( __lowerCAmelCase : int ): print('Generating prime p...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) print('Generating prime q...' ) a__ = rabinMiller.generate_large_prime(__lowerCAmelCase ) a__ = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: a__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) a__ = cryptoMath.find_mod_inverse(__lowerCAmelCase , (p - 1) * (q - 1) ) a__ = (n, e) a__ = (n, d) return (public_key, private_key) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() a__ , a__ = generate_key(__lowerCAmelCase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
240
1
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): def __init__( self ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['bs4'] ) super().__init__(**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = [] lowercase_ : int = [] lowercase_ : List[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowercase_ : Optional[int] = parent.find_all(child.name ,recursive=__UpperCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__UpperCamelCase ) else next(i for i, s in enumerate(__UpperCamelCase ,1 ) if s is child ) ) lowercase_ : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = BeautifulSoup(__UpperCamelCase ,'html.parser' ) lowercase_ : List[Any] = [] lowercase_ : List[str] = [] lowercase_ : Optional[Any] = [] for element in html_code.descendants: if type(__UpperCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowercase_ : Dict = html.unescape(__UpperCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__UpperCamelCase ) lowercase_ , lowercase_ : str = self.xpath_soup(__UpperCamelCase ) stringaxtag_seq.append(__UpperCamelCase ) stringaxsubs_seq.append(__UpperCamelCase ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = '' for tagname, subs in zip(__UpperCamelCase ,__UpperCamelCase ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self ,__UpperCamelCase ) -> BatchFeature: '''simple docstring''' lowercase_ : Optional[int] = False # Check that strings has a valid type if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[Any] = True elif isinstance(__UpperCamelCase ,(list, tuple) ): if len(__UpperCamelCase ) == 0 or isinstance(html_strings[0] ,__UpperCamelCase ): lowercase_ : Tuple = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f'''but is of type {type(__UpperCamelCase )}.''' ) lowercase_ : Optional[Any] = bool(isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(html_strings[0] ,__UpperCamelCase )) ) if not is_batched: lowercase_ : Any = [html_strings] # Get nodes + xpaths lowercase_ : int = [] lowercase_ : Tuple = [] for html_string in html_strings: lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.get_three_from_single(__UpperCamelCase ) nodes.append(__UpperCamelCase ) lowercase_ : Optional[int] = [] for node, tag_list, sub_list in zip(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Tuple = self.construct_xpath(__UpperCamelCase ,__UpperCamelCase ) xpath_strings.append(__UpperCamelCase ) xpaths.append(__UpperCamelCase ) # return as Dict lowercase_ : Dict = {'nodes': nodes, 'xpaths': xpaths} lowercase_ : int = BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase ) return encoded_inputs
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
'''simple docstring''' _A : List[str] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : Dict = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCamelCase ) lowerCamelCase__ : int = """""".join(bin(UpperCamelCase )[2:].zfill(8 ) for byte in data ) lowerCamelCase__ : int = len(UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCamelCase__ : Optional[Any] = b"""=""" * ((6 - len(UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCamelCase ) % 6) else: lowerCamelCase__ : Optional[int] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCamelCase ) , 6 ) ).encode() + padding ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : int = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCamelCase , UpperCamelCase ): try: lowerCamelCase__ : str = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowerCamelCase__ : Tuple = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCamelCase__ : Any = encoded_data[:-padding] lowerCamelCase__ : int = """""".join( bin(B64_CHARSET.index(UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCamelCase__ : Tuple = """""".join( bin(B64_CHARSET.index(UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) lowerCamelCase__ : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCamelCase ) , 8 ) ] return bytes(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
41
import numpy as np class UpperCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = (0, 0) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : List[Any] = 0 def __eq__( self : Optional[int] , a_ : List[Any] ): '''simple docstring''' return self.position == cell.position def snake_case__ ( self : List[Any] ): '''simple docstring''' print(self.position ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : str , a_ : Dict=(5, 5) ): '''simple docstring''' __UpperCAmelCase : str = np.zeros(a_ ) __UpperCAmelCase : List[Any] = world_size[0] __UpperCAmelCase : List[str] = world_size[1] def snake_case__ ( self : Tuple ): '''simple docstring''' print(self.w ) def snake_case__ ( self : Union[str, Any] , a_ : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __UpperCAmelCase : str = cell.position[0] __UpperCAmelCase : List[Any] = cell.position[1] __UpperCAmelCase : str = [] for n in neughbour_cord: __UpperCAmelCase : Optional[Any] = current_x + n[0] __UpperCAmelCase : Any = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __UpperCAmelCase : int = Cell() __UpperCAmelCase : List[str] = (x, y) __UpperCAmelCase : List[Any] = cell neighbours.append(a_ ) return neighbours def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[Any] = [] _open.append(_UpperCAmelCase ) while _open: __UpperCAmelCase : str = np.argmin([n.f for n in _open] ) __UpperCAmelCase : Optional[Any] = _open[min_f] _closed.append(_open.pop(_UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(_UpperCAmelCase ): for c in _closed: if c == n: continue __UpperCAmelCase : Optional[Any] = current.g + 1 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = n.position __UpperCAmelCase , __UpperCAmelCase : Tuple = goal.position __UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 __UpperCAmelCase : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_UpperCAmelCase ) __UpperCAmelCase : str = [] while current.parent is not None: path.append(current.position ) __UpperCAmelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A =Gridworld() # Start position and goal __A =Cell() __A =(0, 0) __A =Cell() __A =(4, 4) print(f'''path from {start.position} to {goal.position}''') __A =astar(world, start, goal) # Just for visual reasons. for i in s: __A =1 print(world.w)
226
0
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: return sum(c * (x**i) for i, c in enumerate(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = 0.0 for coeff in reversed(UpperCAmelCase__ ): A_ = result * x + coeff return result if __name__ == "__main__": __lowerCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) __lowerCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
101
'''simple docstring''' from __future__ import annotations from typing import Any def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if not postfix_notation: return 0 A_ = {"""+""", """-""", """*""", """/"""} A_ = [] for token in postfix_notation: if token in operations: A_ , A_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
101
1
def A (__A : float ) -> float: """simple docstring""" return 10 - x * x def A (__A : float , __A : float ) -> float: """simple docstring""" if equation(__A ) * equation(__A ) >= 0: raise ValueError('''Wrong space!''' ) UpperCAmelCase_ = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase_ = (a + b) / 2 # Check if middle point is root if equation(__A ) == 0.0: break # Decide the side to repeat the steps if equation(__A ) * equation(__A ) < 0: UpperCAmelCase_ = c else: UpperCAmelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
51
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1