code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : list ): if len(UpperCamelCase__ ) <= 1: return [tuple(UpperCamelCase__ )] _UpperCAmelCase : Dict = [] def generate(UpperCamelCase__ : int , UpperCamelCase__ : list ): _UpperCAmelCase : int = [0] * n res.append(tuple(UpperCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCAmelCase : Optional[Any] = arr[i], arr[0] else: _UpperCAmelCase : int = arr[i], arr[c[i]] res.append(tuple(UpperCamelCase__ ) ) c[i] += 1 _UpperCAmelCase : int = 0 else: _UpperCAmelCase : Dict = 0 i += 1 generate(len(UpperCamelCase__ ) , UpperCamelCase__ ) return res if __name__ == "__main__": _lowerCAmelCase :str = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase :List[str] = [int(item) for item in user_input.split(',')] print(heaps(arr))
369
"""simple docstring""" import datasets from .evaluate import evaluate _lowerCAmelCase :int = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCAmelCase :int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCAmelCase :str = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , A , A ) -> List[Any]: _UpperCAmelCase : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} _UpperCAmelCase : Optional[Any] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] _UpperCAmelCase : Union[str, Any] = evaluate(dataset=A , predictions=A ) return score
68
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) _UpperCAmelCase : Any = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """longformer""" def __init__( self : Any , UpperCAmelCase : Union[List[int], int] = 512 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 30522 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 3072 , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 2 , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 1e-12 , UpperCAmelCase : bool = False , **UpperCAmelCase : int , ) -> Union[str, Any]: super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : str = attention_window lowerCamelCase__ : Optional[int] = sep_token_id lowerCamelCase__ : Optional[Any] = bos_token_id lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : str = type_vocab_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : Optional[Any] = onnx_export class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Optional[Any] , UpperCAmelCase : "PretrainedConfig" , UpperCAmelCase : str = "default" , UpperCAmelCase : "List[PatchingSpec]" = None ) -> Any: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Any = True @property def A_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: lowerCamelCase__ : Any = super().outputs if self.task == "default": lowerCamelCase__ : List[Any] = {0: 'batch'} return outputs @property def A_ ( self : Optional[int] ) -> float: return 1e-4 @property def A_ ( self : str ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : List[str] , UpperCAmelCase : "PreTrainedTokenizerBase" , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowerCamelCase__ : List[str] = super().generate_dummy_inputs( preprocessor=UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ : Dict = torch.zeros_like(inputs['input_ids'] ) # make every second token global lowerCamelCase__ : Dict = 1 return inputs
50
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> List[str]: """simple docstring""" # A local function to see if a dot lands in the circle. def is_in_circle(snake_case : float , snake_case : float ) -> bool: a : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a : List[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) # The ratio of the area for circle to square is pi/4. a : Optional[Any] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Callable[[float], float] , snake_case : float = 0.0 , snake_case : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : float = 0.0 , snake_case : float = 1.0 ) -> None: """simple docstring""" def identity_function(snake_case : float ) -> float: return x a : str = area_under_curve_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a : List[Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('******************' ) def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> None: """simple docstring""" def function_to_integrate(snake_case : float ) -> float: return sqrt(4.0 - x * x ) a : Dict = area_under_curve_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _snake_case : def __init__( self , a__ , a__=3 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ) -> List[str]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=a__ , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = FalconModel(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[int]: '''simple docstring''' snake_case_ = True snake_case_ = FalconModel(a__ ) model.to(a__ ) model.eval() snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) snake_case_ = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> str: '''simple docstring''' snake_case_ = FalconForCausalLM(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Dict: '''simple docstring''' snake_case_ = True snake_case_ = True snake_case_ = FalconForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )["hidden_states"][0] snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["hidden_states"][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ : List[Any] = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Union[str, Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : List[Any] = False def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = FalconModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , *snake_case_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: snake_case_ = alibi self.model_tester.create_and_check_model(a__ , *a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "single_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = input_dict["input_ids"] snake_case_ = FalconForCausalLM(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , use_cache=a__ ) snake_case_ = input_ids.shape[0] snake_case_ = model._convert_to_rw_cache(result.past_key_values ) snake_case_ = model._convert_cache_to_standard_format(a__ , a__ ) for layer in range(len(a__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "multi_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class in self.all_generative_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(a__ , "use_cache" ): return snake_case_ = model_class(a__ ).to(a__ ) if "use_cache" not in inputs: snake_case_ = True snake_case_ = model(**a__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return snake_case_ = ( getattr(a__ , "decoder_layers" , a__ ) or getattr(a__ , "num_decoder_layers" , a__ ) or config.num_hidden_layers ) snake_case_ = getattr(a__ , "num_kv_heads" , config.num_attention_heads ) snake_case_ = getattr(a__ , "d_model" , config.hidden_size ) snake_case_ = embed_dim // num_attention_heads snake_case_ = outputs["past_key_values"] self.assertEqual(len(a__ ) , a__ ) snake_case_ , snake_case_ = inputs["input_ids"].shape for i in range(a__ ): if config.new_decoder_architecture: snake_case_ = config.num_attention_heads elif config.multi_query: snake_case_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) snake_case_ = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(a__ ) snake_case_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(a__ ) snake_case_ = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) snake_case_ = model.generate(**a__ , do_sample=a__ , max_new_tokens=19 ) snake_case_ = tokenizer.batch_decode(a__ )[0] self.assertEqual(a__ , a__ ) @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: snake_case_ = AutoTokenizer.from_pretrained(a__ ) snake_case_ = FalconForCausalLM.from_pretrained(a__ ) model.eval() model.to(a__ ) snake_case_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(a__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**a__ , do_sample=a__ , max_new_tokens=4 ) model.generate(**a__ , do_sample=a__ , max_new_tokens=4 ) model.generate(**a__ , num_beams=2 , max_new_tokens=4 ) @slow def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: snake_case_ = AutoTokenizer.from_pretrained(a__ ) snake_case_ = FalconForCausalLM.from_pretrained(a__ ) model.eval() model.to(device=a__ ) snake_case_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(a__ ) # Test results are the same with and without cache snake_case_ = model.generate(**a__ , do_sample=a__ , max_new_tokens=20 , use_cache=a__ ) snake_case_ = model.generate(**a__ , do_sample=a__ , max_new_tokens=20 , use_cache=a__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
85
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = """xlnet""" _UpperCamelCase : Optional[Any] = ["""mems"""] _UpperCamelCase : Tuple = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case=3_2000 , snake_case=1024 , snake_case=24 , snake_case=16 , snake_case=4096 , snake_case="gelu" , snake_case=True , snake_case="bi" , snake_case=0.02 , snake_case=1E-12 , snake_case=0.1 , snake_case=512 , snake_case=None , snake_case=True , snake_case=False , snake_case=False , snake_case=-1 , snake_case=False , snake_case="last" , snake_case=True , snake_case="tanh" , snake_case=0.1 , snake_case=5 , snake_case=5 , snake_case=5 , snake_case=1 , snake_case=2 , **snake_case , ): lowercase = vocab_size lowercase = d_model lowercase = n_layer lowercase = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) lowercase = d_model // n_head lowercase = ff_activation lowercase = d_inner lowercase = untie_r lowercase = attn_type lowercase = initializer_range lowercase = layer_norm_eps lowercase = dropout lowercase = mem_len lowercase = reuse_len lowercase = bi_data lowercase = clamp_len lowercase = same_length lowercase = summary_type lowercase = summary_use_proj lowercase = summary_activation lowercase = summary_last_dropout lowercase = start_n_top lowercase = end_n_top lowercase = bos_token_id lowercase = pad_token_id lowercase = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , snake_case , ) lowercase = kwargs['use_cache'] lowercase = use_mems_eval lowercase = use_mems_train super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
195
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' from sklearn.metrics import recall_score import datasets __snake_case = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' __snake_case = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' __snake_case = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=1 , UpperCamelCase_="binary" , UpperCamelCase_=None , UpperCamelCase_="warn" , ): '''simple docstring''' UpperCamelCase__ :List[Any] = recall_score( _snake_case , _snake_case , labels=_snake_case , pos_label=_snake_case , average=_snake_case , sample_weight=_snake_case , zero_division=_snake_case , ) return {"recall": float(_snake_case ) if score.size == 1 else score}
97
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) a_ = logging.getLogger() a_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( snake_case_ ): def __magic_name__ ( self : str , __lowercase : Any ) -> Union[str, Any]: os.makedirs(__lowercase , exist_ok=__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={'''source''': '''What is love ?''', '''target''': '''life'''} SCREAMING_SNAKE_CASE__ : Tuple ={'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: SCREAMING_SNAKE_CASE__ : List[Any] ='''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowercase , F"{split}.{field}" ) , '''w''' ) as f: f.write(__lowercase ) def __magic_name__ ( self : List[str] , __lowercase : Dict , __lowercase : Tuple = "pytorch" ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Tuple =os.path.join(__lowercase , '''output''' ) SCREAMING_SNAKE_CASE__ : str =os.path.join(__lowercase , '''data''' ) self._create_dummy_data(data_dir=__lowercase ) SCREAMING_SNAKE_CASE__ : int =F"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(F"--gpus={gpus}" ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowercase , env=self.get_env() ) SCREAMING_SNAKE_CASE__ : List[Any] =os.path.join(__lowercase , '''metrics.json''' ) with open(__lowercase ) as f: SCREAMING_SNAKE_CASE__ : int =json.load(__lowercase ) return result @require_torch_gpu def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def __magic_name__ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def __magic_name__ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[int] =self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
353
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ = 'src/diffusers' # Matches is_xxx_available() a_ = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla a_ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') a_ = '\n{0} = None\n' a_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' a_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _a( UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =_re_backend.findall(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 0: return None return "_and_".join(UpperCamelCase__ ) def _a( ): '''simple docstring''' with open(os.path.join(UpperCamelCase__, '''__init__.py''' ), '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : List[str] =f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : List[str] ={} # Go through the end of the file while line_index < len(UpperCamelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE__ : List[Any] =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ : List[Any] =[] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase__ ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE__ : Optional[Any] =lines[line_index] SCREAMING_SNAKE_CASE__ : Optional[Any] =_re_single_line_import.search(UpperCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase__ ) > 0: SCREAMING_SNAKE_CASE__ : Any =objects else: line_index += 1 return backend_specific_objects def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[Any] ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase__, UpperCamelCase__ ) else: return DUMMY_CLASS.format(UpperCamelCase__, UpperCamelCase__ ) def _a( UpperCamelCase__ : Any=None ): '''simple docstring''' if backend_specific_objects is None: SCREAMING_SNAKE_CASE__ : int =read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE__ : Optional[int] ={} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE__ : Tuple ='''[''' + ''', '''.join(f"\"{b}\"" for b in backend.split('''_and_''' ) ) + ''']''' SCREAMING_SNAKE_CASE__ : List[str] ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase__, UpperCamelCase__ ) for o in objects] ) SCREAMING_SNAKE_CASE__ : Tuple =dummy_file return dummy_files def _a( UpperCamelCase__ : Any=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE__ : List[str] ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(UpperCamelCase__, '''utils''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ={ backend: os.path.join(UpperCamelCase__, f"dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py" ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE__ : str ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : List[Any] =f.read() else: SCREAMING_SNAKE_CASE__ : int ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py as the main " '''__init__ has new objects.''' ) with open(dummy_file_paths[backend], '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"diffusers.utils.dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py. Run `make fix-copies` " '''to fix this.''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
222
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = CpmAntTokenizer lowerCAmelCase_ : str = False def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() snake_case_ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) snake_case_ = "今天天气真好!" snake_case_ = ["今天", "天气", "真", "好", "!"] snake_case_ = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) snake_case_ = "今天天气真好!" snake_case_ = [tokenizer.bos_token] + tokens snake_case_ = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) snake_case_ = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
85
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __UpperCAmelCase :Optional[Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def _a ( ): '''simple docstring''' __UpperCAmelCase : List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCAmelCase : Dict = g.get_repo('''huggingface/diffusers''' ) __UpperCAmelCase : Optional[int] = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCAmelCase : Tuple = sorted(issue.get_comments() , key=lambda _lowercase : i.created_at , reverse=_lowercase ) __UpperCAmelCase : Optional[int] = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
240
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionXLImgaImgPipeline SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : Any ) -> Any: torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=snake_case , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __UpperCAmelCase : int = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __UpperCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) __UpperCAmelCase : Tuple = CLIPTextModel(snake_case ) __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=snake_case ) __UpperCAmelCase : Optional[Any] = CLIPTextModelWithProjection(snake_case ) __UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=snake_case ) __UpperCAmelCase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase__ ( self : Dict , snake_case : Optional[int] , snake_case : List[str]=0 ) -> List[str]: __UpperCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) __UpperCAmelCase : Optional[Any] = image / 2 + 0.5 if str(snake_case ).startswith('''mps''' ): __UpperCAmelCase : List[str] = torch.manual_seed(snake_case ) else: __UpperCAmelCase : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) __UpperCAmelCase : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[Any] = self.get_dummy_components() __UpperCAmelCase : Any = StableDiffusionXLImgaImgPipeline(**snake_case ) __UpperCAmelCase : Union[str, Any] = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : Optional[int] = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : int = sd_pipe(**snake_case ).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Any = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Any ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: pass def lowerCamelCase__ ( self : Optional[int] ) -> int: __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : List[Any] = StableDiffusionXLImgaImgPipeline(**snake_case ) __UpperCAmelCase : Tuple = sd_pipe.to(snake_case ) __UpperCAmelCase : Tuple = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) # forward without prompt embeds __UpperCAmelCase : Tuple = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : Optional[Any] = 3 * ['''this is a negative prompt'''] __UpperCAmelCase : Optional[int] = negative_prompt __UpperCAmelCase : Tuple = 3 * [inputs['''prompt''']] __UpperCAmelCase : Optional[Any] = sd_pipe(**snake_case ) __UpperCAmelCase : int = output.images[0, -3:, -3:, -1] # forward with prompt embeds __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : Tuple = 3 * ['''this is a negative prompt'''] __UpperCAmelCase : str = 3 * [inputs.pop('''prompt''' )] ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = sd_pipe.encode_prompt(snake_case , negative_prompt=snake_case ) __UpperCAmelCase : Dict = sd_pipe( **snake_case , prompt_embeds=snake_case , negative_prompt_embeds=snake_case , pooled_prompt_embeds=snake_case , negative_pooled_prompt_embeds=snake_case , ) __UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int , snake_case : Any , snake_case : str="cpu" , snake_case : Tuple=torch.floataa , snake_case : List[str]=0 ) -> Tuple: __UpperCAmelCase : Optional[Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) __UpperCAmelCase : int = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) __UpperCAmelCase : str = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) __UpperCAmelCase : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase : str = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : str = self.get_inputs(snake_case ) __UpperCAmelCase : Dict = pipe(**snake_case ).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Tuple = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
240
1
def lowerCamelCase__ ( snake_case_ : int=2_8123 ) -> int: __snake_case = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __snake_case = set() __snake_case = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
24
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a__ : Any = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : List[str] = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } a__ : List[str] = { '''google/realm-cc-news-pretrained-embedder''': 5_1_2, '''google/realm-cc-news-pretrained-encoder''': 5_1_2, '''google/realm-cc-news-pretrained-scorer''': 5_1_2, '''google/realm-cc-news-pretrained-openqa''': 5_1_2, '''google/realm-orqa-nq-openqa''': 5_1_2, '''google/realm-orqa-nq-reader''': 5_1_2, '''google/realm-orqa-wq-openqa''': 5_1_2, '''google/realm-orqa-wq-reader''': 5_1_2, } a__ : Dict = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = VOCAB_FILES_NAMES snake_case__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_INIT_CONFIGURATION snake_case__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Tuple = RealmTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[Any]="[UNK]" , UpperCAmelCase__ : str="[SEP]" , UpperCAmelCase__ : Optional[int]="[PAD]" , UpperCAmelCase__ : Dict="[CLS]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : List[str] , ) -> Any: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , normalizer_state.pop("type" ) ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = strip_accents __SCREAMING_SNAKE_CASE = tokenize_chinese_chars __SCREAMING_SNAKE_CASE = normalizer_class(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = do_lower_case def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : int , **UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH __SCREAMING_SNAKE_CASE = text __SCREAMING_SNAKE_CASE = kwargs.pop("text_pair" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = kwargs.pop("return_tensors" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(UpperCAmelCase__ ): if batch_text_pair is not None: __SCREAMING_SNAKE_CASE = batch_text_pair[idx] else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = encoded_candidates.get("input_ids" ) __SCREAMING_SNAKE_CASE = encoded_candidates.get("attention_mask" ) __SCREAMING_SNAKE_CASE = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = {key: item for key, item in output_data.items() if len(UpperCAmelCase__ ) != 0} return BatchEncoding(UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : str=None ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
195
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : WhisperForConditionalGeneration , UpperCAmelCase__ : WhisperProcessor , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=UpperCAmelCase__ , speech_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> str: if slice_size == "auto": __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def __call__( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=1_6_0_0_0 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Dict , ) -> Any: __SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( UpperCAmelCase__ , return_tensors="pt" , sampling_rate=UpperCAmelCase__ ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE = self.speech_model.generate(UpperCAmelCase__ , max_length=4_8_0_0_0_0 ) __SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , normalize=UpperCAmelCase__ )[ 0 ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCAmelCase__ )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text_embeddings.shape __SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""] * batch_size elif type(UpperCAmelCase__ ) is not type(UpperCAmelCase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase__ )} !=""" F""" {type(UpperCAmelCase__ )}.""" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(UpperCAmelCase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device="cpu" , dtype=UpperCAmelCase__ ).to( self.device ) else: __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents __SCREAMING_SNAKE_CASE = self.vae.decode(UpperCAmelCase__ ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase__ , nsfw_content_detected=UpperCAmelCase__ )
195
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase : def __init__( self , _a , _a=2 , _a=32 , _a=16 , _a=3 , _a=True , _a=True , _a=32 , _a=4 , _a=[0, 1, 2, 3] , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.02 , _a=3 , _a=[1, 384, 24, 24] , _a=True , _a=None , ) -> Optional[int]: _A : Optional[int] = parent _A : int = batch_size _A : Optional[int] = image_size _A : List[str] = patch_size _A : List[Any] = num_channels _A : str = is_training _A : List[str] = use_labels _A : Union[str, Any] = hidden_size _A : List[Any] = num_hidden_layers _A : List[Any] = backbone_out_indices _A : Any = num_attention_heads _A : str = intermediate_size _A : Optional[int] = hidden_act _A : Dict = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : List[str] = initializer_range _A : Union[str, Any] = num_labels _A : int = backbone_featmap_shape _A : str = scope _A : Any = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _A : List[str] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Tuple = None if self.use_labels: _A : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A : Optional[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Optional[Any]: _A : Optional[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowerCAmelCase_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def a__ ( self , _a , _a , _a ) -> int: _A : str = DPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A : Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = self.num_labels _A : Optional[Any] = DPTForDepthEstimation(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A : int = model(lowerCAmelCase_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def a__ ( self , _a , _a , _a ) -> Any: _A : List[str] = self.num_labels _A : Union[str, Any] = DPTForSemanticSegmentation(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A : Optional[Any] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def a__ ( self ) -> int: _A : List[Any] = self.prepare_config_and_inputs() _A , _A , _A : int = config_and_inputs _A : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( __lowerCAmelCase,__lowerCAmelCase,unittest.TestCase ): _a = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _a = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False def a__ ( self ) -> Optional[int]: _A : List[Any] = DPTModelTester(self ) _A : int = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def a__ ( self ) -> Optional[Any]: pass def a__ ( self ) -> Tuple: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : str = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def a__ ( self ) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[str] = model_class(lowerCAmelCase_ ) _A : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[Any] = [*signature.parameters.keys()] _A : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def a__ ( self ) -> Tuple: _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCAmelCase_ ) def a__ ( self ) -> int: _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) def a__ ( self ) -> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = True if model_class in get_values(lowerCAmelCase_ ): continue _A : Dict = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _A : Any = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _A : Optional[Any] = model(**lowerCAmelCase_ ).loss loss.backward() def a__ ( self ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _A , _A : str = self.model_tester.prepare_config_and_inputs_for_common() _A : List[Any] = False _A : Any = True if model_class in get_values(lowerCAmelCase_ ) or not model_class.supports_gradient_checkpointing: continue _A : Tuple = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.train() _A : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _A : Dict = model(**lowerCAmelCase_ ).loss loss.backward() def a__ ( self ) -> Optional[int]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(config=lowerCAmelCase_ ) # Skip the check for the backbone _A : List[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _A : Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self ) -> Any: pass @slow def a__ ( self ) -> List[str]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _A : List[Any] = DPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a__ ( self ) -> Any: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = """add""" with self.assertRaises(lowerCAmelCase_ ): _A : List[Any] = DPTForDepthEstimation(lowerCAmelCase_ ) def lowerCAmelCase_ ( ): _A : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: _A : List[Any] = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _A : str = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(lowerCAmelCase_ ) _A : str = prepare_img() _A : Tuple = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A : Any = model(**lowerCAmelCase_ ) _A : Optional[int] = outputs.predicted_depth # verify the predicted depth _A : Optional[Any] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , lowerCAmelCase_ ) _A : Optional[int] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , lowerCAmelCase_ , atol=1e-4 ) )
26
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :Dict) -> Any: _A = [] for part_id in partition_order: _A = df.where(F'''SPARK_PARTITION_ID() = {part_id}''').collect() for row_idx, row in enumerate(snake_case__): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Optional[Any]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(100).repartition(1) _A = Spark(snake_case__) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Union[str, Any]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(10).repartition(2) _A = [1, 0] _A = _generate_iterable_examples(snake_case__ , snake_case__) # Reverse the partitions. _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__) for i, (row_id, row_dict) in enumerate(generate_fn()): _A , _A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> int: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(10).repartition(1) _A = SparkExamplesIterable(snake_case__) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Union[str, Any]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""") as generator_mock: _A = lambda snake_case__: x.reverse() _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0]) _A = SparkExamplesIterable(snake_case__).shuffle_data_sources(snake_case__) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__): _A , _A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> List[str]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(20).repartition(4) # Partitions 0 and 2 _A = SparkExamplesIterable(snake_case__).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2]) for i, (row_id, row_dict) in enumerate(snake_case__): _A , _A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _A = SparkExamplesIterable(snake_case__).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3]) for i, (row_id, row_dict) in enumerate(snake_case__): _A , _A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Tuple: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(100).repartition(1) _A = Spark(snake_case__) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
180
0
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Dict = """new-model""" if is_tf_available(): class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = NewModelConfig @require_tf class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Dict ): snake_case_ : Union[str, Any] = '''bert-base-cased''' snake_case_ : Optional[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : str = TFAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : int ): snake_case_ : str = '''bert-base-cased''' snake_case_ : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : List[Any] = TFAutoModelForPreTraining.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Dict ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Any = TFAutoModelForCausalLM.from_pretrained(lowercase_ ) snake_case_, snake_case_ : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : str = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowercase_ ) snake_case_, snake_case_ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Any ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ ) snake_case_, snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Dict ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case_ : Any = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Optional[int] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case_ : Tuple = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : List[str] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow @require_tensorflow_probability def _snake_case ( self : Optional[int] ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: snake_case_ : Optional[int] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowercase_ ) snake_case_, snake_case_ : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self : int ): snake_case_ : Any = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14410 ) def _snake_case ( self : Tuple ): snake_case_ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14410 ) def _snake_case ( self : Dict ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel snake_case_ : List[str] = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : str = copy.deepcopy(model.config ) snake_case_ : Dict = ['''FunnelBaseModel'''] snake_case_ : Any = TFAutoModel.from_config(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ) snake_case_ : Dict = TFAutoModel.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self : int ): try: AutoConfig.register('''new-model''' , lowercase_ ) snake_case_ : str = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowercase_ ): auto_class.register(lowercase_ , lowercase_ ) auto_class.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): auto_class.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case_ : Dict = BertModelTester(self ).get_config() snake_case_ : Dict = NewModelConfig(**tiny_config.to_dict() ) snake_case_ : List[str] = auto_class.from_config(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ) snake_case_ : Any = auto_class.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _snake_case ( self : str ): with self.assertRaisesRegex( lowercase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): snake_case_ : Any = TFAutoModel.from_pretrained('''bert-base''' ) def _snake_case ( self : str ): with self.assertRaisesRegex( lowercase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case_ : str = TFAutoModel.from_pretrained(lowercase_ , revision='''aaaaaa''' ) def _snake_case ( self : str ): with self.assertRaisesRegex( lowercase_ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): snake_case_ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _snake_case ( self : List[str] ): with self.assertRaisesRegex(lowercase_ , '''Use `from_pt=True` to load this model''' ): snake_case_ : Optional[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def _snake_case ( self : Union[str, Any] ): # Make sure we have cached the model. snake_case_ : Optional[int] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: snake_case_ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint snake_case_ : Any = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: snake_case_ : int = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
155
"""simple docstring""" def __lowercase ( _a , _a ): return base * power(_a , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') lowercase__ : Optional[Any] = int(input('''Enter the base: ''').strip()) lowercase__ : int = int(input('''Enter the exponent: ''').strip()) lowercase__ : int = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowercase__ : Any = 1 / result print(f'{base} to the power of {exponent} is {result}')
155
1
"""simple docstring""" from math import factorial A_ = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
64
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[str]=False ): """simple docstring""" _snake_case : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict , snake_case__ : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _snake_case : List[Any] = """""" else: _snake_case : List[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : Optional[Any] = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) _snake_case : Optional[Any] = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _snake_case : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _snake_case : Union[str, Any] = in_proj_bias[: config.hidden_size] _snake_case : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _snake_case : List[str] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Tuple = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : List[str] = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Union[str, Any] = val def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" _snake_case : str = ViTMSNConfig() _snake_case : Any = 10_00 _snake_case : Tuple = """datasets/huggingface/label-files""" _snake_case : Dict = """imagenet-1k-id2label.json""" _snake_case : int = json.load(open(hf_hub_download(snake_case__ , snake_case__ ) , """r""" ) ) _snake_case : Any = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : List[Any] = idalabel _snake_case : str = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _snake_case : Tuple = 3_84 _snake_case : Dict = 15_36 _snake_case : Tuple = 6 elif "l16" in checkpoint_url: _snake_case : Any = 10_24 _snake_case : int = 40_96 _snake_case : str = 24 _snake_case : Optional[int] = 16 _snake_case : List[Any] = 0.1 elif "b4" in checkpoint_url: _snake_case : Tuple = 4 elif "l7" in checkpoint_url: _snake_case : int = 7 _snake_case : Dict = 10_24 _snake_case : Optional[Any] = 40_96 _snake_case : Any = 24 _snake_case : Union[str, Any] = 16 _snake_case : Optional[int] = 0.1 _snake_case : int = ViTMSNModel(snake_case__ ) _snake_case : Optional[int] = torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" )["""target_encoder"""] _snake_case : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , base_model=snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() _snake_case : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Tuple = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) _snake_case : str = ViTImageProcessor( size=config.image_size , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : Any = image_processor(images=snake_case__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _snake_case : int = model(**snake_case__ ) _snake_case : List[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _snake_case : Optional[Any] = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: _snake_case : str = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: _snake_case : Optional[int] = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: _snake_case : List[Any] = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: _snake_case : Optional[int] = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , snake_case__ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
64
1
import torch from torch import nn class A_ ( nn.Module ): '''simple docstring''' def __init__( self: Any , a: Any , a: Optional[int] , a: str , a: Dict , a: Optional[int]=1 , a: Union[str, Any]=False ): super().__init__() __lowerCamelCase : str = n_token __lowerCamelCase : str = d_embed __lowerCamelCase : List[str] = d_proj __lowerCamelCase : Union[str, Any] = cutoffs + [n_token] __lowerCamelCase : List[str] = [0] + self.cutoffs __lowerCamelCase : Tuple = div_val __lowerCamelCase : Optional[Any] = self.cutoffs[0] __lowerCamelCase : str = len(self.cutoffs ) - 1 __lowerCamelCase : List[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowerCamelCase : Tuple = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __lowerCamelCase : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowerCamelCase : Optional[Any] = nn.ModuleList() __lowerCamelCase : List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): __lowerCamelCase , __lowerCamelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCamelCase : Optional[int] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) __lowerCamelCase : int = keep_order def _snake_case ( self: List[str] , a: List[str] , a: Optional[Any] , a: int , a: int ): if proj is None: __lowerCamelCase : Any = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowerCamelCase : int = nn.functional.linear(a , proj.t().contiguous() ) __lowerCamelCase : Optional[Any] = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _snake_case ( self: Tuple , a: str , a: Any=None , a: List[str]=False ): if labels is not None: # Shift so that tokens < n predict n __lowerCamelCase : Optional[int] = hidden[..., :-1, :].contiguous() __lowerCamelCase : int = labels[..., 1:].contiguous() __lowerCamelCase : Tuple = hidden.view(-1 , hidden.size(-1 ) ) __lowerCamelCase : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: __lowerCamelCase : Any = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __lowerCamelCase : List[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __lowerCamelCase : Optional[Any] = labels != -100 __lowerCamelCase : Optional[int] = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) __lowerCamelCase : int = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowerCamelCase : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases __lowerCamelCase , __lowerCamelCase : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowerCamelCase , __lowerCamelCase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCamelCase : str = self.out_layers[0].weight[l_idx:r_idx] __lowerCamelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCamelCase : Dict = self.out_layers[i].weight __lowerCamelCase : Dict = self.out_layers[i].bias if i == 0: __lowerCamelCase : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowerCamelCase : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = weights[0], biases[0], self.out_projs[0] __lowerCamelCase : str = self._compute_logit(a , a , a , a ) __lowerCamelCase : Any = nn.functional.log_softmax(a , dim=1 ) if labels is None: __lowerCamelCase : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowerCamelCase : Union[str, Any] = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) __lowerCamelCase : Dict = 0 __lowerCamelCase : Any = [0] + self.cutoffs for i in range(len(a ) - 1 ): __lowerCamelCase , __lowerCamelCase : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowerCamelCase : List[Any] = (labels >= l_idx) & (labels < r_idx) __lowerCamelCase : Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowerCamelCase : List[str] = labels.index_select(0 , a ) - l_idx __lowerCamelCase : int = head_logprob.index_select(0 , a ) __lowerCamelCase : Any = hidden.index_select(0 , a ) else: __lowerCamelCase : Dict = hidden if i == 0: if labels is not None: __lowerCamelCase : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __lowerCamelCase : int = head_logprob[:, : self.cutoffs[0]] else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = weights[i], biases[i], self.out_projs[i] __lowerCamelCase : Tuple = self._compute_logit(a , a , a , a ) __lowerCamelCase : Any = nn.functional.log_softmax(a , dim=1 ) __lowerCamelCase : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowerCamelCase : int = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __lowerCamelCase : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowerCamelCase : int = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _snake_case ( self: str , a: str ): if self.n_clusters == 0: __lowerCamelCase : Optional[int] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases __lowerCamelCase , __lowerCamelCase : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCamelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] __lowerCamelCase : Dict = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCamelCase : List[str] = self.out_layers[i].weight __lowerCamelCase : str = self.out_layers[i].bias if i == 0: __lowerCamelCase : str = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowerCamelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = weights[0], biases[0], self.out_projs[0] __lowerCamelCase : Any = self._compute_logit(a , a , a , a ) __lowerCamelCase : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowerCamelCase : int = nn.functional.log_softmax(a , dim=1 ) __lowerCamelCase : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): __lowerCamelCase , __lowerCamelCase : int = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowerCamelCase : int = head_logprob[:, : self.cutoffs[0]] else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = weights[i], biases[i], self.out_projs[i] __lowerCamelCase : Tuple = self._compute_logit(a , a , a , a ) __lowerCamelCase : Tuple = nn.functional.log_softmax(a , dim=1 ) __lowerCamelCase : Optional[Any] = head_logprob[:, -i] + tail_logprob_i __lowerCamelCase : Optional[int] = logprob_i return out
194
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = str(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) == 9 and set(SCREAMING_SNAKE_CASE__ ) == set('123456789' ) def UpperCamelCase__ ( ): for base_num in range(9_999 , 4_999 , -1 ): __lowerCamelCase : Tuple = 100_002 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE__ ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCamelCase : Union[str, Any] = 1_002_003 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
194
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _A ( snake_case ) -> Tuple: _lowercase : Optional[int] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = StableDiffusionLatentUpscalePipeline _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } _SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} _SCREAMING_SNAKE_CASE : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) _SCREAMING_SNAKE_CASE : str = True @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = 1 _lowercase : Union[str, Any] = 4 _lowercase : int = (16, 16) _lowercase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowercase : List[Any] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_UpperCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=_UpperCamelCase , only_cross_attention=_UpperCamelCase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) _lowercase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) _lowercase : List[str] = EulerDiscreteScheduler(prediction_type="sample" ) _lowercase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="quick_gelu" , projection_dim=512 , ) _lowercase : Optional[int] = CLIPTextModel(_UpperCamelCase ) _lowercase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowercase : List[Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): _lowercase : str = torch.manual_seed(_UpperCamelCase ) else: _lowercase : Optional[Any] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = "cpu" _lowercase : Tuple = self.get_dummy_components() _lowercase : Optional[int] = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : List[str] = self.get_dummy_inputs(_UpperCamelCase ) _lowercase : str = pipe(**_UpperCamelCase ).images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _lowercase : str = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) _lowercase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase , 1E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] _lowercase : Tuple = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : Any = self.get_dummy_inputs(_UpperCamelCase ) _lowercase : Any = 2 _lowercase : Dict = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowercase : int = getattr(_UpperCamelCase , scheduler_enum.name ) _lowercase : Dict = scheduler_cls.from_config(pipe.scheduler.config ) _lowercase : List[str] = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = torch.manual_seed(33 ) _lowercase : int = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) _lowercase : str = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _lowercase : Union[str, Any] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" _lowercase : Union[str, Any] = pipe(_UpperCamelCase , generator=_UpperCamelCase , output_type="latent" ).images _lowercase : Dict = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type="np" , ).images[0] _lowercase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = torch.manual_seed(33 ) _lowercase : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _lowercase : Tuple = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" _lowercase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) _lowercase : int = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type="np" , ).images[0] _lowercase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
250
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _snake_case = logging.getLogger(__name__) def _A ( snake_case , snake_case ) -> List[Any]: # save results if os.path.exists(snake_case ): if os.path.exists(os.path.join(snake_case , "config.json" ) ) and os.path.isfile( os.path.join(snake_case , "config.json" ) ): os.remove(os.path.join(snake_case , "config.json" ) ) if os.path.exists(os.path.join(snake_case , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(snake_case , "pytorch_model.bin" ) ): os.remove(os.path.join(snake_case , "pytorch_model.bin" ) ) else: os.makedirs(snake_case ) model.save_pretrained(snake_case ) def _A ( snake_case , snake_case=False ) -> int: _lowercase : Union[str, Any] = 2 if unlogit: _lowercase : Optional[Any] = torch.pow(snake_case , snake_case ) _lowercase : List[Any] = p * torch.log(snake_case ) _lowercase : str = 0 return -plogp.sum(dim=-1 ) def _A ( snake_case ) -> List[Any]: logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(snake_case ) ) ) ) for row in range(len(snake_case ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _A ( snake_case , snake_case , snake_case , snake_case=True , snake_case=True , snake_case=None , snake_case=False ) -> Optional[int]: _lowercase , _lowercase : Union[str, Any] = model.config.num_hidden_layers, model.config.num_attention_heads _lowercase : Optional[int] = torch.zeros(snake_case , snake_case ).to(args.device ) _lowercase : str = torch.zeros(snake_case , snake_case ).to(args.device ) if head_mask is None: _lowercase : Any = torch.ones(snake_case , snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowercase : int = None _lowercase : List[str] = 0.0 _lowercase : str = 0.0 for step, inputs in enumerate(tqdm(snake_case , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _lowercase : Dict = tuple(t.to(args.device ) for t in inputs ) ((_lowercase) , ) : Any = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowercase : str = model(snake_case , labels=snake_case , head_mask=snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowercase , _lowercase , _lowercase : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(snake_case ): _lowercase : Optional[int] = entropy(attn.detach() , snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowercase : List[str] = 2 _lowercase : Dict = torch.pow(torch.pow(snake_case , snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _lowercase : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(snake_case ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(snake_case ) logger.info("Head ranked by importance scores" ) _lowercase : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowercase : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) _lowercase : Optional[Any] = head_ranks.view_as(snake_case ) print_ad_tensor(snake_case ) return attn_entropy, head_importance, total_loss def _A ( snake_case , snake_case , snake_case ) -> Optional[Any]: _lowercase , _lowercase , _lowercase : Union[str, Any] = compute_heads_importance(snake_case , snake_case , snake_case , compute_entropy=snake_case ) _lowercase : int = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , snake_case , original_score * args.masking_threshold ) _lowercase : List[Any] = torch.ones_like(snake_case ) _lowercase : Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowercase : Union[str, Any] = original_score while current_score >= original_score * args.masking_threshold: _lowercase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowercase : Dict = float("Inf" ) _lowercase : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(snake_case ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _lowercase : List[str] = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _lowercase : int = new_head_mask.view(-1 ) _lowercase : Union[str, Any] = 0.0 _lowercase : Dict = new_head_mask.view_as(snake_case ) _lowercase : str = new_head_mask.clone().detach() print_ad_tensor(snake_case ) # Compute metric and head importance again _lowercase , _lowercase , _lowercase : Any = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , head_mask=snake_case ) _lowercase : str = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("Final head mask" ) print_ad_tensor(snake_case ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def _A ( snake_case , snake_case , snake_case , snake_case ) -> Any: _lowercase : List[Any] = datetime.now() _lowercase , _lowercase , _lowercase : List[Any] = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , compute_importance=snake_case , head_mask=snake_case ) _lowercase : Tuple = 1 / loss _lowercase : List[Any] = datetime.now() - before_time _lowercase : int = sum(p.numel() for p in model.parameters() ) _lowercase : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(snake_case , snake_case ): _lowercase : Optional[Any] = [ v, ] assert sum(len(snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(snake_case ) _lowercase : List[str] = sum(p.numel() for p in model.parameters() ) _lowercase : int = datetime.now() _lowercase , _lowercase , _lowercase : Any = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , compute_importance=snake_case , head_mask=snake_case , actually_pruned=snake_case , ) _lowercase : List[Any] = 1 / loss _lowercase : int = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , snake_case , snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , snake_case , snake_case ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_00 ) save_model(snake_case , args.output_dir ) def _A ( ) -> int: _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=snake_case , type=snake_case , required=snake_case , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=snake_case , type=snake_case , required=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=snake_case , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=snake_case , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=snake_case , type=snake_case , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=snake_case , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=snake_case , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=snake_case , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=snake_case , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_28 , type=snake_case , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=snake_case , help="Batch size." ) parser.add_argument("--seed" , type=snake_case , default=42 ) parser.add_argument("--local_rank" , type=snake_case , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=snake_case , default="" , help="Can be used for distant debugging." ) _lowercase : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowercase : Any = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _lowercase : Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowercase : List[Any] = torch.device("cuda" , args.local_rank ) _lowercase : Dict = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowercase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowercase : str = nn.parallel.DistributedDataParallel( snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=snake_case ) elif args.n_gpu > 1: _lowercase : Dict = nn.DataParallel(snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=snake_case ) torch.save(snake_case , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , snake_case ) # Prepare dataset _lowercase : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowercase : List[str] = (torch.from_numpy(snake_case ),) _lowercase : Dict = TensorDataset(*snake_case ) _lowercase : List[Any] = RandomSampler(snake_case ) _lowercase : str = DataLoader(snake_case , sampler=snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(snake_case , snake_case , snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowercase : int = mask_heads(snake_case , snake_case , snake_case ) prune_heads(snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
250
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off __UpperCAmelCase = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Any = VOCAB_FILES_NAMES UpperCAmelCase_ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ :str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ :str = ["input_ids", "attention_mask"] UpperCAmelCase_ :List[str] = NllbTokenizer UpperCAmelCase_ :List[int] = [] UpperCAmelCase_ :List[int] = [] def __init__( self , __A=None , __A=None , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=None , __A=None , __A=None , __A=False , **__A , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ :str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token lowerCAmelCase_ :List[Any] = legacy_behaviour super().__init__( vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , legacy_behaviour=__A , **__A , ) lowerCAmelCase_ :Any = vocab_file lowerCAmelCase_ :Dict = False if not self.vocab_file else True lowerCAmelCase_ :List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCAmelCase_ :List[str] = { lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase_ :int = src_lang if src_lang is not None else """eng_Latn""" lowerCAmelCase_ :Any = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase_ :str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , __A ) -> None: lowerCAmelCase_ :Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: lowerCAmelCase_ :Tuple = [self.sep_token_id] lowerCAmelCase_ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , __A , __A , __A , __A , **__A ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase_ :Tuple = src_lang lowerCAmelCase_ :Union[str, Any] = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) lowerCAmelCase_ :Dict = self.convert_tokens_to_ids(__A ) lowerCAmelCase_ :Optional[int] = tgt_lang_id return inputs def __lowerCAmelCase ( self , __A , __A = "eng_Latn" , __A = None , __A = "fra_Latn" , **__A , ) -> BatchEncoding: lowerCAmelCase_ :Optional[int] = src_lang lowerCAmelCase_ :str = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def __lowerCAmelCase ( self ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , __A ) -> None: lowerCAmelCase_ :Optional[int] = self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: lowerCAmelCase_ :Any = [] lowerCAmelCase_ :Any = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase_ :int = [self.cur_lang_code] lowerCAmelCase_ :Any = [self.eos_token_id] lowerCAmelCase_ :int = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ :Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ :Dict = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , __A ) -> None: lowerCAmelCase_ :Optional[int] = self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: lowerCAmelCase_ :Optional[Any] = [] lowerCAmelCase_ :Tuple = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase_ :Union[str, Any] = [self.cur_lang_code] lowerCAmelCase_ :Tuple = [self.eos_token_id] lowerCAmelCase_ :Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ :List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ :Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCAmelCase_ :Tuple = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "detr" UpperCAmelCase_ :str = ["past_key_values"] UpperCAmelCase_ :Tuple = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __A=True , __A=None , __A=3 , __A=100 , __A=6 , __A=2048 , __A=8 , __A=6 , __A=2048 , __A=8 , __A=0.0 , __A=0.0 , __A=True , __A="relu" , __A=256 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.0_2 , __A=1.0 , __A=False , __A="sine" , __A="resnet50" , __A=True , __A=False , __A=1 , __A=5 , __A=2 , __A=1 , __A=1 , __A=5 , __A=2 , __A=0.1 , **__A , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase_ :int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__A , __A ): lowerCAmelCase_ :str = backbone_config.get("""model_type""" ) lowerCAmelCase_ :List[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ :Optional[Any] = config_class.from_dict(__A ) # set timm attributes to None lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = None, None, None lowerCAmelCase_ :Tuple = use_timm_backbone lowerCAmelCase_ :Optional[int] = backbone_config lowerCAmelCase_ :Optional[int] = num_channels lowerCAmelCase_ :int = num_queries lowerCAmelCase_ :List[Any] = d_model lowerCAmelCase_ :Optional[int] = encoder_ffn_dim lowerCAmelCase_ :Tuple = encoder_layers lowerCAmelCase_ :int = encoder_attention_heads lowerCAmelCase_ :Optional[Any] = decoder_ffn_dim lowerCAmelCase_ :List[str] = decoder_layers lowerCAmelCase_ :Dict = decoder_attention_heads lowerCAmelCase_ :Dict = dropout lowerCAmelCase_ :Tuple = attention_dropout lowerCAmelCase_ :Union[str, Any] = activation_dropout lowerCAmelCase_ :Any = activation_function lowerCAmelCase_ :List[str] = init_std lowerCAmelCase_ :Optional[int] = init_xavier_std lowerCAmelCase_ :int = encoder_layerdrop lowerCAmelCase_ :Union[str, Any] = decoder_layerdrop lowerCAmelCase_ :List[str] = encoder_layers lowerCAmelCase_ :Union[str, Any] = auxiliary_loss lowerCAmelCase_ :str = position_embedding_type lowerCAmelCase_ :List[Any] = backbone lowerCAmelCase_ :str = use_pretrained_backbone lowerCAmelCase_ :str = dilation # Hungarian matcher lowerCAmelCase_ :List[Any] = class_cost lowerCAmelCase_ :Union[str, Any] = bbox_cost lowerCAmelCase_ :Tuple = giou_cost # Loss coefficients lowerCAmelCase_ :Optional[int] = mask_loss_coefficient lowerCAmelCase_ :Union[str, Any] = dice_loss_coefficient lowerCAmelCase_ :Tuple = bbox_loss_coefficient lowerCAmelCase_ :Tuple = giou_loss_coefficient lowerCAmelCase_ :Dict = eos_coefficient super().__init__(is_encoder_decoder=__A , **__A ) @property def __lowerCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) -> int: return self.d_model @classmethod def __lowerCAmelCase ( cls , __A , **__A ) -> Any: return cls(backbone_config=__A , **__A ) def __lowerCAmelCase ( self ) -> Dict[str, any]: lowerCAmelCase_ :List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase_ :Dict = self.backbone_config.to_dict() lowerCAmelCase_ :str = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[Any] = version.parse("1.11" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-5 @property def __lowerCAmelCase ( self ) -> int: return 12
1
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __a :List[str] = logging.get_logger(__name__) __a :Union[str, Any] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = 'deberta-v2' def __init__( self : Tuple , UpperCAmelCase : Optional[Any]=128100 , UpperCAmelCase : List[Any]=1536 , UpperCAmelCase : Tuple=24 , UpperCAmelCase : List[Any]=24 , UpperCAmelCase : Tuple=6144 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : Any=0 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Any=1E-7 , UpperCAmelCase : Any=False , UpperCAmelCase : List[str]=-1 , UpperCAmelCase : int=0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[int]="gelu" , **UpperCAmelCase : Optional[Any] , ): super().__init__(**UpperCAmelCase ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = relative_attention A_ = max_relative_positions A_ = pad_token_id A_ = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: A_ = [x.strip() for x in pos_att_type.lower().split("|" )] A_ = pos_att_type A_ = vocab_size A_ = layer_norm_eps A_ = kwargs.get("pooler_hidden_size" , UpperCAmelCase ) A_ = pooler_dropout A_ = pooler_hidden_act class _a ( snake_case_ ): """simple docstring""" @property def __A ( self : Dict ): if self.task == "multiple-choice": A_ = {0: "batch", 1: "choice", 2: "sequence"} else: A_ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __A ( self : List[str] ): return 12 def __A ( self : Union[str, Any] , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 40 , UpperCAmelCase : int = 40 , UpperCAmelCase : "PreTrainedTokenizerBase" = None , ): A_ = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
312
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
1
"""simple docstring""" import argparse import os import re UpperCamelCase__ = 'src/diffusers' # Pattern that looks at the indentation in a line. UpperCamelCase__ = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase__ = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase__ = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase__ = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase__ = re.compile(R'\[([^\]]+)\]') def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = _re_indent.search(__A ) return "" if search is None else search.groups()[0] def lowerCAmelCase_ ( __A, __A="", __A=None, __A=None ) -> str: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 UpperCAmelCase__ = ["\n".join(lines[:index] )] else: UpperCAmelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase__ = [lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__A ) ) if index < len(__A ) - 1: UpperCAmelCase__ = [lines[index + 1]] index += 1 else: UpperCAmelCase__ = [] else: blocks.append("\n".join(__A ) ) UpperCAmelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append("\n".join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append("\n".join(lines[index:] ) ) return blocks def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' def _inner(__A ): return key(__A ).lower().replace("_", "" ) return _inner def lowerCAmelCase_ ( __A, __A=None ) -> List[str]: '''simple docstring''' def noop(__A ): return x if key is None: UpperCAmelCase__ = noop # Constants are all uppercase, they go first. UpperCAmelCase__ = [obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase__ = [obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase__ = [obj for obj in objects if not key(__A )[0].isupper()] UpperCAmelCase__ = ignore_underscore(__A ) return sorted(__A, key=__A ) + sorted(__A, key=__A ) + sorted(__A, key=__A ) def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' def _replace(__A ): UpperCAmelCase__ = match.groups()[0] if "," not in imports: return f"""[{imports}]""" UpperCAmelCase__ = [part.strip().replace("\"", "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(__A )] ) + "]" UpperCAmelCase__ = import_statement.split("\n" ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase__ = 2 if lines[1].strip() == "[" else 1 UpperCAmelCase__ = [(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase__ = sort_objects(__A, key=lambda __A : x[1] ) UpperCAmelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase__ = _re_bracket_content.sub(_replace, lines[1] ) else: UpperCAmelCase__ = [part.strip().replace("\"", "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ = keys[:-1] UpperCAmelCase__ = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase__ = _re_bracket_content.sub(_replace, __A ) return import_statement def lowerCAmelCase_ ( __A, __A=True ) -> Any: '''simple docstring''' with open(__A, "r" ) as f: UpperCAmelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase__ = split_code_in_indented_blocks( __A, start_prompt="_import_structure = {", end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase__ = main_blocks[block_idx] UpperCAmelCase__ = block.split("\n" ) # Get to the start of the imports. UpperCAmelCase__ = 0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase__ = len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase__ = "\n".join(block_lines[line_idx:-1] ) UpperCAmelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase__ = split_code_in_indented_blocks(__A, indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase__ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase__ = [(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase__ = [(i, key) for i, key in enumerate(__A ) if key is not None] UpperCAmelCase__ = [x[0] for x in sorted(__A, key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase__ = 0 UpperCAmelCase__ = [] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCAmelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase__ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(__A, "w" ) as f: f.write("\n".join(__A ) ) def lowerCAmelCase_ ( __A=True ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = [] for root, _, files in os.walk(__A ): if "__init__.py" in files: UpperCAmelCase__ = sort_imports(os.path.join(__A, "__init__.py" ), check_only=__A ) if result: UpperCAmelCase__ = [os.path.join(__A, "__init__.py" )] if len(__A ) > 0: raise ValueError(f"""Would overwrite {len(__A )} files, run `make style`.""" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') UpperCamelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
350
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'facebook/bart-large-mnli' __UpperCAmelCase : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCAmelCase : Optional[int] = 'text_classifier' __UpperCAmelCase : int = AutoTokenizer __UpperCAmelCase : Dict = AutoModelForSequenceClassification __UpperCAmelCase : int = ['text', ['text']] __UpperCAmelCase : Optional[int] = ['text'] def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" super().setup() UpperCAmelCase__ = self.model.config UpperCAmelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase__ = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
143
0
"""simple docstring""" from __future__ import annotations def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[float, list[float]]: """simple docstring""" lowerCAmelCase__ :List[Any] = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ :str = [v / w for v, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] index.sort(key=lambda _SCREAMING_SNAKE_CASE : ratio[i] , reverse=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :float = 0 lowerCAmelCase__ :list[float] = [0] * len(_SCREAMING_SNAKE_CASE ) for i in index: if weight[i] <= capacity: lowerCAmelCase__ :Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: lowerCAmelCase__ :Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
293
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) lowerCAmelCase__ :Union[str, Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
293
1
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected lowercase__ : str = 0 print(UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase , end=''',''' ) lowercase__ : str = j if __name__ == "__main__": import doctest doctest.testmod() __a: str = [1, 3, 0, 5, 8, 5] __a: Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
361
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[str]: lowercase__ : Dict = {} def _lowerCAmelCase( self ) -> None: print(self.vertex ) for i in self.vertex: print(__lowerCAmelCase , ''' -> ''' , ''' -> '''.join([str(__lowerCAmelCase ) for j in self.vertex[i]] ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCAmelCase ) else: # else make a new vertex lowercase__ : Union[str, Any] = [to_vertex] def _lowerCAmelCase( self ) -> None: # visited array for storing already visited nodes lowercase__ : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # mark start vertex as visited lowercase__ : List[str] = True print(__lowerCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __a: Optional[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
214
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowercase_ ( lowerCAmelCase__ : Dict ): """simple docstring""" return EnvironmentCommand() class _A ( __SCREAMING_SNAKE_CASE ): @staticmethod def __A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = parser.add_parser("""env""" ) download_parser.set_defaults(func=__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = huggingface_hub.__version__ __UpperCAmelCase : Optional[Any] = """not installed""" __UpperCAmelCase : str = """NA""" if is_torch_available(): import torch __UpperCAmelCase : Union[str, Any] = torch.__version__ __UpperCAmelCase : str = torch.cuda.is_available() __UpperCAmelCase : int = """not installed""" if is_transformers_available(): import transformers __UpperCAmelCase : Dict = transformers.__version__ __UpperCAmelCase : Any = """not installed""" if is_accelerate_available(): import accelerate __UpperCAmelCase : List[str] = accelerate.__version__ __UpperCAmelCase : List[Any] = """not installed""" if is_xformers_available(): import xformers __UpperCAmelCase : Union[str, Any] = xformers.__version__ __UpperCAmelCase : List[str] = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": f'{pt_version} ({pt_cuda_available})', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def __A ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
254
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[Any] = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Any = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Optional[int] = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Any = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> Any: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: # Load configuration defined in the metadata file with open(__lowerCamelCase ) as metadata_file: a = json.load(__lowerCamelCase ) a = LukeConfig(use_entity_aware_attention=__lowerCamelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path a = torch.load(__lowerCamelCase , map_location="""cpu""" ) # Load the entity vocab file a = load_entity_vocab(__lowerCamelCase ) a = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks a = AddedToken("""<ent>""" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) a = AddedToken("""<ent2>""" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) a = LukeTokenizer.from_pretrained(__lowerCamelCase ) # Initialize the embeddings of the special tokens a = state_dict["""embeddings.word_embeddings.weight"""] a = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) a = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) a = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a = f'encoder.layer.{layer_index}.attention.self.' a = state_dict[prefix + matrix_name] a = state_dict[prefix + matrix_name] a = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a = state_dict["""entity_embeddings.entity_embeddings.weight"""] a = entity_emb[entity_vocab["""[MASK]"""]] a = LukeModel(config=__lowerCamelCase ).eval() a , a = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) if not (len(__lowerCamelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(__lowerCamelCase )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs a = LukeTokenizer.from_pretrained(__lowerCamelCase , task="""entity_classification""" ) a = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) a = (39, 42) a = tokenizer(__lowerCamelCase , entity_spans=[span] , add_prefix_space=__lowerCamelCase , return_tensors="""pt""" ) a = model(**__lowerCamelCase ) # Verify word hidden states if model_size == "large": a = torch.Size((1, 42, 1024) ) a = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base a = torch.Size((1, 42, 768) ) a = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": a = torch.Size((1, 1, 1024) ) a = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base a = torch.Size((1, 1, 768) ) a = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__lowerCamelCase ) ) model.save_pretrained(__lowerCamelCase ) def __A ( __lowerCamelCase ) -> List[str]: a = {} with open(__lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(__lowerCamelCase ): a , a = line.rstrip().split("""\t""" ) a = index return entity_vocab if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
347
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = tempfile.mkdtemp() a = BlipImageProcessor() a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) a = BlipProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def lowerCamelCase__ ( self :int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) a = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) a = self.prepare_image_inputs() a = image_processor(__magic_name__ , return_tensors="""np""" ) a = processor(images=__magic_name__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) a = """lower newer""" a = processor(text=__magic_name__ ) a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) a = """lower newer""" a = self.prepare_image_inputs() a = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__magic_name__ ) a = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) a = """lower newer""" a = self.prepare_image_inputs() a = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
347
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : List[str] = u for i in range(1 , __a ): snake_case_ : Union[str, Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : Any = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : List[str] = 0 print('enter the values of parameters in a list: ' ) snake_case_ : Any = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Any = float(input() ) snake_case_ : List[Any] = int(input('enter the value to interpolate: ' ) ) snake_case_ : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : Any = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : Union[str, Any] = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
327
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments,) ) ((a) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed a = True a = True a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=A, decoder_config=A, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens a = decoder_config.decoder_start_token_id a = decoder_config.pad_token_id if decoder_start_token_id is None: a = decoder_config.bos_token_id if pad_token_id is None: a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work a = decoder_config.eos_token_id a = decoder_start_token_id a = pad_token_id a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowercase__ : Tuple = None lowercase__ : Optional[int] = { '''7B''': 1_10_08, '''13B''': 1_38_24, '''30B''': 1_79_20, '''65B''': 2_20_16, '''70B''': 2_86_72, } lowercase__ : Any = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : str=1 , __snake_case : Optional[Any]=2_56 ) -> Any: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _lowerCAmelCase ( __snake_case : Dict ) -> Tuple: with open(_a , 'r' ) as f: return json.load(_a ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : str ) -> Optional[Any]: with open(_a , 'w' ) as f: json.dump(_a , _a ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str=True ) -> Union[str, Any]: os.makedirs(_a , exist_ok=_a ) __A : Dict = os.path.join(_a , 'tmp' ) os.makedirs(_a , exist_ok=_a ) __A : Tuple = read_json(os.path.join(_a , 'params.json' ) ) __A : Union[str, Any] = NUM_SHARDS[model_size] __A : Any = params['n_layers'] __A : List[Any] = params['n_heads'] __A : Tuple = n_heads // num_shards __A : Tuple = params['dim'] __A : int = dim // n_heads __A : Tuple = 1_00_00.0 __A : Tuple = 1.0 / (base ** (torch.arange(0 , _a , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __A : List[Any] = params['n_kv_heads'] # for GQA / MQA __A : Tuple = n_heads_per_shard // num_key_value_heads __A : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints __A : Dict = n_heads __A : Optional[int] = n_heads_per_shard __A : Optional[Any] = dim # permute for sliced rotary def permute(__snake_case : Any , __snake_case : Union[str, Any]=n_heads , __snake_case : Union[str, Any]=dim , __snake_case : int=dim ): return w.view(_a , dima // n_heads // 2 , 2 , _a ).transpose(1 , 2 ).reshape(_a , _a ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __A : List[str] = torch.load(os.path.join(_a , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded __A : Any = [ torch.load(os.path.join(_a , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_a ) ] __A : Optional[int] = 0 __A : Optional[Any] = {'weight_map': {}} for layer_i in range(_a ): __A : str = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded __A : Optional[int] = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __A : Tuple = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } __A : Any = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_a , _a , _a ) for i in range(_a ) ] , dim=0 , ).reshape(_a , _a ) ) __A : List[Any] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _a , _a , _a ) for i in range(_a ) ] , dim=0 , ).reshape(_a , _a ) , _a , _a , _a , ) __A : Union[str, Any] = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _a , _a , _a ) for i in range(_a ) ] , dim=0 , ).reshape(_a , _a ) __A : str = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_a )] , dim=1 ) __A : str = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_a )] , dim=0 ) __A : Optional[int] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_a )] , dim=1 ) __A : List[str] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_a )] , dim=0 ) __A : int = inv_freq for k, v in state_dict.items(): __A : List[str] = filename param_count += v.numel() torch.save(_a , os.path.join(_a , _a ) ) __A : Optional[int] = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded __A : Optional[int] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: __A : Tuple = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_a )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_a )] , dim=0 ), } for k, v in state_dict.items(): __A : str = filename param_count += v.numel() torch.save(_a , os.path.join(_a , _a ) ) # Write configs __A : Dict = {'total_size': param_count * 2} write_json(_a , os.path.join(_a , 'pytorch_model.bin.index.json' ) ) __A : int = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 __A : str = params['multiple_of'] if 'multiple_of' in params else 2_56 __A : Optional[int] = LlamaConfig( hidden_size=_a , intermediate_size=compute_intermediate_size(_a , _a , _a ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_a , ) config.save_pretrained(_a ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) __A : Union[str, Any] = LlamaForCausalLM.from_pretrained(_a , torch_dtype=torch.floataa , low_cpu_mem_usage=_a ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_a , safe_serialization=_a ) shutil.rmtree(_a ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Optional[int] ) -> Tuple: __A : int = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) __A : List[str] = tokenizer_class(_a ) tokenizer.save_pretrained(_a ) def _lowerCAmelCase ( ) -> Optional[Any]: __A : Any = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_a , help='Whether or not to save using `safetensors`.' ) __A : str = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __A : int = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _a ) if __name__ == "__main__": main()
361
'''simple docstring''' from __future__ import annotations from math import gcd def _lowerCAmelCase ( __snake_case : int , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__snake_case : int , __snake_case : int , __snake_case : int ) -> int: return (pow(__snake_case , 2 ) + step) % modulus for _ in range(__snake_case ): # These track the position within the cycle detection logic. __A : int = seed __A : Union[str, Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __A : List[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Optional[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Any = rand_fn(__snake_case , __snake_case , __snake_case ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __A : Optional[int] = gcd(hare - tortoise , __snake_case ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __A : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : int = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: lowercase__ : List[str] = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
190
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ = [3, 3, 3, 3] lowercase__ = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ = [4, 4, 4, 4] lowercase__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ = [3, 3, 3, 3] else: lowercase__ = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ = 96 elif "small" in model_name: lowercase__ = 96 elif "base" in model_name: lowercase__ = 128 elif "large" in model_name: lowercase__ = 192 elif "xlarge" in model_name: lowercase__ = 256 elif "huge" in model_name: lowercase__ = 352 # set label information lowercase__ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ = '''imagenet-22k-id2label.json''' else: lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = FocalNetConfig( embed_dim=A , depths=A , focal_levels=A , focal_windows=A , use_conv_embed=A , idalabel=A , labelaid=A , use_post_layernorm=A , use_layerscale=A , ) return config def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ = '''encoder.''' + name if "encoder.layers" in name: lowercase__ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ = '''layernorm.weight''' if name == "norm.bias": lowercase__ = '''layernorm.bias''' if "head" in name: lowercase__ = name.replace('''head''' , '''classifier''' ) else: lowercase__ = '''focalnet.''' + name return name def _SCREAMING_SNAKE_CASE (A , A , A=False ) -> Any: """simple docstring""" lowercase__ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , A ) lowercase__ = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A ) lowercase__ = val lowercase__ = get_focalnet_config(A ) lowercase__ = FocalNetForImageClassification(A ) model.eval() # load state dict model.load_state_dict(A ) # verify conversion lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = BitImageProcessor( do_resize=A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=A , crop_size=224 , do_normalize=A , image_mean=A , image_std=A , ) lowercase__ = Image.open(requests.get(A , stream=A ).raw ) lowercase__ = processor(images=A , return_tensors='''pt''' ) lowercase__ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ = image_transforms(A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , A , atol=1E-4 ) lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowercase__ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowercase__ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowercase__ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowercase__ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowercase__ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Tuple = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip_text_model''' def __init__( self : Union[str, Any] , lowercase_ : str=250002 , lowercase_ : Union[str, Any]=1024 , lowercase_ : Any=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Any=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : int=514 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-05 , lowercase_ : List[str]=1 , lowercase_ : List[Any]=0 , lowercase_ : Dict=2 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Any=True , lowercase_ : Union[str, Any]=768 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Optional[Any] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : str = hidden_act lowercase_ : List[str] = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : List[str] = type_vocab_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : List[Any] = initializer_factor lowercase_ : str = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : List[Any] = use_cache lowercase_ : Tuple = project_dim class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip_vision_model''' def __init__( self : Dict , lowercase_ : Any=768 , lowercase_ : Dict=3072 , lowercase_ : Optional[Any]=512 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : Optional[Any]=3 , lowercase_ : str=224 , lowercase_ : List[Any]=32 , lowercase_ : Union[str, Any]="quick_gelu" , lowercase_ : Dict=1E-5 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Optional[Any]=1.0 , **lowercase_ : Dict , ): super().__init__(**lowercase_ ) lowercase_ : Tuple = hidden_size lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[Any] = projection_dim lowercase_ : Tuple = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = num_channels lowercase_ : Any = patch_size lowercase_ : Dict = image_size lowercase_ : Optional[Any] = initializer_range lowercase_ : str = initializer_factor lowercase_ : Any = attention_dropout lowercase_ : Optional[int] = layer_norm_eps lowercase_ : int = hidden_act @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ , lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": lowercase_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip''' UpperCamelCase__ = True def __init__( self : Optional[int] , lowercase_ : Dict=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=768 , lowercase_ : List[str]=2.65_92 , **lowercase_ : List[Any] ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase_ : Dict = kwargs.pop("""text_config_dict""" , lowercase_ ) lowercase_ : str = kwargs.pop("""vision_config_dict""" , lowercase_ ) super().__init__(**lowercase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase_ : Dict = {} # This is the complete result when using `text_config_dict`. lowercase_ : List[str] = AltCLIPTextConfig(**lowercase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase_ : Optional[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase_ : Tuple = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase_ : int = {} # This is the complete result when using `vision_config_dict`. lowercase_ : List[str] = AltCLIPVisionConfig(**lowercase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase_ : List[str] = { str(lowercase_ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase_ : Any = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase_ : List[str] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase_ : int = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: lowercase_ : Optional[int] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) lowercase_ : Optional[int] = AltCLIPTextConfig(**lowercase_ ) lowercase_ : Any = AltCLIPVisionConfig(**lowercase_ ) lowercase_ : List[Any] = projection_dim lowercase_ : Optional[Any] = logit_scale_init_value lowercase_ : int = 1.0 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , lowercase_ : AltCLIPTextConfig , lowercase_ : AltCLIPVisionConfig , **lowercase_ : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[int] = self.text_config.to_dict() lowercase_ : Any = self.vision_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
239
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a_ = get_tests_dir('fixtures') class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = mock.Mock() UpperCamelCase_ : Union[str, Any] = 5_0_0 UpperCamelCase_ : List[str] = {} UpperCamelCase_ : int = HTTPError UpperCamelCase_ : str = {} # Download this model to make sure it's in the cache. UpperCamelCase_ : Any = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=snake_case ) as mock_head: UpperCamelCase_ : Optional[int] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Dict = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" with self.assertRaises(snake_case ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase_ : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) UpperCamelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(snake_case ) @is_staging_test class _lowercase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = TOKEN HfFolder.save_token(snake_case ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] ) -> List[str]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = ViTImageProcessor.from_pretrained(snake_case ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) UpperCamelCase_ : int = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( snake_case , repo_id='test-image-processor' , push_to_hub=snake_case , use_auth_token=self._token ) UpperCamelCase_ : int = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : Any = ViTImageProcessor.from_pretrained(snake_case ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) UpperCamelCase_ : List[Any] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( snake_case , repo_id='valid_org/test-image-processor-org' , push_to_hub=snake_case , use_auth_token=self._token ) UpperCamelCase_ : Tuple = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]: """simple docstring""" CustomImageProcessor.register_for_auto_class() UpperCamelCase_ : str = CustomImageProcessor.from_pretrained(snake_case ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) UpperCamelCase_ : List[str] = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor" , trust_remote_code=snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
50
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.009 def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any="train" ): return calculate_hypothesis_value(lowerCamelCase , lowerCamelCase ) - output( lowerCamelCase , lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowercase ( lowerCamelCase : int , lowerCamelCase : Any ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=m ): UpperCamelCase_ : str = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : List[str] = summation_of_cost_derivative(lowerCamelCase , lowerCamelCase ) / m return cost_derivative_value def __lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_ : Optional[int] = 0.0_0_0_0_0_2 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = 0 while True: j += 1 UpperCamelCase_ : Dict = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase ) ): UpperCamelCase_ : Any = get_cost_derivative(i - 1 ) UpperCamelCase_ : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase , lowerCamelCase , atol=lowerCamelCase , rtol=lowerCamelCase , ): break UpperCamelCase_ : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def __lowercase ( ): for i in range(len(lowerCamelCase ) ): print(('Actual output value:', output(lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
50
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = torch.load(_lowercase, map_location="""cpu""" ) snake_case_ :Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository snake_case_ :Dict = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case_ :Optional[Any] = v else: snake_case_ :List[str] = v snake_case_ :List[Any] = chkpt["""params"""] snake_case_ :str = {n: v for n, v in config.items() if not isinstance(_lowercase, (torch.FloatTensor, numpy.ndarray) )} snake_case_ :List[Any] = chkpt["""dico_word2id"""] snake_case_ :Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""", """""" ): i for s, i in vocab.items()} # Save pytorch-model snake_case_ :Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME snake_case_ :List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME snake_case_ :Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase, _lowercase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase, indent=2 ) + """\n""" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase, indent=2 ) + """\n""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __a = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
66
'''simple docstring''' import random def lowerCAmelCase (__A): """simple docstring""" _a = num - 1 _a = 0 while s % 2 == 0: _a = s // 2 t += 1 for _ in range(5): _a = random.randrange(2 , num - 1) _a = pow(__A , __A , __A) if v != 1: _a = 0 while v != (num - 1): if i == t - 1: return False else: _a = i + 1 _a = (v**2) % num return True def lowerCAmelCase (__A): """simple docstring""" if num < 2: return False _a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A) def lowerCAmelCase (__A = 1_024): """simple docstring""" while True: _a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize)) if is_prime_low_num(__A): return num if __name__ == "__main__": lowercase_ = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
211
0
"""simple docstring""" UpperCAmelCase__ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
363
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase__ : def __init__( self : Any , _lowerCamelCase : Optional[Any] , ): _snake_case = parent _snake_case = 13 _snake_case = 7 _snake_case = 30 _snake_case = self.seq_length + self.mem_len _snake_case = 15 _snake_case = True _snake_case = True _snake_case = 99 _snake_case = [10, 50, 80] _snake_case = 32 _snake_case = 32 _snake_case = 4 _snake_case = 8 _snake_case = 128 _snake_case = 2 _snake_case = 2 _snake_case = None _snake_case = 1 _snake_case = 0 _snake_case = 3 _snake_case = self.vocab_size - 1 _snake_case = 0.0_1 def lowercase ( self : Optional[int] ): _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowercase ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowercase ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): _snake_case = TFTransfoXLModel(_lowerCamelCase ) _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() _snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a} _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _snake_case = TFTransfoXLLMHeadModel(_lowerCamelCase ) _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() _snake_case = {'''input_ids''': input_ids_a, '''labels''': lm_labels} _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() _snake_case , _snake_case = model([input_ids_a, mems_a] ).to_tuple() _snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ): _snake_case = TFTransfoXLForSequenceClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : str ): _snake_case = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) = config_and_inputs _snake_case = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __a = () if is_tf_available() else () __a = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowercase ( self : List[Any] ): _snake_case = TFTransfoXLModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def lowercase ( self : List[str] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): self.model_tester.set_seed() _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def lowercase ( self : str ): self.model_tester.set_seed() _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def lowercase ( self : str ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _snake_case = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) _snake_case = model.get_bias() assert name is None else: _snake_case = model.get_output_embeddings() assert x is None _snake_case = model.get_bias() assert name is None def lowercase ( self : Optional[Any] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def lowercase ( self : int ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def lowercase ( self : int ): pass @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def lowercase ( self : List[Any] ): _snake_case = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off _snake_case = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _snake_case = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _snake_case = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
40
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = [False] * len(lowerCAmelCase__ ) lowercase = [-1] * len(lowerCAmelCase__ ) def dfs(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = True lowercase = c for u in graph[v]: if not visited[u]: dfs(lowerCAmelCase__ , 1 - c ) for i in range(len(lowerCAmelCase__ ) ): if not visited[i]: dfs(lowerCAmelCase__ , 0 ) for i in range(len(lowerCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ :Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
101
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = field(default_factory=A__ ) UpperCAmelCase_ = field(default_factory=A__ ) def __snake_case ( self : str , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : List[Any]): '''simple docstring''' lowerCAmelCase__ = len(list(m.modules())) == 1 or isinstance(__A , nn.Convad) or isinstance(__A , nn.BatchNormad) if has_not_submodules: self.traced.append(__A) def __call__( self : int , lowercase__ : List[Any]): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(__A) [x.remove() for x in self.handles] return self @property def __snake_case ( self : Tuple): '''simple docstring''' return list(filter(lambda lowercase__: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 1 UpperCAmelCase_ = field(default_factory=A__ ) UpperCAmelCase_ = field(default_factory=A__ ) UpperCAmelCase_ = True def __call__( self : Dict , lowercase__ : Optional[int]): '''simple docstring''' lowerCAmelCase__ = Tracker(self.dest)(__A).parametrized lowerCAmelCase__ = Tracker(self.src)(__A).parametrized lowerCAmelCase__ = list(filter(lambda lowercase__: type(__A) not in self.src_skip , __A)) lowerCAmelCase__ = list(filter(lambda lowercase__: type(__A) not in self.dest_skip , __A)) if len(__A) != len(__A) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(__A)} operations while""" F""" destination module has {len(__A)}.""") for dest_m, src_m in zip(__A , __A): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""") class a_ ( nn.Module ): '''simple docstring''' def __init__( self : int , lowercase__ : str): '''simple docstring''' super().__init__() lowerCAmelCase__ = [] # - get the stem feature_blocks.append(('conv1', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block'), F"""Unexpected layer name {k}""" lowerCAmelCase__ = len(__A) + 1 feature_blocks.append((F"""res{block_index}""", v)) lowerCAmelCase__ = nn.ModuleDict(__A) def __snake_case ( self : str , lowercase__ : str): '''simple docstring''' return get_trunk_forward_outputs( __A , out_feat_keys=__A , feature_blocks=self._feature_blocks , ) class a_ ( A__ ): '''simple docstring''' def __snake_case ( self : List[str] , lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = x.split('-') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : Any , lowercase__ : Optional[int]): '''simple docstring''' if x not in self: lowerCAmelCase__ = self.convert_name_to_timm(__A) lowerCAmelCase__ = partial(lambda: (timm.create_model(__A , pretrained=__A).eval(), None)) else: lowerCAmelCase__ = super().__getitem__(__A) return val class a_ ( A__ ): '''simple docstring''' def __getitem__( self : Optional[int] , lowercase__ : Union[str, Any]): '''simple docstring''' if "seer" in x and "in1k" not in x: lowerCAmelCase__ = RegNetModel else: lowerCAmelCase__ = RegNetForImageClassification return val def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for from_key, to_key in keys: lowerCAmelCase__ = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ): print(F"""Converting {name}...""" ) with torch.no_grad(): lowerCAmelCase__ = from_model_func() lowerCAmelCase__ = our_model_func(lowercase__ ).eval() lowerCAmelCase__ = ModuleTransfer(src=lowercase__ , dest=lowercase__ , raise_if_mismatch=lowercase__ ) lowerCAmelCase__ = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowercase__ ) if from_state_dict is not None: lowerCAmelCase__ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowerCAmelCase__ = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] lowerCAmelCase__ = manually_copy_vissl_head(lowercase__ , our_model.state_dict() , lowercase__ ) our_model.load_state_dict(lowercase__ ) lowerCAmelCase__ = our_model(lowercase__ , output_hidden_states=lowercase__ ) lowerCAmelCase__ = ( our_outputs.logits if isinstance(lowercase__ , lowercase__ ) else our_outputs.last_hidden_state ) lowerCAmelCase__ = from_model(lowercase__ ) lowerCAmelCase__ = from_output[-1] if type(lowercase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowerCAmelCase__ = our_outputs.hidden_states[-1] assert torch.allclose(lowercase__ , lowercase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=lowercase__ , ) lowerCAmelCase__ = 2_2_4 if """seer""" not in name else 3_8_4 # we can use the convnext one lowerCAmelCase__ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=lowercase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=lowercase__ , ) print(F"""Pushed {name}""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True ): lowerCAmelCase__ = """imagenet-1k-id2label.json""" lowerCAmelCase__ = 1_0_0_0 lowerCAmelCase__ = (1, num_labels) lowerCAmelCase__ = """huggingface/label-files""" lowerCAmelCase__ = num_labels lowerCAmelCase__ = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase__ = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = partial(lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) lowerCAmelCase__ = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='x' ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='x' ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='x' ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='x' ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='x' ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='x' ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='x' ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='x' ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='x' ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='x' ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='x' ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='x' ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } lowerCAmelCase__ = NameToOurModelFuncMap() lowerCAmelCase__ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple[nn.Module, Dict]: lowerCAmelCase__ = torch.hub.load_state_dict_from_url(lowercase__ , model_dir=str(lowercase__ ) , map_location='cpu' ) lowerCAmelCase__ = model_func() # check if we have a head, if yes add it lowerCAmelCase__ = files["""classy_state_dict"""]["""base_model"""]["""model"""] lowerCAmelCase__ = model_state_dict["""trunk"""] model.load_state_dict(lowercase__ ) return model.eval(), model_state_dict["heads"] # pretrained lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowerCAmelCase__ = partial( lowercase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( lowercase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowercase__ , lowercase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowercase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowercase__ , lowercase__ , lowercase__ , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
0
"""simple docstring""" from __future__ import annotations _snake_case : int = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class _UpperCAmelCase : def __init__( self :Any , __UpperCamelCase :dict[str, list[str]] , __UpperCamelCase :str ): A = graph # mapping node to its parent in resulting breadth first tree A = {} A = source_vertex def lowerCamelCase ( self :str ): A = {self.source_vertex} A = None A = [self.source_vertex] # first in first out queue while queue: A = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__UpperCamelCase ) A = vertex queue.append(__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , __UpperCamelCase :str ): if target_vertex == self.source_vertex: return self.source_vertex A = self.parent.get(__UpperCamelCase ) if target_vertex_parent is None: A = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__UpperCamelCase ) return self.shortest_path(__UpperCamelCase ) + f"->{target_vertex}" if __name__ == "__main__": _snake_case : List[str] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
292
"""simple docstring""" import math import sys def A__ ( UpperCamelCase ): A = "" try: with open(UpperCamelCase , "rb" ) as binary_file: A = binary_file.read() for dat in data: A = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = {"0": "0", "1": "1"} A, A = "", "" A = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): A = {} for curr_key in list(UpperCamelCase ): A = lexicon.pop(UpperCamelCase ) A = new_lex A = last_match_id + "1" index += 1 A = "" return result def A__ ( UpperCamelCase , UpperCamelCase ): A = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def A__ ( UpperCamelCase , UpperCamelCase ): A = read_file_binary(UpperCamelCase ) A = remove_prefix(UpperCamelCase ) A = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
292
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A__ ( lowerCamelCase__ ): A__ = ['input_values', 'padding_mask'] def __init__( self : str , _a : Optional[Any] = 1 , _a : Union[str, Any] = 2_4000 , _a : Any = 0.0 , _a : Tuple = None , _a : Optional[Any] = None , **_a : Union[str, Any] , ) -> str: '''simple docstring''' super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE =chunk_length_s _SCREAMING_SNAKE_CASE =overlap @property def A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : str ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Dict , _a : Union[str, Any] , _a : Dict = None , _a : int = False , _a : List[str] = None , _a : int = None , _a : Optional[int] = None , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =bool( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE =[np.asarray(__lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): _SCREAMING_SNAKE_CASE =np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE =raw_audio.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE =[np.asarray(__lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__lowerCamelCase ): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _SCREAMING_SNAKE_CASE =min(array.shape[0] for array in raw_audio ) _SCREAMING_SNAKE_CASE =int(np.floor(max_length / self.chunk_stride ) ) _SCREAMING_SNAKE_CASE =(nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _SCREAMING_SNAKE_CASE =max(array.shape[0] for array in raw_audio ) _SCREAMING_SNAKE_CASE =int(np.ceil(max_length / self.chunk_stride ) ) _SCREAMING_SNAKE_CASE =(nb_step - 1) * self.chunk_stride + self.chunk_length _SCREAMING_SNAKE_CASE ='''max_length''' else: _SCREAMING_SNAKE_CASE =input_values # normal padding on batch if padded_inputs is None: _SCREAMING_SNAKE_CASE =self.pad( __lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , padding=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if padding: _SCREAMING_SNAKE_CASE =padded_inputs.pop('attention_mask' ) _SCREAMING_SNAKE_CASE =[] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: _SCREAMING_SNAKE_CASE =example[..., None] input_values.append(example.T ) _SCREAMING_SNAKE_CASE =input_values if return_tensors is not None: _SCREAMING_SNAKE_CASE =padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
356
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowerCAmelCase ( ) -> int: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _SCREAMING_SNAKE_CASE ='__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" assert _test_patching.open is open _SCREAMING_SNAKE_CASE ='__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCamelCase ): pass def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _UpperCamelCase ) is None with patch_submodule(_test_patching , 'len' , _UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_start_and_stop_mock__' _SCREAMING_SNAKE_CASE =patch_submodule(_test_patching , 'open' , _UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_join__' _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_dirname__' _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass
114
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE_: Optional[int] =None SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_: List[Any] ={ 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE_: List[str] ={ 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off SCREAMING_SNAKE_CASE_: Dict =['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __A ( UpperCamelCase__ ): a__ : Dict = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Tuple = ["""input_ids""", """attention_mask"""] a__ : Any = NllbTokenizer a__ : List[int] = [] a__ : List[int] = [] def __init__(self : Tuple , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : int="<s>" , __a : Union[str, Any]="</s>" , __a : List[str]="</s>" , __a : List[str]="<s>" , __a : List[Any]="<unk>" , __a : List[Any]="<pad>" , __a : Any="<mask>" , __a : Tuple=None , __a : int=None , __a : str=None , __a : Any=False , **__a : str , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCAmelCase_ = legacy_behaviour super().__init__( vocab_file=__a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , legacy_behaviour=__a , **__a , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase_ = { lang_code: self.convert_tokens_to_ids(__a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ = src_lang if src_lang is not None else "eng_Latn" UpperCAmelCase_ = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase (self : List[Any] ): return self._src_lang @src_lang.setter def _lowercase (self : List[Any] , __a : str ): UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase (self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase (self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase (self : Optional[int] , __a : List[Any] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : Any ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) UpperCAmelCase_ = self.convert_tokens_to_ids(__a ) UpperCAmelCase_ = tgt_lang_id return inputs def _lowercase (self : Optional[int] , __a : List[str] , __a : str = "eng_Latn" , __a : Optional[List[str]] = None , __a : str = "fra_Latn" , **__a : Tuple , ): UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def _lowercase (self : str ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase (self : Any ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase (self : int , __a : Optional[int] ): UpperCAmelCase_ = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase (self : Optional[int] , __a : str , __a : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , ) -> None: """simple docstring""" A_ : Tuple = len(a_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a_ , a_ , ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" A_ : list[list[str]] = [] depth_first_search([] , [] , [] , a_ , a_ ) # Print all the boards for board in boards: for column in board: print(a_ ) print("""""" ) print(len(a_ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
164
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Optional[Any]: A_ : Any = data A_ : Node | None = None class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: A_ : Tuple = None A_ : str = None def __iter__( self ) -> Iterator[Any]: A_ : Dict = self.head while self.head: yield node.data A_ : Optional[Any] = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join(str(_lowerCamelCase ) for item in iter(self ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(len(self ) , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(0 , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) A_ : Optional[int] = Node(_lowerCamelCase ) if self.head is None: A_ : str = new_node # first node points itself A_ : Union[str, Any] = new_node elif index == 0: # insert at head A_ : List[Any] = self.head A_ : List[Any] = new_node else: A_ : List[str] = self.head for _ in range(index - 1 ): A_ : Optional[int] = temp.next A_ : Tuple = temp.next A_ : str = new_node if index == len(self ) - 1: # insert at tail A_ : Optional[int] = new_node def UpperCAmelCase_ ( self ) -> List[Any]: return self.delete_nth(0 ) def UpperCAmelCase_ ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) A_ : int = self.head if self.head == self.tail: # just one node A_ : int = None elif index == 0: # delete head node A_ : Union[str, Any] = self.tail.next.next A_ : Tuple = self.head.next else: A_ : Optional[int] = self.head for _ in range(index - 1 ): A_ : Tuple = temp.next A_ : Any = temp.next A_ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail A_ : List[str] = temp return delete_node.data def UpperCAmelCase_ ( self ) -> bool: return len(self ) == 0 def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : Any = CircularLinkedList() assert len(a_ ) == 0 assert circular_linked_list.is_empty() is True assert str(a_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(a_ ) == i circular_linked_list.insert_nth(a_ , i + 1 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
164
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase :List[Any] = 2 class _lowerCamelCase : '''simple docstring''' def __init__( self : Tuple , *, # begin keyword-only arguments _A : Any="<s>" , _A : Optional[int]="<pad>" , _A : Optional[Any]="</s>" , _A : Optional[int]="<unk>" , _A : List[str]=None , ) -> List[Any]: __magic_name__ : List[Any] = bos, unk, pad, eos __magic_name__ : Union[str, Any] = [] __magic_name__ : Tuple = [] __magic_name__ : int = {} __magic_name__ : str = self.add_symbol(_A ) __magic_name__ : List[str] = self.add_symbol(_A ) __magic_name__ : List[str] = self.add_symbol(_A ) __magic_name__ : str = self.add_symbol(_A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_A ) __magic_name__ : Dict = len(self.symbols ) def __eq__( self : List[str] , _A : Tuple ) -> Any: return self.indices == other.indices def __getitem__( self : Optional[int] , _A : Optional[Any] ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[Any] ) -> Optional[int]: return len(self.symbols ) def __contains__( self : Any , _A : List[str] ) -> List[Any]: return sym in self.indices @classmethod def __lowerCAmelCase ( cls : Any , _A : Optional[Any] ) -> Tuple: __magic_name__ : Any = cls() d.add_from_file(_A ) return d def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : List[Any]=1 , _A : Any=False ) -> Dict: if word in self.indices and not overwrite: __magic_name__ : Tuple = self.indices[word] __magic_name__ : Tuple = self.count[idx] + n return idx else: __magic_name__ : Union[str, Any] = len(self.symbols ) __magic_name__ : str = idx self.symbols.append(_A ) self.count.append(_A ) return idx def __lowerCAmelCase ( self : Optional[Any] , _A : str ) -> Optional[int]: return 0 def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] ) -> Union[str, Any]: if isinstance(_A , _A ): try: with open(_A , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(_A ) ) return __magic_name__ : Optional[Any] = f.readlines() __magic_name__ : Optional[Any] = self._load_meta(_A ) for line in lines[indices_start_line:]: try: __magic_name__ : Union[str, Any] = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __magic_name__ : List[str] = True __magic_name__ : Any = line.rsplit(' ' , 1 ) else: __magic_name__ : Optional[Any] = False __magic_name__ : Optional[Any] = int(_A ) __magic_name__ : List[str] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(_A ) ) self.add_symbol(_A , n=_A , overwrite=_A ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = dict((re.sub(R'@@$' , '' , UpperCamelCase__ ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , UpperCamelCase__ ), v) for k, v in d.items() ) __magic_name__ : Optional[Any] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] __magic_name__ : Union[str, Any] = d[k] # restore return da def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : List[str] ): """simple docstring""" if not os.path.exists(UpperCamelCase__ ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __magic_name__ : List[Any] = os.path.join(UpperCamelCase__ , 'checkpoint.pt' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) __magic_name__ : Optional[int] = torch.load(UpperCamelCase__ , map_location='cpu' ) __magic_name__ : Optional[int] = chkpt['''cfg''']['''model'''] # dicts __magic_name__ : str = os.path.join(UpperCamelCase__ , 'dict.txt' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(f'path to the file {dict_file} does not exist!' ) __magic_name__ : Tuple = Dictionary.load(UpperCamelCase__ ) __magic_name__ : Dict = rewrite_dict_keys(src_dict.indices ) __magic_name__ : Optional[Any] = len(UpperCamelCase__ ) __magic_name__ : Tuple = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES['vocab_file'] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) __magic_name__ : int = os.path.join(UpperCamelCase__ , 'bpecodes' ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) __magic_name__ : int = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) # model config __magic_name__ : Dict = os.path.join(UpperCamelCase__ , 'config.json' ) __magic_name__ : Tuple = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config __magic_name__ : List[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : List[Any] = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model __magic_name__ : Union[str, Any] = chkpt['''model'''] # remove unneeded keys __magic_name__ : Optional[Any] = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : Dict = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __magic_name__ : Dict = model_state_dict.pop(UpperCamelCase__ ) else: __magic_name__ : Optional[Any] = model_state_dict.pop(UpperCamelCase__ ) __magic_name__ : int = BioGptConfig.from_pretrained(UpperCamelCase__ ) __magic_name__ : Union[str, Any] = BioGptForCausalLM(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ ) # save __magic_name__ : Tuple = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print('Conversion is done!' ) if __name__ == "__main__": lowerCAmelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase :int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
331
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCAmelCase :Optional[Any] = False class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe.dual_guided( prompt='''first prompt''' , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) _UpperCAmelCase : int = VersatileDiffusionPipeline.from_pretrained(A , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : int = generator.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : List[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : int = '''cyberpunk 2077''' _UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe.dual_guided( prompt=A , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images _UpperCAmelCase : Union[str, Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[Any] = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _UpperCAmelCase : Dict = '''A painting of a squirrel eating a burger ''' _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe.text_to_image( prompt=A , generator=A , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images _UpperCAmelCase : Tuple = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : int = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _UpperCAmelCase : int = pipe.image_variation(A , generator=A , output_type='''numpy''' ).images _UpperCAmelCase : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[str] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
263
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowerCamelCase : List[Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowerCamelCase : Tuple = concatenate_datasets _lowerCamelCase : List[Any] = DownloadConfig _lowerCamelCase : Optional[int] = DownloadManager _lowerCamelCase : Tuple = DownloadMode _lowerCamelCase : List[str] = DownloadConfig _lowerCamelCase : Optional[int] = DownloadMode _lowerCamelCase : List[str] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
361
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : int lowercase__ : int lowercase__ : float lowercase__ : float lowercase__ : Tuple[int] def __snake_case( self : str ) -> Dict: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __snake_case( self : int ) -> str: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __snake_case( self : Any ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(_UpperCamelCase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def __snake_case( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE = self.shape SCREAMING_SNAKE_CASE = int(np.prod(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = self.get_image_coords() SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE = self.get_camera_rays(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rays.view(_UpperCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __snake_case( self : Optional[int] , _UpperCamelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE = coords.view(_UpperCamelCase , -1 , 2 ) SCREAMING_SNAKE_CASE = self.resolution() SCREAMING_SNAKE_CASE = self.fov() SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE = fracs.view(_UpperCamelCase , -1 , 2 ) SCREAMING_SNAKE_CASE = ( self.z.view(_UpperCamelCase , 1 , 3 ) + self.x.view(_UpperCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_UpperCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(_UpperCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_UpperCamelCase , *_UpperCamelCase , 2 , 3 ) def __snake_case( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCamelCase , height=_UpperCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): SCREAMING_SNAKE_CASE = np.array([np.sin(UpperCAmelCase__ ), np.cos(UpperCAmelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE = -z * 4 SCREAMING_SNAKE_CASE = np.array([np.cos(UpperCAmelCase__ ), -np.sin(UpperCAmelCase__ ), 0.0] ) SCREAMING_SNAKE_CASE = np.cross(UpperCAmelCase__ , UpperCAmelCase__ ) origins.append(UpperCAmelCase__ ) xs.append(UpperCAmelCase__ ) ys.append(UpperCAmelCase__ ) zs.append(UpperCAmelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , width=UpperCAmelCase__ , height=UpperCAmelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCAmelCase__ )) , )
206
0
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCamelCase : int = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=A , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=A , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=A , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=A , default=1_000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=A , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=A , type=A , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=A , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=A , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) lowercase__ = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" def fn(A ): return tokenizer(examples['''text'''] ) return fn def _SCREAMING_SNAKE_CASE (A ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] for i in range(len(tokenized_data['''input_ids'''] ) ): lowercase__ = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } lowercase__ = tf.train.Features(feature=A ) lowercase__ = tf.train.Example(features=A ) lowercase__ = example.SerializeToString() records.append(A ) return records def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowercase__ = min(len(A ) , args.limit ) lowercase__ = dataset.select(range(A ) ) print(f"Limiting the dataset to {args.limit} entries." ) lowercase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowercase__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(A ): os.makedirs(A ) else: lowercase__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowercase__ = tokenize_function(A ) lowercase__ = dataset.map(A , batched=A , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(A ): # Concatenate all texts. lowercase__ = {k: sum(examples[k] , [] ) for k in examples.keys()} lowercase__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowercase__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowercase__ = { k: [t[i : i + args.max_length] for i in range(0 , A , args.max_length )] for k, t in concatenated_examples.items() } return result lowercase__ = dataset_tokenized.map(A , batched=A , batch_size=1_000 , num_proc=4 ) lowercase__ = 0 lowercase__ = 0 for shard in range(0 , len(A ) , args.shard_size ): lowercase__ = grouped_dataset[shard : shard + args.shard_size] lowercase__ = len(dataset_snapshot['''input_ids'''] ) lowercase__ = os.path.join(A , f"dataset-{shard_count}-{records_containing}.tfrecord" ) lowercase__ = get_serialized_examples(A ) with tf.io.TFRecordWriter(A ) as out_file: for i in range(len(A ) ): lowercase__ = serialized_examples[i] out_file.write(A ) print('''Wrote file {} containing {} records'''.format(A , A ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , '''w''' ) as f: print(f"Total {args.split} records: {total_records}" , file=A ) if __name__ == "__main__": lowerCamelCase : List[Any] = parse_args() main(args)
2
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowercase : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[int]: __lowerCAmelCase = np.random.default_rng(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = length __lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) __lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.length def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: return {"x": self.x[i], "y": self.y[i]} class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Any: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = True def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> str: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a[0] + self.b[0] class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = True def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ) -> int: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a + self.b def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : int = 16 ) -> int: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __lowerCAmelCase = load_dataset("""csv""" , data_files=snake_case_ ) __lowerCAmelCase = datasets["""train"""].unique("""label""" ) __lowerCAmelCase = {v: i for i, v in enumerate(snake_case_ )} def tokenize_function(snake_case_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ , padding="""max_length""" ) if "label" in examples: __lowerCAmelCase = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=2 ) __lowerCAmelCase = DataLoader(tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1 ) return train_dataloader, eval_dataloader
229
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : str=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Dict=None , ) -> Tuple: """simple docstring""" if attention_mask is None: lowerCAmelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=UpperCamelCase_ ) if decoder_head_mask is None: lowerCAmelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCamelCase_ ) if cross_attn_head_mask is None: lowerCAmelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCamelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=99 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=4 , _UpperCamelCase=4 , _UpperCamelCase="relu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=20 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=0 , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.eos_token_id # Eos Token lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = prepare_mam_aaa_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = MaMaaaModel(config=_UpperCamelCase ).get_decoder().to(_UpperCamelCase ).eval() lowerCAmelCase__ = inputs_dict['input_ids'] lowerCAmelCase__ = inputs_dict['attention_mask'] lowerCAmelCase__ = inputs_dict['head_mask'] # first forward pass lowerCAmelCase__ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , head_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase__ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['last_hidden_state'] lowerCAmelCase__ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ 'last_hidden_state' ] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-2 ) ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = MaMaaaModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() lowerCAmelCase__ = model(**_UpperCamelCase ) lowerCAmelCase__ = outputs.encoder_last_hidden_state lowerCAmelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = model.get_encoder() encoder.save_pretrained(_UpperCamelCase ) lowerCAmelCase__ = MaMaaaEncoder.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) lowerCAmelCase__ = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = model.get_decoder() decoder.save_pretrained(_UpperCamelCase ) lowerCAmelCase__ = MaMaaaDecoder.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) lowerCAmelCase__ = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Optional[int] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Optional[int] = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Optional[Any] = True _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Tuple = False def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = MaMaaaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ = model_class.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertEqual(info['missing_keys'] , [] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase__ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase__ = copy.deepcopy(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) if not self.is_encoder_decoder: lowerCAmelCase__ = inputs['input_ids'] del inputs["input_ids"] else: lowerCAmelCase__ = inputs['input_ids'] lowerCAmelCase__ = inputs.get('decoder_input_ids' , _UpperCamelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _UpperCamelCase ) lowerCAmelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase__ = wte(_UpperCamelCase ) else: lowerCAmelCase__ = wte(_UpperCamelCase ) lowerCAmelCase__ = wte(_UpperCamelCase ) with torch.no_grad(): model(**_UpperCamelCase )[0] def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = input_dict['input_ids'] lowerCAmelCase__ = input_ids.ne(1 ).to(_UpperCamelCase ) lowerCAmelCase__ = MaMaaaForConditionalGeneration(_UpperCamelCase ).eval().to(_UpperCamelCase ) if torch_device == "cuda": model.half() model.generate(_UpperCamelCase , attention_mask=_UpperCamelCase ) model.generate(num_beams=4 , do_sample=_UpperCamelCase , early_stopping=_UpperCamelCase , num_return_sequences=3 ) def _UpperCamelCase ( UpperCamelCase_ : int ) -> Dict: """simple docstring""" return torch.tensor(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) __snake_case : List[str] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_UpperCamelCase ) lowerCAmelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) lowerCAmelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) lowerCAmelCase__ = prepare_mam_aaa_inputs_dict(model.config , _UpperCamelCase , _UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ = model(**_UpperCamelCase )[0] lowerCAmelCase__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , _UpperCamelCase ) # change to expected output here lowerCAmelCase__ = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=_UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_UpperCamelCase ) # change to intended input lowerCAmelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) lowerCAmelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) lowerCAmelCase__ = prepare_mam_aaa_inputs_dict(model.config , _UpperCamelCase , _UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ = model(**_UpperCamelCase )[0] lowerCAmelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) # change to expected output here lowerCAmelCase__ = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=_UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_UpperCamelCase ) lowerCAmelCase__ = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) lowerCAmelCase__ = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase__ = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors='pt' ) lowerCAmelCase__ = model.generate( input_ids=dct['input_ids'].to(_UpperCamelCase ) , attention_mask=dct['attention_mask'].to(_UpperCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) lowerCAmelCase__ = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] lowerCAmelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) assert generated == expected_en
122
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: # Load configuration defined in the metadata file with open(_SCREAMING_SNAKE_CASE ) as metadata_file: snake_case_ = json.load(_SCREAMING_SNAKE_CASE ) snake_case_ = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # Load the entity vocab file snake_case_ = load_entity_vocab(_SCREAMING_SNAKE_CASE ) snake_case_ = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks snake_case_ = AddedToken("""<ent>""" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) snake_case_ = AddedToken("""<ent2>""" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = LukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens snake_case_ = state_dict["""embeddings.word_embeddings.weight"""] snake_case_ = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) snake_case_ = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) snake_case_ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case_ = f"""encoder.layer.{layer_index}.attention.self.""" snake_case_ = state_dict[prefix + matrix_name] snake_case_ = state_dict[prefix + matrix_name] snake_case_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] snake_case_ = entity_emb[entity_vocab["""[MASK]"""]] snake_case_ = LukeModel(config=_SCREAMING_SNAKE_CASE ).eval() snake_case_ , snake_case_ = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if not (len(_SCREAMING_SNAKE_CASE ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {", ".join(_SCREAMING_SNAKE_CASE )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs snake_case_ = LukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task="""entity_classification""" ) snake_case_ = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) snake_case_ = (39, 42) snake_case_ = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , add_prefix_space=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case_ = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": snake_case_ = torch.Size((1, 42, 1_024) ) snake_case_ = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base snake_case_ = torch.Size((1, 42, 768) ) snake_case_ = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": snake_case_ = torch.Size((1, 1, 1_024) ) snake_case_ = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base snake_case_ = torch.Size((1, 1, 768) ) snake_case_ = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ = line.rstrip().split("""\t""" ) snake_case_ = index return entity_vocab if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
347
"""simple docstring""" import datasets __SCREAMING_SNAKE_CASE : Tuple = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' __SCREAMING_SNAKE_CASE : Dict = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' __SCREAMING_SNAKE_CASE : List[str] = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __A (datasets.Metric): '''simple docstring''' def lowerCAmelCase ( self : str ) ->Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )}
347
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self :Any ,__lowercase :Tuple ,__lowercase :str=1_3 ,__lowercase :Optional[int]=3_2 ,__lowercase :Any=2 ,__lowercase :Dict=3 ,__lowercase :Optional[Any]=1_6 ,__lowercase :List[str]=[3_2, 6_4, 1_2_8] ,__lowercase :str=[1, 2, 1] ,__lowercase :Optional[Any]=[2, 2, 4] ,__lowercase :Tuple=2 ,__lowercase :List[Any]=2.0 ,__lowercase :Tuple=True ,__lowercase :Optional[int]=0.0 ,__lowercase :str=0.0 ,__lowercase :str=0.1 ,__lowercase :str="gelu" ,__lowercase :Union[str, Any]=False ,__lowercase :Tuple=True ,__lowercase :Union[str, Any]=0.02 ,__lowercase :Optional[Any]=1e-5 ,__lowercase :str=True ,__lowercase :Union[str, Any]=None ,__lowercase :int=True ,__lowercase :List[str]=1_0 ,__lowercase :Dict=8 ,__lowercase :Optional[int]=["stage1", "stage2"] ,__lowercase :Union[str, Any]=[1, 2] ,): snake_case__ : Any = parent snake_case__ : Dict = batch_size snake_case__ : List[Any] = image_size snake_case__ : List[str] = patch_size snake_case__ : Any = num_channels snake_case__ : Optional[int] = embed_dim snake_case__ : str = hidden_sizes snake_case__ : Dict = depths snake_case__ : Any = num_heads snake_case__ : Optional[Any] = window_size snake_case__ : Union[str, Any] = mlp_ratio snake_case__ : Dict = qkv_bias snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Dict = drop_path_rate snake_case__ : int = hidden_act snake_case__ : Optional[Any] = use_absolute_embeddings snake_case__ : Optional[Any] = patch_norm snake_case__ : List[Any] = layer_norm_eps snake_case__ : List[str] = initializer_range snake_case__ : int = is_training snake_case__ : Tuple = scope snake_case__ : Any = use_labels snake_case__ : Any = type_sequence_label_size snake_case__ : Optional[Any] = encoder_stride snake_case__ : Tuple = out_features snake_case__ : str = out_indices def __lowerCamelCase ( self :Tuple ): snake_case__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self :int ): return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :str ,__lowercase :str ,__lowercase :Optional[Any] ): snake_case__ : Optional[Any] = FocalNetModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : List[str] = model(UpperCamelCase__ ) snake_case__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :Dict ): snake_case__ : Dict = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : int = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None snake_case__ : Dict = None snake_case__ : str = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : List[str] = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowerCamelCase ( self :Tuple ,__lowercase :Any ,__lowercase :List[str] ,__lowercase :List[Any] ): snake_case__ : Optional[int] = FocalNetForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : Union[str, Any] = FocalNetForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCamelCase ( self :List[str] ,__lowercase :Dict ,__lowercase :Union[str, Any] ,__lowercase :Union[str, Any] ): snake_case__ : List[Any] = self.type_sequence_label_size snake_case__ : Dict = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : Any = model(UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : Tuple = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowerCamelCase ( self :Dict ): snake_case__ : int = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : int = config_and_inputs snake_case__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __a , __a , unittest.TestCase ): __lowerCAmelCase : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __lowerCAmelCase : Tuple = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = FocalNetModelTester(self ) snake_case__ : List[Any] = ConfigTester(self ,config_class=UpperCamelCase__ ,embed_dim=3_7 ,has_text_modality=UpperCamelCase__ ) def __lowerCamelCase ( self :Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self :str ): return def __lowerCamelCase ( self :Any ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __lowerCamelCase ( self :str ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def __lowerCamelCase ( self :Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def __lowerCamelCase ( self :Dict ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def __lowerCamelCase ( self :Tuple ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def __lowerCamelCase ( self :Dict ): pass def __lowerCamelCase ( self :List[str] ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ : List[Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) snake_case__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ ,nn.Linear ) ) def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ : str = model_class(UpperCamelCase__ ) snake_case__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,UpperCamelCase__ ) def __lowerCamelCase ( self :List[str] ,__lowercase :Any ,__lowercase :Any ,__lowercase :Dict ,__lowercase :Union[str, Any] ): snake_case__ : Dict = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case__ : Dict = model(**self._prepare_for_class(UpperCamelCase__ ,UpperCamelCase__ ) ) snake_case__ : Tuple = outputs.hidden_states snake_case__ : str = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ) ,UpperCamelCase__ ) # FocalNet has a different seq_length snake_case__ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) snake_case__ : Any = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase__ ) ,UpperCamelCase__ ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = reshaped_hidden_states[0].shape snake_case__ : Optional[Any] = ( reshaped_hidden_states[0].view(UpperCamelCase__ ,UpperCamelCase__ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def __lowerCamelCase ( self :Dict ): snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: snake_case__ : Tuple = True self.check_hidden_states_output(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True self.check_hidden_states_output(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = 3 snake_case__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ : List[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: snake_case__ : str = True self.check_hidden_states_output(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Optional[Any] = True self.check_hidden_states_output(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,(padded_height, padded_width) ) @slow def __lowerCamelCase ( self :Union[str, Any] ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = FocalNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCamelCase ( self :int ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[int] = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: snake_case__ : Dict = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class a ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self :str ): return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self :List[Any] ): snake_case__ : Dict = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(UpperCamelCase__ ) snake_case__ : List[str] = self.default_image_processor snake_case__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) snake_case__ : Dict = image_processor(images=UpperCamelCase__ ,return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**UpperCamelCase__ ) # verify the logits snake_case__ : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,UpperCamelCase__ ) snake_case__ : Optional[int] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCamelCase__ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,2_8_1 ) @require_torch class a ( __a , unittest.TestCase ): __lowerCAmelCase : List[Any] = (FocalNetBackbone,) if is_torch_available() else () __lowerCAmelCase : Optional[int] = FocalNetConfig __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Dict = FocalNetModelTester(self )
368
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__ = logging.get_logger(__name__) A__ = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = """bart""" __lowerCAmelCase : Any = ["""past_key_values"""] __lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :int ,__lowercase :Union[str, Any]=5_0_2_6_5 ,__lowercase :Optional[int]=1_0_2_4 ,__lowercase :int=1_2 ,__lowercase :Tuple=4_0_9_6 ,__lowercase :str=1_6 ,__lowercase :List[Any]=1_2 ,__lowercase :str=4_0_9_6 ,__lowercase :List[str]=1_6 ,__lowercase :Optional[int]=0.0 ,__lowercase :List[str]=0.0 ,__lowercase :int="gelu" ,__lowercase :int=1_0_2_4 ,__lowercase :Any=0.1 ,__lowercase :Optional[Any]=0.0 ,__lowercase :List[Any]=0.0 ,__lowercase :Tuple=0.02 ,__lowercase :List[str]=0.0 ,__lowercase :int=False ,__lowercase :Any=True ,__lowercase :List[str]=3 ,__lowercase :List[Any]=1 ,__lowercase :List[str]=0 ,__lowercase :List[str]=2 ,__lowercase :Union[str, Any]=True ,__lowercase :List[Any]=2 ,__lowercase :Dict=2 ,**__lowercase :List[str] ,): snake_case__ : Union[str, Any] = vocab_size snake_case__ : Tuple = max_position_embeddings snake_case__ : List[Any] = d_model snake_case__ : Any = encoder_ffn_dim snake_case__ : int = encoder_layers snake_case__ : Union[str, Any] = encoder_attention_heads snake_case__ : List[str] = decoder_ffn_dim snake_case__ : Any = decoder_layers snake_case__ : Union[str, Any] = decoder_attention_heads snake_case__ : int = dropout snake_case__ : Optional[int] = attention_dropout snake_case__ : str = activation_dropout snake_case__ : List[Any] = activation_function snake_case__ : Any = init_std snake_case__ : Union[str, Any] = encoder_layerdrop snake_case__ : Optional[int] = decoder_layerdrop snake_case__ : List[Any] = classifier_dropout snake_case__ : Tuple = use_cache snake_case__ : List[str] = encoder_layers snake_case__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__lowercase ,pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,is_encoder_decoder=__lowercase ,decoder_start_token_id=__lowercase ,forced_eos_token_id=__lowercase ,**__lowercase ,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' ,__lowercase ): snake_case__ : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :Optional[int] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ : Union[str, Any] = {0: '''batch'''} snake_case__ : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case__ : Any = {0: '''batch''', 1: '''decoder_sequence'''} snake_case__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ , snake_case__ : Dict = self.num_layers for i in range(__lowercase ): snake_case__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCamelCase ( self :Dict ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : List[str] = super().outputs else: snake_case__ : List[str] = super(__lowercase ,self ).outputs if self.use_past: snake_case__ , snake_case__ : Any = self.num_layers for i in range(__lowercase ): snake_case__ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCamelCase ( self :Optional[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # Generate decoder inputs snake_case__ : List[Any] = seq_length if not self.use_past else 1 snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) snake_case__ : Any = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case__ : List[str] = dict(**__lowercase ,**__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : Union[str, Any] = common_inputs['''input_ids'''].shape snake_case__ : List[str] = common_inputs['''decoder_input_ids'''].shape[1] snake_case__ , snake_case__ : Dict = self.num_attention_heads snake_case__ : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[int] = decoder_seq_length + 3 snake_case__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase ,__lowercase )] ,dim=1 ) snake_case__ : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ , snake_case__ : List[Any] = self.num_layers snake_case__ : List[Any] = min(__lowercase ,__lowercase ) snake_case__ : Dict = max(__lowercase ,__lowercase ) - min_num_layers snake_case__ : Union[str, Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. snake_case__ : Optional[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase ,__lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __lowerCamelCase ( self :List[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : Dict = seqlen + 2 snake_case__ , snake_case__ : Tuple = self.num_layers snake_case__ , snake_case__ : List[str] = self.num_attention_heads snake_case__ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : int = common_inputs['''attention_mask'''].dtype snake_case__ : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase ,__lowercase ,dtype=__lowercase )] ,dim=1 ) snake_case__ : Union[str, Any] = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __lowerCamelCase ( self :str ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : Optional[int] = compute_effective_axis_dimension( __lowercase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : str = tokenizer.num_special_tokens_to_add(__lowercase ) snake_case__ : int = compute_effective_axis_dimension( __lowercase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : Optional[Any] = dict(tokenizer(__lowercase ,return_tensors=__lowercase ) ) return common_inputs def __lowerCamelCase ( self :int ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: snake_case__ : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) elif self.task == "causal-lm": snake_case__ : int = self._generate_dummy_inputs_for_causal_lm( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) else: snake_case__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) return common_inputs def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :Tuple ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = super()._flatten_past_key_values_(__lowercase ,__lowercase ,__lowercase ,__lowercase ) else: snake_case__ : int = super(__lowercase ,self )._flatten_past_key_values_( __lowercase ,__lowercase ,__lowercase ,__lowercase )
44
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> list: if len(__A ) < 2: return collection def circle_sort_util(__A , __A , __A ) -> bool: _snake_case = False if low == high: return swapped _snake_case = low _snake_case = high while left < right: if collection[left] > collection[right]: _snake_case , _snake_case = ( collection[right], collection[left], ) _snake_case = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _snake_case , _snake_case = ( collection[right + 1], collection[left], ) _snake_case = True _snake_case = low + int((high - low) / 2 ) _snake_case = circle_sort_util(__A , __A , __A ) _snake_case = circle_sort_util(__A , mid + 1 , __A ) return swapped or left_swap or right_swap _snake_case = True while is_not_sorted is True: _snake_case = circle_sort_util(__A , 0 , len(__A ) - 1 ) return collection if __name__ == "__main__": lowercase : str = input("Enter numbers separated by a comma:\n").strip() lowercase : List[Any] = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
160
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase : int = NewType("DataClass", Any) lowercase : Dict = NewType("DataClassType", Any) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[Any]: if isinstance(__A , __A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Callable[[str], Any]: _snake_case = {str(__A ): choice for choice in choices} return lambda __A : str_to_choice.get(__A , __A ) def SCREAMING_SNAKE_CASE__ ( *, __A = None , __A = None , __A = dataclasses.MISSING , __A = dataclasses.MISSING , __A = None , **__A , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _snake_case = {} if aliases is not None: _snake_case = aliases if help is not None: _snake_case = help return dataclasses.field(metadata=__A , default=__A , default_factory=__A , **__A ) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" if "formatter_class" not in kwargs: _snake_case = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase_ ) if dataclasses.is_dataclass(lowerCAmelCase_ ): _snake_case = [dataclass_types] _snake_case = list(lowerCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = F'--{field.name}' _snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _snake_case = kwargs.pop('aliases' , [] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [aliases] _snake_case = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase_ , 'UnionType' ) and isinstance(lowerCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(lowerCAmelCase_ ) not in field.type.__args__: # filter `str` in Union _snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _snake_case = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _snake_case = ( field.type.__args__[0] if isinstance(lowerCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) _snake_case = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _snake_case = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase_ ) and issubclass(field.type , lowerCAmelCase_ )): if origin_type is Literal: _snake_case = field.type.__args__ else: _snake_case = [x.value for x in field.type] _snake_case = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _snake_case = field.default else: _snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _snake_case = copy(lowerCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. _snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _snake_case = default # This tells argparse we accept 0 or 1 value after --field_name _snake_case = '?' # This is the value that will get picked if we do --field_name (without value) _snake_case = True elif isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = field.type.__args__[0] _snake_case = '+' if field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() elif field.default is dataclasses.MISSING: _snake_case = True else: _snake_case = field.type if field.default is not dataclasses.MISSING: _snake_case = field.default elif field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() else: _snake_case = True parser.add_argument(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _snake_case = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if hasattr(lowerCAmelCase_ , '_argument_group_name' ): _snake_case = self.add_argument_group(dtype._argument_group_name ) else: _snake_case = self try: _snake_case = get_type_hints(lowerCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCAmelCase_ ): _snake_case = '.'.join(map(lowerCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(lowerCAmelCase_ ): if not field.init: continue _snake_case = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _snake_case = [] if args_filename: args_files.append(Path(lowerCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _snake_case = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase_ , type=lowerCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _snake_case , _snake_case = args_file_parser.parse_known_args(args=lowerCAmelCase_ ) _snake_case = vars(lowerCAmelCase_ ).get(args_file_flag.lstrip('-' ) , lowerCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase_ ) for p in cmd_args_file_paths] ) _snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _snake_case = file_args + args if args is not None else file_args + sys.argv[1:] _snake_case , _snake_case = self.parse_known_args(args=lowerCAmelCase_ ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in vars(lowerCAmelCase_ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = set(args.keys() ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase_ )}' ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" with open(Path(lowerCAmelCase_ ) , encoding='utf-8' ) as open_json_file: _snake_case = json.loads(open_json_file.read() ) _snake_case = self.parse_dict(lowerCAmelCase_ , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase_ ).read_text() ) , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
160
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __A : Tuple = re.compile(R'\s+') def __UpperCamelCase ( _A : Optional[Any] ) ->Optional[Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(_A , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def __UpperCamelCase ( _A : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =[len(_A ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(_A ), "line_max": max(_A )} def __UpperCamelCase ( _A : int ) ->List[Any]: """simple docstring""" lowerCamelCase_ =np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def __UpperCamelCase ( _A : Any , _A : List[Any] ) ->Optional[int]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def __UpperCamelCase ( _A : Any , _A : str=5 ) ->int: """simple docstring""" lowerCamelCase_ =["""auto-generated""", """autogenerated""", """automatically generated"""] lowerCamelCase_ =example["""content"""].splitlines() for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCamelCase ( _A : Optional[int] , _A : str=5 , _A : Union[str, Any]=0.0_5 ) ->List[Any]: """simple docstring""" lowerCamelCase_ =["""unit tests""", """test file""", """configuration file"""] lowerCamelCase_ =example["""content"""].splitlines() lowerCamelCase_ =0 lowerCamelCase_ =0 # first test for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase_ =example["""content"""].count("""\n""" ) lowerCamelCase_ =int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCamelCase ( _A : Any ) ->Dict: """simple docstring""" lowerCamelCase_ =["""def """, """class """, """for """, """while """] lowerCamelCase_ =example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCamelCase ( _A : Any , _A : List[Any]=4 ) ->Tuple: """simple docstring""" lowerCamelCase_ =example["""content"""].splitlines() lowerCamelCase_ =0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCamelCase ( _A : Dict ) ->str: """simple docstring""" lowerCamelCase_ =tokenizer(example["""content"""] , truncation=_A )["""input_ids"""] lowerCamelCase_ =len(example["""content"""] ) / len(_A ) return {"ratio": ratio} def __UpperCamelCase ( _A : Optional[Any] ) ->List[str]: """simple docstring""" lowerCamelCase_ ={} results.update(get_hash(_A ) ) results.update(line_stats(_A ) ) results.update(alpha_stats(_A ) ) results.update(char_token_ratio(_A ) ) results.update(is_autogenerated(_A ) ) results.update(is_config_or_test(_A ) ) results.update(has_no_keywords(_A ) ) results.update(has_few_assignments(_A ) ) return results def __UpperCamelCase ( _A : str , _A : List[Any] , _A : str ) ->Tuple: """simple docstring""" if not check_uniques(_A , _A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCamelCase ( _A : Tuple ) ->int: """simple docstring""" with open(_A , """rb""" ) as f_in: with gzip.open(str(_A ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(_A , _A ) os.unlink(_A ) # Settings __A : int = HfArgumentParser(PreprocessingArguments) __A : int = parser.parse_args() if args.num_workers is None: __A : List[Any] = multiprocessing.cpu_count() __A : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __A : Dict = time.time() __A : List[str] = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing __A : str = time.time() __A : List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes __A : List[str] = set(ds.unique('hash')) __A : Union[str, Any] = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics __A : Tuple = time.time() __A : Dict = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __A : Any = time.time() __A, __A : Optional[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file __A : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) __A : Any = output_dir / 'data' data_dir.mkdir(exist_ok=True) __A : Dict = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __A : Optional[Any] = str(data_dir / F"""file-{file_number+1:012}.json""") __A : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
154
def __UpperCamelCase ( _A : Dict ) ->List[str]: """simple docstring""" lowerCamelCase_ =[0] * len(_A ) lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: lowerCamelCase_ =queue.pop(0 ) cnt += 1 topo.append(_A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_A ) if cnt != len(_A ): print("""Cycle exists""" ) else: print(_A ) # Adjacency List of Graph __A : List[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
154
1
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = ConsistencyModelPipeline SCREAMING_SNAKE_CASE_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE_ : Any = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def __A ( self , lowerCAmelCase__=False ) -> Optional[Any]: if class_cond: SCREAMING_SNAKE_CASE = self.dummy_cond_unet else: SCREAMING_SNAKE_CASE = self.dummy_uncond_unet # Default to CM multistep sampler SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]: if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components(class_cond=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components(class_cond=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , lowerCAmelCase__=0 , lowerCAmelCase__=False , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=(1, 3, 64, 64) ) -> Any: SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: SCREAMING_SNAKE_CASE = self.get_fixed_latents(seed=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ , shape=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = latents return inputs def __A ( self , lowerCAmelCase__=0 , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=(1, 3, 64, 64) ) -> Optional[int]: if type(lowerCAmelCase__ ) == str: SCREAMING_SNAKE_CASE = torch.device(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) return latents def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs() SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ) -> int: SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs() SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def __A ( self ) -> int: SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
363
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
0
from PIL import Image def lowerCamelCase__ ( A__ : Image , A__ : float ): '''simple docstring''' def brightness(A__ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCAmelCase_ = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
12
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase__ = 1_00 ) -> int: UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Tuple = pre_numerator UpperCAmelCase__ : Tuple = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : str = cur_numerator UpperCAmelCase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
181
0
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _SCREAMING_SNAKE_CASE = "." if __name__ == "__main__": _SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, "utils/documentation_tests.txt") _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] with open(doctest_file_path) as fp: for line in fp: _SCREAMING_SNAKE_CASE = line.strip() _SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _SCREAMING_SNAKE_CASE = "\n".join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
370
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __SCREAMING_SNAKE_CASE ( A_=None ): if subparsers is not None: lowerCAmelCase__ : Optional[Any] = subparsers.add_parser('''test''' ) else: lowerCAmelCase__ : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=A_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=A_ ) return parser def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[int] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowerCAmelCase__ : Optional[Any] = script_name else: lowerCAmelCase__ : Any = f'--config_file={args.config_file} {script_name}' lowerCAmelCase__ : List[Any] = ['''accelerate-launch'''] + test_args.split() lowerCAmelCase__ : int = execute_subprocess_async(A_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Any = test_command_parser() lowerCAmelCase__ : List[Any] = parser.parse_args() test_command(A_ ) if __name__ == "__main__": main()
106
0
"""simple docstring""" lowercase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str: assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __a = year // 100 __a = (5 * (century % 4) + 2) % 7 __a = year % 100 __a = centurian % 12 __a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
1
def _a ( lowerCamelCase, lowerCamelCase ): def get_matched_characters(lowerCamelCase, lowerCamelCase ) -> str: lowerCamelCase : Tuple = [] lowerCamelCase : Any = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowerCamelCase : Tuple = int(max(0, i - limit ) ) lowerCamelCase : Dict = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCAmelCase ) lowerCamelCase : List[str] = F'''{_stra[0:_stra.index(__UpperCAmelCase )]} {_stra[_stra.index(__UpperCAmelCase ) + 1:]}''' return "".join(__UpperCAmelCase ) # matching characters lowerCamelCase : str = get_matched_characters(__UpperCAmelCase, __UpperCAmelCase ) lowerCamelCase : Optional[int] = get_matched_characters(__UpperCAmelCase, __UpperCAmelCase ) lowerCamelCase : List[Any] = len(__UpperCAmelCase ) # transposition lowerCamelCase : List[str] = ( len([(ca, ca) for ca, ca in zip(__UpperCAmelCase, __UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: lowerCamelCase : List[Any] = 0.0 else: lowerCamelCase : Union[str, Any] = ( 1 / 3 * ( match_count / len(__UpperCAmelCase ) + match_count / len(__UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowerCamelCase : Optional[Any] = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
287
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "cpu", __magic_name__ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" UpperCamelCase__ : List[str] = device UpperCamelCase__ : Union[str, Any] = CLIPTokenizerFast.from_pretrained(__magic_name__ ) UpperCamelCase__ : Tuple = [0.4814_5466, 0.457_8275, 0.4082_1073] UpperCamelCase__ : Union[str, Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] UpperCamelCase__ : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCamelCase__ : List[str] = torchvision.transforms.Resize(224 ) UpperCamelCase__ : Union[str, Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase__ ( self, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.resize(__magic_name__ ) UpperCamelCase__ : Dict = self.center_crop(__magic_name__ ) UpperCamelCase__ : List[str] = self.normalize(__magic_name__ ) return images def __call__( self, __magic_name__=None, __magic_name__=None, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.tokenizer(text=__magic_name__, **__magic_name__ ) UpperCamelCase__ : List[Any] = self.preprocess_img(__magic_name__ ) UpperCamelCase__ : Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__=10, __magic_name__=0.01, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=False, __magic_name__=True, __magic_name__="image", __magic_name__=True, __magic_name__=False, __magic_name__=False, __magic_name__=False, ) -> None: """simple docstring""" super().__init__() UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = device if device else get_device() if vqgan: UpperCamelCase__ : Union[str, Any] = vqgan else: UpperCamelCase__ : Any = load_vqgan(self.device, conf_path=__magic_name__, ckpt_path=__magic_name__ ) self.vqgan.eval() if clip: UpperCamelCase__ : Optional[Any] = clip else: UpperCamelCase__ : Any = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) UpperCamelCase__ : str = ProcessorGradientFlow(device=self.device ) UpperCamelCase__ : Union[str, Any] = iterations UpperCamelCase__ : Tuple = lr UpperCamelCase__ : Optional[int] = log UpperCamelCase__ : List[Any] = make_grid UpperCamelCase__ : Optional[Any] = return_val UpperCamelCase__ : str = quantize UpperCamelCase__ : int = self.vqgan.decoder.z_shape def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None, __magic_name__=5, __magic_name__=True ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = [] if output_path is None: UpperCamelCase__ : List[str] = '''./animation.gif''' if input_path is None: UpperCamelCase__ : Union[str, Any] = self.save_path UpperCamelCase__ : Tuple = sorted(glob(input_path + '''/*''' ) ) if not len(__magic_name__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__magic_name__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) UpperCamelCase__ : Dict = total_duration / len(__magic_name__ ) UpperCamelCase__ : List[Any] = [frame_duration] * len(__magic_name__ ) if extend_frames: UpperCamelCase__ : List[Any] = 1.5 UpperCamelCase__ : Any = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__magic_name__ ) ) imageio.mimsave(__magic_name__, __magic_name__, duration=__magic_name__ ) print(f"gif saved to {output_path}" ) def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None ) -> Any: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError UpperCamelCase__ : List[Any] = preprocess(Image.open(__magic_name__ ), target_image_size=256 ).to(self.device ) UpperCamelCase__ : str = preprocess_vqgan(__magic_name__ ) UpperCamelCase__ ,*UpperCamelCase__ : Union[str, Any] = self.vqgan.encode(__magic_name__ ) return z def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.latent.detach().requires_grad_() UpperCamelCase__ : Any = base_latent + transform_vector if self.quantize: UpperCamelCase__ ,*UpperCamelCase__ : int = self.vqgan.quantize(__magic_name__ ) else: UpperCamelCase__ : Optional[int] = trans_latent return self.vqgan.decode(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.clip_preprocessor(text=__magic_name__, images=__magic_name__, return_tensors='''pt''', padding=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.clip(**__magic_name__ ) UpperCamelCase__ : Tuple = clip_outputs.logits_per_image if weights is not None: UpperCamelCase__ : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self._get_clip_similarity(pos_prompts['''prompts'''], __magic_name__, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: UpperCamelCase__ : Tuple = self._get_clip_similarity(neg_prompts['''prompts'''], __magic_name__, weights=neg_prompts['''weights'''] ) else: UpperCamelCase__ : Optional[int] = torch.tensor([1], device=self.device ) UpperCamelCase__ : Tuple = -torch.log(__magic_name__ ) + torch.log(__magic_name__ ) return loss def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = torch.randn_like(self.latent, requires_grad=__magic_name__, device=self.device ) UpperCamelCase__ : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase__ : Tuple = self._add_vector(__magic_name__ ) UpperCamelCase__ : Any = loop_post_process(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self._get_CLIP_loss(__magic_name__, __magic_name__, __magic_name__ ) print('''CLIP loss''', __magic_name__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__magic_name__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" wandb.init(reinit=__magic_name__, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: UpperCamelCase__ : List[str] = Image.open(__magic_name__ ) UpperCamelCase__ : List[Any] = image.resize((256, 256) ) wandb.log('''Original Image''', wandb.Image(__magic_name__ ) ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[int]: """simple docstring""" if not prompts: return [] UpperCamelCase__ : int = [] UpperCamelCase__ : str = [] if isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__magic_name__, (tuple, list) ): UpperCamelCase__ : Optional[int] = prompt[0] UpperCamelCase__ : Dict = float(prompt[1] ) elif ":" in prompt: UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = prompt.split(''':''' ) UpperCamelCase__ : List[Any] = float(__magic_name__ ) else: UpperCamelCase__ : List[str] = prompt UpperCamelCase__ : Any = 1.0 processed_prompts.append(__magic_name__ ) weights.append(__magic_name__ ) return { "prompts": processed_prompts, "weights": torch.tensor(__magic_name__, device=self.device ), } def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=True, __magic_name__=False, __magic_name__=True, __magic_name__=True, __magic_name__=None, ) -> str: """simple docstring""" if image_path: UpperCamelCase__ : Union[str, Any] = self._get_latent(__magic_name__ ) else: UpperCamelCase__ : Dict = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(__magic_name__, __magic_name__, __magic_name__ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase__ : Optional[Any] = self.process_prompts(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.process_prompts(__magic_name__ ) if save_final and save_path is None: UpperCamelCase__ : str = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) else: UpperCamelCase__ : int = save_path + '''_''' + get_timestamp() os.makedirs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = save_path UpperCamelCase__ : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__magic_name__ ) ) UpperCamelCase__ : Optional[Any] = loop_post_process(__magic_name__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(__magic_name__, __magic_name__, __magic_name__ ) ): if show_intermediate: show_pil(__magic_name__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(__magic_name__ )} ) if show_final: show_pil(__magic_name__ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
201
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Tuple = IFInpaintingPipeline a : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} a : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a : Tuple = PipelineTesterMixin.required_optional_params - {"latents"} def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return self._get_dummy_components() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> Any: '''simple docstring''' if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' self._test_save_load_local() def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
217
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , _a : List[Any] , _a : Optional[Any]=13 , _a : Tuple=7 , _a : int=True , _a : Tuple=True , _a : Any=False , _a : Tuple=True , _a : Optional[int]=99 , _a : List[Any]=32 , _a : Dict=5 , _a : List[str]=4 , _a : str=37 , _a : Dict="gelu" , _a : Optional[int]=0.1 , _a : int=0.1 , _a : List[Any]=512 , _a : int=16 , _a : List[str]=2 , _a : Union[str, Any]=0.02 , _a : Any=3 , _a : str=4 , _a : str=None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ) -> Any: '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def A ( self : Tuple , _a : str , _a : str , _a : Optional[int] , _a : List[str] , _a : Dict , _a : Union[str, Any] , _a : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , _a : List[str] , _a : Optional[Any] , _a : str , _a : Optional[int] , _a : Optional[Any] , _a : Dict , _a : Optional[int] , _a : List[Any] , _a : str , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptForCausalLM(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : int , _a : Dict , _a : Tuple , _a : List[str] , _a : str , _a : Optional[int] , *_a : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptModel(config=_a ) model.to(_a ) model.eval() # create attention mask _SCREAMING_SNAKE_CASE =torch.ones(input_ids.shape , dtype=torch.long , device=_a ) _SCREAMING_SNAKE_CASE =self.seq_length // 2 _SCREAMING_SNAKE_CASE =0 # first forward pass _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a ).to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE =ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _SCREAMING_SNAKE_CASE =ids_tensor((1,) , _a ).item() + 1 _SCREAMING_SNAKE_CASE =ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _SCREAMING_SNAKE_CASE =random_other_next_tokens # append to next input_ids and attn_mask _SCREAMING_SNAKE_CASE =torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE =torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_a )] , dim=1 , ) # get two different outputs _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a )['last_hidden_state'] _SCREAMING_SNAKE_CASE =model(_a , past_key_values=_a , attention_mask=_a )['last_hidden_state'] # select random slice _SCREAMING_SNAKE_CASE =ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE =output_from_no_past[:, -1, random_slice_idx].detach() _SCREAMING_SNAKE_CASE =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Any , _a : Dict , _a : List[Any] , _a : str , _a : List[str] , _a : Any , *_a : List[str] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptModel(config=_a ).to(_a ).eval() _SCREAMING_SNAKE_CASE =torch.ones(input_ids.shape , dtype=torch.long , device=_a ) # first forward pass _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , use_cache=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _SCREAMING_SNAKE_CASE =ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE =ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _SCREAMING_SNAKE_CASE =torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE =torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a )['last_hidden_state'] _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , past_key_values=_a )[ 'last_hidden_state' ] # select random slice _SCREAMING_SNAKE_CASE =ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE =output_from_no_past[:, -3:, random_slice_idx].detach() _SCREAMING_SNAKE_CASE =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Optional[int] , _a : Dict , _a : Any , _a : List[Any] , _a : Tuple , _a : Dict , *_a : Optional[Any] , _a : int=False ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptForCausalLM(_a ) model.to(_a ) if gradient_checkpointing: model.gradient_checkpointing_enable() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def A ( self : int , _a : Dict , *_a : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptModel(_a ) _SCREAMING_SNAKE_CASE =model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def A ( self : Optional[int] , _a : Dict , _a : int , _a : Tuple , _a : Union[str, Any] , _a : Optional[int] , *_a : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =BioGptForTokenClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( A__ , A__ , A__ , unittest.TestCase ): A__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) A__ = (BioGptForCausalLM,) if is_torch_available() else () A__ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) A__ = False def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : str ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Tuple ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*_a ) def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_a ) def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_a , gradient_checkpointing=_a ) def A ( self : Any ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_a ) def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_a ) def A ( self : Any ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_a ) @slow def A ( self : List[str] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(_a ) _SCREAMING_SNAKE_CASE =BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _SCREAMING_SNAKE_CASE ='left' # Define PAD Token = EOS Token = 50256 _SCREAMING_SNAKE_CASE =tokenizer.eos_token _SCREAMING_SNAKE_CASE =model.config.eos_token_id # use different length sentences to test batching _SCREAMING_SNAKE_CASE =[ 'Hello, my dog is a little', 'Today, I', ] _SCREAMING_SNAKE_CASE =tokenizer(_a , return_tensors='pt' , padding=_a ) _SCREAMING_SNAKE_CASE =inputs['input_ids'].to(_a ) _SCREAMING_SNAKE_CASE =model.generate( input_ids=_a , attention_mask=inputs['attention_mask'].to(_a ) , ) _SCREAMING_SNAKE_CASE =tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(_a ) _SCREAMING_SNAKE_CASE =model.generate(input_ids=_a ) _SCREAMING_SNAKE_CASE =inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _SCREAMING_SNAKE_CASE =tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(_a ) _SCREAMING_SNAKE_CASE =model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE =tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE =tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE =[ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) @slow def A ( self : str ) -> Any: '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =BioGptModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =input_dict['input_ids'] _SCREAMING_SNAKE_CASE =input_ids.ne(1 ).to(_a ) _SCREAMING_SNAKE_CASE =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Tuple ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE ='multi_label_classification' _SCREAMING_SNAKE_CASE =input_dict['input_ids'] _SCREAMING_SNAKE_CASE =input_ids.ne(1 ).to(_a ) _SCREAMING_SNAKE_CASE =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _SCREAMING_SNAKE_CASE =BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A__ ( unittest.TestCase ): @slow def A ( self : Any ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) _SCREAMING_SNAKE_CASE =torch.tensor([[2, 4805, 9, 656, 21]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] _SCREAMING_SNAKE_CASE =4_2384 _SCREAMING_SNAKE_CASE =torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def A ( self : Any ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _SCREAMING_SNAKE_CASE =BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(_a ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =tokenizer('COVID-19 is' , return_tensors='pt' ).to(_a ) _SCREAMING_SNAKE_CASE =model.generate( **_a , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=_a , ) _SCREAMING_SNAKE_CASE =tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE =( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(_a , _a )
47
'''simple docstring''' class A__ : def __init__( self : Union[str, Any] , _a : int ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =[0] * size _SCREAMING_SNAKE_CASE =[0] * size @staticmethod def A ( _a : int ) -> int: '''simple docstring''' return index | (index + 1) @staticmethod def A ( _a : int ) -> int: '''simple docstring''' return (index & (index + 1)) - 1 def A ( self : Tuple , _a : int , _a : int ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =value while index < self.size: _SCREAMING_SNAKE_CASE =self.get_prev(_a ) + 1 if current_left_border == index: _SCREAMING_SNAKE_CASE =value else: _SCREAMING_SNAKE_CASE =max(_a , _a , _a ) _SCREAMING_SNAKE_CASE =self.get_next(_a ) def A ( self : int , _a : int , _a : int ) -> int: '''simple docstring''' right -= 1 # Because of right is exclusive _SCREAMING_SNAKE_CASE =0 while left <= right: _SCREAMING_SNAKE_CASE =self.get_prev(_a ) if left <= current_left: _SCREAMING_SNAKE_CASE =max(_a , self.tree[right] ) _SCREAMING_SNAKE_CASE =current_left else: _SCREAMING_SNAKE_CASE =max(_a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
47
1
from __future__ import annotations import time UpperCamelCase = list[tuple[int, int]] UpperCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Node | None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = pos_x _SCREAMING_SNAKE_CASE = pos_y _SCREAMING_SNAKE_CASE = (pos_y, pos_x) _SCREAMING_SNAKE_CASE = goal_x _SCREAMING_SNAKE_CASE = goal_y _SCREAMING_SNAKE_CASE = parent class __UpperCAmelCase : def __init__( self: int , UpperCAmelCase_: tuple[int, int] , UpperCAmelCase_: tuple[int, int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [self.start] _SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self: List[str] ): '''simple docstring''' while self.node_queue: _SCREAMING_SNAKE_CASE = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _SCREAMING_SNAKE_CASE = True return self.retrace_path(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_successors(UpperCAmelCase_ ) for node in successors: self.node_queue.append(UpperCAmelCase_ ) if not self.reached: return [self.start.pos] return None def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Node ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for action in delta: _SCREAMING_SNAKE_CASE = parent.pos_x + action[1] _SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase_ , UpperCAmelCase_ , self.target.pos_y , self.target.pos_x , UpperCAmelCase_ ) ) return successors def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Node | None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = node _SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path class __UpperCAmelCase : def __init__( self: int , UpperCAmelCase_: Tuple , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BreadthFirstSearch(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = BreadthFirstSearch(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self: Any ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _SCREAMING_SNAKE_CASE = self.fwd_bfs.node_queue.pop(0 ) _SCREAMING_SNAKE_CASE = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _SCREAMING_SNAKE_CASE = True return self.retrace_bidirectional_path( UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = current_bwd_node _SCREAMING_SNAKE_CASE = current_fwd_node _SCREAMING_SNAKE_CASE = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase ( self: Any , UpperCAmelCase_: Node , UpperCAmelCase_: Node ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.fwd_bfs.retrace_path(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.bwd_bfs.retrace_path(UpperCAmelCase_ ) bwd_path.pop() bwd_path.reverse() _SCREAMING_SNAKE_CASE = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCamelCase = (0, 0) UpperCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase = time.time() UpperCamelCase = BreadthFirstSearch(init, goal) UpperCamelCase = bfs.search() UpperCamelCase = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCamelCase = time.time() UpperCamelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCamelCase = bd_bfs.search() UpperCamelCase = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
125
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(snake_case__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE = randint(0 ,len(snake_case__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCAmelCase : __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} ) __snake_case : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) __snake_case : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) __snake_case : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) __snake_case : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : float = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class __UpperCAmelCase : __snake_case : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __snake_case : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __snake_case : Optional[bool] = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def UpperCamelCase ( self: List[str] ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , UpperCAmelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __lowerCamelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" ,snake_case__ ,snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE = DatasetDict() _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE = random_subsample( audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case__ ) _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = str(snake_case__ ) _SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=snake_case__ ,references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case__ ) ,labelaid=snake_case__ ,idalabel=snake_case__ ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" ,snake_case__ ) trainer.save_metrics("""eval""" ,snake_case__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
125
1
"""simple docstring""" import os def SCREAMING_SNAKE_CASE ( ) -> List[str]: _lowerCAmelCase : Optional[int] = os.path.dirname(os.path.realpath(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = os.path.join(_lowerCamelCase ,"""triangle.txt""" ) with open(_lowerCamelCase ) as f: _lowerCAmelCase : Dict = f.readlines() _lowerCAmelCase : int = [] for line in triangle: _lowerCAmelCase : Optional[Any] = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(_lowerCamelCase ) ) a.append(_lowerCamelCase ) for i in range(1 ,len(_lowerCamelCase ) ): for j in range(len(a[i] ) ): _lowerCAmelCase : Any = a[i - 1][j] if j != len(a[i - 1] ) else 0 _lowerCAmelCase : List[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCamelCase ,_lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
44
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int= logging.get_logger(__name__) _a : Optional[Any]= { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[Any] = """lilt""" def __init__(self : Dict , _A : Any=3_05_22 , _A : Union[str, Any]=7_68 , _A : Any=12 , _A : Tuple=12 , _A : Optional[int]=30_72 , _A : Tuple="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : Union[str, Any]=5_12 , _A : Any=2 , _A : Tuple=0.02 , _A : List[str]=1E-12 , _A : Optional[int]=0 , _A : Optional[Any]="absolute" , _A : Any=None , _A : List[Any]=4 , _A : Optional[int]=10_24 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=_A , **_A) __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : List[str] = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Any = classifier_dropout __snake_case : Optional[int] = channel_shrink_ratio __snake_case : Tuple = max_ad_position_embeddings
172
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self :Tuple , _lowercase :Union[str, Any] , _lowercase :Dict=3 , _lowercase :List[Any]=32 , _lowercase :List[Any]=3 , _lowercase :str=10 , _lowercase :int=[10, 20, 30, 40] , _lowercase :Any=[1, 1, 2, 1] , _lowercase :List[Any]=True , _lowercase :Union[str, Any]=True , _lowercase :Optional[int]="relu" , _lowercase :str=3 , _lowercase :int=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(lowerCamelCase__ ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self :str ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase ( self :Dict , _lowercase :str , _lowercase :List[Any] , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = TFRegNetModel(config=lowerCamelCase__ ) lowercase__ = model(lowerCamelCase__ , training=lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self :Optional[int] , _lowercase :int , _lowercase :Dict , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFRegNetForImageClassification(lowerCamelCase__ ) lowercase__ = model(lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = TFRegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase__ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' def check_hidden_states_output(_lowercase :Dict , _lowercase :str , _lowercase :List[str] ): lowercase__ = model_class(lowerCamelCase__ ) lowercase__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) , training=lowerCamelCase__ ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowercase :Optional[Any] , _lowercase :Optional[Any] , _lowercase :List[str] , _lowercase :Any={} ): lowercase__ = model(lowerCamelCase__ , return_dict=lowerCamelCase__ , **lowerCamelCase__ ) lowercase__ = model(lowerCamelCase__ , return_dict=lowerCamelCase__ , **lowerCamelCase__ ).to_tuple() def recursive_check(_lowercase :Optional[int] , _lowercase :Tuple ): if isinstance(lowerCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase__ , lowerCamelCase__ ): recursive_check(lowerCamelCase__ , lowerCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCamelCase__ , lowerCamelCase__ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(lowerCamelCase__ , lowerCamelCase__ ) for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {"output_hidden_states": True} ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) lowercase__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {"output_hidden_states": True} ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFRegNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self :Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase__ , return_tensors="tf" ) # forward pass lowercase__ = model(**lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits lowercase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowercase__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 )
357
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _A ( __magic_name__ ): lowercase__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = StableDiffusionLatentUpscalePipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase = frozenset([] ) __lowerCamelCase = True @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = 1 lowercase__ = 4 lowercase__ = (16, 16) lowercase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image def UpperCAmelCase ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=_lowercase , only_cross_attention=_lowercase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) lowercase__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) lowercase__ = EulerDiscreteScheduler(prediction_type="sample" ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) lowercase__ = CLIPTextModel(_lowercase ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase ( self :Dict , _lowercase :Union[str, Any] , _lowercase :int=0 ): '''simple docstring''' if str(_lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) lowercase__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def UpperCAmelCase ( self :Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = 2 lowercase__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ = getattr(_lowercase , scheduler_enum.name ) lowercase__ = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ = pipe(**_lowercase )[0] outputs.append(_lowercase ) assert check_same_shape(_lowercase ) @require_torch_gpu @slow class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "a photo of an astronaut high resolution, unreal engine, ultra realistic" lowercase__ = pipe(_lowercase , generator=_lowercase , output_type="latent" ).images lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
201
0
"""simple docstring""" from __future__ import annotations def __lowercase ( snake_case_ : str ,snake_case_ : list[str] | None = None ,snake_case_ : dict[str, float] | None = None ,snake_case_ : bool = False ,) ->tuple[int, float, str]: '''simple docstring''' __A : Optional[int] = cipher_alphabet or [chr(snake_case_ ) for i in range(97 ,123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __A : int = { '''a''': 0.08_497, '''b''': 0.01_492, '''c''': 0.02_202, '''d''': 0.04_253, '''e''': 0.11_162, '''f''': 0.02_228, '''g''': 0.02_015, '''h''': 0.06_094, '''i''': 0.07_546, '''j''': 0.00_153, '''k''': 0.01_292, '''l''': 0.04_025, '''m''': 0.02_406, '''n''': 0.06_749, '''o''': 0.07_507, '''p''': 0.01_929, '''q''': 0.00_095, '''r''': 0.07_587, '''s''': 0.06_327, '''t''': 0.09_356, '''u''': 0.02_758, '''v''': 0.00_978, '''w''': 0.02_560, '''x''': 0.00_150, '''y''': 0.01_994, '''z''': 0.00_077, } else: # Custom frequencies dictionary __A : List[Any] = frequencies_dict if not case_sensitive: __A : str = ciphertext.lower() # Chi squared statistic values __A : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(snake_case_ ) ): __A : Tuple = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __A : str = (alphabet_letters.index(letter.lower() ) - shift) % len( snake_case_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __A : Optional[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __A : Optional[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __A : Optional[Any] = decrypted_with_shift.lower().count(snake_case_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __A : int = frequencies[letter] * occurrences # Complete the chi squared statistic formula __A : Union[str, Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __A : Optional[Any] = decrypted_with_shift.count(snake_case_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __A : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula __A : Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __A : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(snake_case_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __A : int = min( snake_case_ ,key=snake_case_ ,) # Get all the data from the most likely cipher (key, decoded message) ( ( __A ) , ( __A ) , ) : Optional[Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
179
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """facebook/bart-large-mnli""" _lowerCamelCase = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _lowerCamelCase = """text_classifier""" _lowerCamelCase = AutoTokenizer _lowerCamelCase = AutoModelForSequenceClassification _lowerCamelCase = ["""text""", ["""text"""]] _lowerCamelCase = ["""text"""] def UpperCamelCase__( self ): '''simple docstring''' super().setup() __A : List[str] = self.model.config __A : int = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __A : List[str] = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = outputs.logits __A : List[str] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
179
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=3 , lowerCamelCase_=2_24 , lowerCamelCase_=30 , lowerCamelCase_=4_00 , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=[0.5, 0.5, 0.5] , lowerCamelCase_=[0.5, 0.5, 0.5] , ) -> Optional[int]: lowerCAmelCase__ = size if size is not None else {'''height''': 18, '''width''': 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = ViTImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = EfficientFormerImageProcessorTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_proc_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> int: # Initialize image_processor lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase__ = image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase__ = image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Initialize image_processor lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase__ = image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
228
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __UpperCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __UpperCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __UpperCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _snake_case ( A , A ) -> List[Any]: return float((preds == labels).mean() ) def _snake_case ( A , A , A="binary" ) -> int: lowerCAmelCase__ = simple_accuracy(A , A ) lowerCAmelCase__ = float(fa_score(y_true=A , y_pred=A , average=A ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( A , A ) -> List[Any]: lowerCAmelCase__ = {} for id_pred, label in zip(A , A ): lowerCAmelCase__ = F"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" lowerCAmelCase__ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ = zip(*A ) lowerCAmelCase__ = fa_score(y_true=A , y_pred=A , average='''macro''' ) fas.append(A ) lowerCAmelCase__ = int(sum(pred == label for pred, label in preds_labels ) == len(A ) ) ems.append(A ) lowerCAmelCase__ = float(sum(A ) / len(A ) ) lowerCAmelCase__ = sum(A ) / len(A ) lowerCAmelCase__ = float(fa_score(y_true=A , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowerCamelCase_ , lowerCamelCase_ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase_ , lowerCamelCase_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
228
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: _A : str = tempfile.mkdtemp() _A : str = BlipImageProcessor() _A : List[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _A : Union[str, Any] = BlipaProcessor(_a , _a ) processor.save_pretrained(self.tmpdirname ) def a__ ( self , **_a ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def a__ ( self , **_a ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def a__ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Any: _A : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _A : List[str] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[Any]: _A : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A : Optional[int] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _A : List[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def a__ ( self ) -> str: _A : Any = self.get_image_processor() _A : Optional[Any] = self.get_tokenizer() _A : List[Any] = BlipaProcessor(tokenizer=_a , image_processor=_a ) _A : List[str] = self.prepare_image_inputs() _A : Optional[Any] = image_processor(_a , return_tensors="""np""" ) _A : Optional[int] = processor(images=_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self ) -> List[Any]: _A : Tuple = self.get_image_processor() _A : List[str] = self.get_tokenizer() _A : str = BlipaProcessor(tokenizer=_a , image_processor=_a ) _A : Optional[Any] = """lower newer""" _A : Tuple = processor(text=_a ) _A : Optional[int] = tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self ) -> Optional[Any]: _A : str = self.get_image_processor() _A : List[str] = self.get_tokenizer() _A : Dict = BlipaProcessor(tokenizer=_a , image_processor=_a ) _A : int = """lower newer""" _A : List[str] = self.prepare_image_inputs() _A : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.get_image_processor() _A : Optional[int] = self.get_tokenizer() _A : str = BlipaProcessor(tokenizer=_a , image_processor=_a ) _A : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A : Tuple = processor.batch_decode(_a ) _A : Optional[Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : List[str] = self.get_image_processor() _A : Any = self.get_tokenizer() _A : Optional[Any] = BlipaProcessor(tokenizer=_a , image_processor=_a ) _A : Tuple = """lower newer""" _A : str = self.prepare_image_inputs() _A : Any = processor(text=_a , images=_a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
26
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) if n == 0: return 0 _A : Tuple = float("""-inf""" ) for i in range(1,n + 1 ): _A : str = max( snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) ) return max_revue def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) _A : Dict = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _A : List[str] = float("""-inf""" ) for i in range(1,n + 1 ): _A : Optional[Any] = max( snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),) _A : Tuple = max_revenue return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _A : Any = 0 for i in range(1,n + 1 ): _A : Optional[Any] = max_rev[i] for j in range(1,i + 1 ): _A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] ) _A : int = max_revenue_i return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): if n < 0: _A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case_ ) if n > len(snake_case_ ): _A : Any = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(snake_case_ )}''' ) raise ValueError(snake_case_ ) def lowerCAmelCase_ ( ): _A : Tuple = [6, 10, 12, 15, 20, 23] _A : List[Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _A : Any = 36 _A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ ) _A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ ) _A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = None , ): __a : Optional[int] = {} if train_file is not None: __a : Dict = [train_file] if eval_file is not None: __a : int = [eval_file] if test_file is not None: __a : Any = [test_file] __a : Tuple = datasets.load_dataset('''csv''' , data_files=lowerCAmelCase__ ) __a : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) __a : Any = features_name.pop(lowerCAmelCase__ ) __a : int = list(set(ds[list(files.keys() )[0]][label_name] ) ) __a : str = {label: i for i, label in enumerate(lowerCAmelCase__ )} __a : Tuple = tokenizer.model_input_names __a : Optional[Any] = {} if len(lowerCAmelCase__ ) == 1: for k in files.keys(): __a : Optional[Any] = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) , batched=lowerCAmelCase__ , ) elif len(lowerCAmelCase__ ) == 2: for k in files.keys(): __a : str = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , ) , batched=lowerCAmelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __a : List[str] = {k: v for k, v in ex.items() if k in input_names} __a : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __a : Dict = {k: v for k, v in ex.items() if k in input_names} __a : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __a : List[Any] = {k: v for k, v in ex.items() if k in input_names} __a : Dict = labelaid[ex[label_name]] yield (d, label) __a : List[Any] = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __a : Tuple = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __a : Tuple = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __a : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __a : int = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __a : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowercase__ =logging.getLogger(__name__) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : int = field(metadata={"help": "Which column contains the label"} ) _SCREAMING_SNAKE_CASE : str = field(default=__lowercase ,metadata={"help": "The path of the training file"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase ,metadata={"help": "The path of the development file"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase ,metadata={"help": "The path of the test file"} ) _SCREAMING_SNAKE_CASE : int = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : bool = field(default=__lowercase ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) def __UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __a , __a , __a : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __a , __a , __a , __a : List[str] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __a : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __a : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase__ : EvalPrediction ) -> Dict: __a : int = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __a : Optional[Any] = TFTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __a : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __a : str = trainer.evaluate() __a : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(lowerCAmelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(lowerCAmelCase__ ) return results if __name__ == "__main__": main()
90
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : def __init__(self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=1_3 , snake_case_ : str=3_2 , snake_case_ : Any=2 , snake_case_ : Union[str, Any]=3 , snake_case_ : int=1_6 , snake_case_ : Optional[int]=[3_2, 6_4, 1_2_8] , snake_case_ : str=[1, 2, 1] , snake_case_ : str=[2, 2, 4] , snake_case_ : List[str]=2 , snake_case_ : List[str]=2.0 , snake_case_ : List[Any]=True , snake_case_ : Tuple=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : int=0.1 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[str]=False , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=0.02 , snake_case_ : List[str]=1E-5 , snake_case_ : List[Any]=True , snake_case_ : int=None , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=1_0 , snake_case_ : Union[str, Any]=8 , snake_case_ : Optional[Any]=["stage1", "stage2"] , snake_case_ : List[Any]=[1, 2] , ): __a : Tuple = parent __a : str = batch_size __a : Any = image_size __a : List[Any] = patch_size __a : List[Any] = num_channels __a : List[str] = embed_dim __a : str = hidden_sizes __a : Any = depths __a : List[str] = num_heads __a : Any = window_size __a : List[str] = mlp_ratio __a : Optional[int] = qkv_bias __a : Any = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : str = drop_path_rate __a : Optional[Any] = hidden_act __a : Optional[int] = use_absolute_embeddings __a : List[str] = patch_norm __a : int = layer_norm_eps __a : Optional[Any] = initializer_range __a : List[str] = is_training __a : Dict = scope __a : Optional[Any] = use_labels __a : Union[str, Any] = type_sequence_label_size __a : Optional[int] = encoder_stride __a : str = out_features __a : Optional[int] = out_indices def lowerCAmelCase (self : Dict ): __a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Dict = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : List[str] = self.get_config() return config, pixel_values, labels def lowerCAmelCase (self : Optional[Any] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase (self : Dict , snake_case_ : int , snake_case_ : Tuple , snake_case_ : str ): __a : int = FocalNetModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Dict = model(snake_case_ ) __a : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __a : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase (self : Tuple , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __a : List[str] = FocalNetBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[str] = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __a : Union[str, Any] = None __a : Tuple = FocalNetBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[Any] ): __a : List[str] = FocalNetForMaskedImageModeling(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model(snake_case_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a : str = 1 __a : Optional[Any] = FocalNetForMaskedImageModeling(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int ): __a : Dict = self.type_sequence_label_size __a : Optional[Any] = FocalNetForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Union[str, Any] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a : Optional[int] = 1 __a : str = FocalNetForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase (self : List[Any] ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a : Any = config_and_inputs __a : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Optional[Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Dict = False def lowerCAmelCase (self : List[Any] ): __a : Union[str, Any] = FocalNetModelTester(self ) __a : Dict = ConfigTester(self , config_class=snake_case_ , embed_dim=3_7 , has_text_modality=snake_case_ ) def lowerCAmelCase (self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase (self : Dict ): return def lowerCAmelCase (self : Dict ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case_ ) def lowerCAmelCase (self : Any ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case_ ) def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def lowerCAmelCase (self : Optional[Any] ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def lowerCAmelCase (self : str ): pass def lowerCAmelCase (self : Tuple ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a : int = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCAmelCase (self : Optional[int] ): __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a : str = model_class(snake_case_ ) __a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Dict = [*signature.parameters.keys()] __a : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase (self : Tuple , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[Any] ): __a : Any = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __a : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __a : Union[str, Any] = outputs.hidden_states __a : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # FocalNet has a different seq_length __a : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __a : Optional[Any] = outputs.reshaped_hidden_states self.assertEqual(len(snake_case_ ) , snake_case_ ) __a , __a , __a , __a : List[Any] = reshaped_hidden_states[0].shape __a : List[str] = ( reshaped_hidden_states[0].view(snake_case_ , snake_case_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase (self : Optional[int] ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __a : Any = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Optional[int] = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : List[str] = 3 __a : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __a : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __a : int = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : List[str] = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , (padded_height, padded_width) ) @slow def lowerCAmelCase (self : str ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = FocalNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: __a : str = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase (self : str ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def lowerCAmelCase (self : str ): __a : int = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(snake_case_ ) __a : Optional[Any] = self.default_image_processor __a : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __a : Optional[Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): __a : Any = model(**snake_case_ ) # verify the logits __a : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __a : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = (FocalNetBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : int = FocalNetConfig _SCREAMING_SNAKE_CASE : Any = False def lowerCAmelCase (self : Tuple ): __a : Union[str, Any] = FocalNetModelTester(self )
90
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a : def __init__( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=True , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=64 , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : List[Any]=64 , lowercase_ : Dict="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : List[Any]=16 , lowercase_ : str=2 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=4 , lowercase_ : List[Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def A_ ( self : List[str] ): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def A_ ( self : str ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Tuple ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A_ ( self : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int] ): snake_case_ = MPNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = MPNetForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Tuple , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = MPNetForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Any , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.num_choices snake_case_ = MPNetForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : int , lowercase_ : List[str] ): snake_case_ = self.num_labels snake_case_ = MPNetForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Union[str, Any] ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_)) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = True def A_ ( self : Tuple ): snake_case_ = MPNetModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def A_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase_ ) @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): snake_case_ = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) snake_case_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case_ = model(lowercase_ )[0] snake_case_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase_ ) snake_case_ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
56
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : str , A_ : Optional[int] , A_ : str=3 , A_ : Optional[int]=32 , A_ : Optional[Any]=3 , A_ : Optional[int]=10 , A_ : List[Any]=[10, 20, 30, 40] , A_ : Dict=[1, 1, 2, 1] , A_ : Tuple=True , A_ : Union[str, Any]=True , A_ : Dict="relu" , A_ : Any=3 , A_ : str=None , ) -> int: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(__a ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a__ ( self : Optional[Any] , A_ : Any , A_ : Union[str, Any] , A_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ = TFRegNetModel(config=__a ) lowerCamelCase_ = model(__a , training=__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self : List[str] , A_ : Dict , A_ : Union[str, Any] , A_ : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRegNetForImageClassification(__a ) lowerCamelCase_ = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = TFRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a ) def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def a__ ( self : List[str] ) -> Any: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a__ ( self : str ) -> str: """simple docstring""" pass def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__a ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def a__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(A_ : List[str] , A_ : List[Any] , A_ : Optional[Any] ): lowerCamelCase_ = model_class(__a ) lowerCamelCase_ = model(**self._prepare_for_class(__a , __a ) , training=__a ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(__a , __a , __a ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(A_ : Optional[int] , A_ : Tuple , A_ : Union[str, Any] , A_ : List[Any]={} ): lowerCamelCase_ = model(__a , return_dict=__a , **__a ) lowerCamelCase_ = model(__a , return_dict=__a , **__a ).to_tuple() def recursive_check(A_ : Tuple , A_ : Optional[int] ): if isinstance(__a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__a , __a ): recursive_check(__a , __a ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__a , __a ) ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__a , __a ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__a ) lowerCamelCase_ = self._prepare_for_class(__a , __a ) lowerCamelCase_ = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a ) lowerCamelCase_ = self._prepare_for_class(__a , __a , return_labels=__a ) lowerCamelCase_ = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a ) lowerCamelCase_ = self._prepare_for_class(__a , __a ) lowerCamelCase_ = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a , {'output_hidden_states': True} ) lowerCamelCase_ = self._prepare_for_class(__a , __a , return_labels=__a ) lowerCamelCase_ = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a , {'output_hidden_states': True} ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFRegNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__a , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**__a , training=__a ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase_ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __a , atol=1E-4 )
350
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''OwlViTImageProcessor''' UpperCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , A_ : Tuple=None , A_ : Tuple=None , **A_ : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A_ , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_ , A_ ) def __call__( self : List[str] , A_ : List[str]=None , A_ : List[Any]=None , A_ : Dict=None , A_ : Tuple="max_length" , A_ : int="np" , **A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): lowerCamelCase_ = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: lowerCamelCase_ = t + [' '] * (max_num_queries - len(A_ )) lowerCamelCase_ = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def a__ ( self : Tuple , *A_ : Dict , **A_ : Dict ) -> Any: """simple docstring""" return self.image_processor.post_process(*A_ , **A_ ) def a__ ( self : List[str] , *A_ : Any , **A_ : List[Any] ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*A_ , **A_ ) def a__ ( self : Any , *A_ : str , **A_ : List[Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def a__ ( self : Union[str, Any] , *A_ : Any , **A_ : Union[str, Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def a__ ( self : Optional[int] , *A_ : List[Any] , **A_ : int ) -> int: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @property def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , ) return self.image_processor_class @property def a__ ( self : str ) -> List[str]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A_ , ) return self.image_processor
208
0
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCamelCase : UpperCamelCase : float UpperCamelCase : TreeNode | None = None UpperCamelCase : TreeNode | None = None def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # Validation def is_valid_tree(UpperCamelCase__ ) -> bool: if node is None: return True if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(UpperCamelCase__ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , UpperCamelCase__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , UpperCamelCase__ ) ) return is_binary_search_tree_recursive_check(UpperCamelCase__ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
294
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> List[str]: _a : Any = """laion/clap-htsat-unfused""" _a : Union[str, Any] = tempfile.mkdtemp() def _lowercase ( self : List[Any] , **UpperCAmelCase__ : Any ) -> Dict: return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , **UpperCAmelCase__ : List[str] ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Optional[int]: _a : List[str] = self.get_tokenizer() _a : Any = self.get_feature_extractor() _a : Optional[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) _a : List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: _a : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _a : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _a : Union[str, Any] = self.get_feature_extractor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: _a : Optional[int] = self.get_feature_extractor() _a : Tuple = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = floats_list((3, 1000) ) _a : List[Any] = feature_extractor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(audios=UpperCAmelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Tuple ) -> Optional[int]: _a : List[str] = self.get_feature_extractor() _a : Any = self.get_tokenizer() _a : Any = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Optional[int] = """This is a test string""" _a : Tuple = processor(text=UpperCAmelCase__ ) _a : int = tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[Any] ) -> Any: _a : str = self.get_feature_extractor() _a : List[str] = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : Dict = processor.batch_decode(UpperCAmelCase__ ) _a : Any = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: _a : str = self.get_feature_extractor() _a : Optional[Any] = self.get_tokenizer() _a : Union[str, Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
294
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = input_str.split('_' ) lowerCAmelCase__ : Any = 0 if use_pascal else 1 lowerCAmelCase__ : Union[str, Any] = words[start_index:] lowerCAmelCase__ : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCAmelCase__ : Optional[int] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''spiece.model'''} __lowercase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __lowercase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __lowercase = '''▁''' class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowercase , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase="[CLS]" , __lowercase="[SEP]" , __lowercase="<unk>" , __lowercase="[SEP]" , __lowercase="<pad>" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase = None , **__lowercase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __UpperCamelCase :Union[str, Any] = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token ) __UpperCamelCase :List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __UpperCamelCase :str = do_lower_case __UpperCamelCase :str = remove_space __UpperCamelCase :Union[str, Any] = keep_accents __UpperCamelCase :Dict = vocab_file __UpperCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__lowercase) @property def UpperCamelCase__ ( self) -> Any: return len(self.sp_model) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[int] = {self.convert_ids_to_tokens(__lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: __UpperCamelCase :List[str] = self.__dict__.copy() __UpperCamelCase :Union[str, Any] = None return state def __setstate__( self , __lowercase) -> Any: __UpperCamelCase :int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCamelCase :Dict = {} __UpperCamelCase :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCamelCase__ ( self , __lowercase) -> List[str]: if self.remove_space: __UpperCamelCase :List[Any] = ''' '''.join(inputs.strip().split()) else: __UpperCamelCase :List[Any] = inputs __UpperCamelCase :str = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __UpperCamelCase :Optional[Any] = unicodedata.normalize('''NFKD''' , __lowercase) __UpperCamelCase :List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(__lowercase)]) if self.do_lower_case: __UpperCamelCase :List[Any] = outputs.lower() return outputs def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Optional[Any] = self.preprocess_text(__lowercase) __UpperCamelCase :List[str] = self.sp_model.encode(__lowercase , out_type=__lowercase) __UpperCamelCase :Any = [] for piece in pieces: if len(__lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __UpperCamelCase :Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __UpperCamelCase :int = cur_pieces[1:] else: __UpperCamelCase :List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__lowercase) else: new_pieces.append(__lowercase) return new_pieces def UpperCamelCase__ ( self , __lowercase) -> str: return self.sp_model.PieceToId(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> int: return self.sp_model.IdToPiece(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :int = [] __UpperCamelCase :List[Any] = '''''' __UpperCamelCase :int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase) + token __UpperCamelCase :List[str] = True __UpperCamelCase :Optional[Any] = [] else: current_sub_tokens.append(__lowercase) __UpperCamelCase :Tuple = False out_string += self.sp_model.decode(__lowercase) return out_string.strip() def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :str = [self.sep_token_id] __UpperCamelCase :Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase) if token_ids_a is not None: return [1] + ([0] * len(__lowercase)) + [1] + ([0] * len(__lowercase)) + [1] return [1] + ([0] * len(__lowercase)) + [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :List[Any] = [self.sep_token_id] __UpperCamelCase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not os.path.isdir(__lowercase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :List[Any] = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowercase) elif not os.path.isfile(self.vocab_file): with open(__lowercase , '''wb''') as fi: __UpperCamelCase :Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowercase) return (out_vocab_file,)
43
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( __snake_case ): __magic_name__ = '''bert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : List[str] = num_attention_heads A : Dict = hidden_act A : Optional[Any] = intermediate_size A : List[Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : List[str] = type_vocab_size A : Dict = initializer_range A : str = layer_norm_eps A : int = position_embedding_type A : Dict = use_cache A : str = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
3
0
__A = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) __A = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: _lowerCAmelCase =from_type.lower().strip("""s""" ) _lowerCAmelCase =to_type.lower().strip("""s""" ) _lowerCAmelCase =UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase =UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: _lowerCAmelCase =( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: _lowerCAmelCase =( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) _lowerCAmelCase =METRIC_CONVERSION[from_sanitized] _lowerCAmelCase =METRIC_CONVERSION[to_sanitized] _lowerCAmelCase =1 if from_exponent > to_exponent: _lowerCAmelCase =from_exponent - to_exponent else: _lowerCAmelCase =-(to_exponent - from_exponent) return value * pow(10 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
0
lowerCAmelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): assert len(str(UpperCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _A : List[Any] = year // 100 _A : List[str] = (5 * (century % 4) + 2) % 7 _A : str = year % 100 _A : List[Any] = centurian % 12 _A : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _A : Optional[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _A : Tuple = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = KandinskyImgaImgPipeline A__ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] A__ = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] A__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" return 32 @property def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" return 100 @property def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase__ = MultilingualCLIP(_UpperCAmelCase ) lowercase__ = text_encoder.eval() return text_encoder @property def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = self.dummy_text_encoder lowercase__ = self.dummy_tokenizer lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase__ = DDIMScheduler(**_UpperCAmelCase ) lowercase__ = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> int: """simple docstring""" lowercase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCAmelCase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase__ = """A red cartoon frog, 4k""" lowercase__ = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) lowercase__ = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase__ = pipeline( _UpperCAmelCase , image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
361
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowercase__ = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""] lowercase__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
146
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : List[str] = StableUnCLIPImgaImgPipeline UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase : int = frozenset([] ) def _lowercase ( self : Any ) -> Any: _a : Any = 32 _a : Optional[Any] = embedder_hidden_size # image encoding components _a : Any = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase__ , projection_dim=UpperCAmelCase__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _a : Dict = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ ) _a : int = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _a : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _a : int = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _a : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase__ , layers_per_block=1 , upcast_attention=UpperCAmelCase__ , use_linear_projection=UpperCAmelCase__ , ) torch.manual_seed(0 ) _a : Dict = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) _a : List[Any] = AutoencoderKL() _a : Optional[Any] = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]=0 , UpperCAmelCase__ : str=True ) -> str: if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Union[str, Any] = torch.manual_seed(UpperCAmelCase__ ) else: _a : Dict = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) if pil_image: _a : int = input_image * 0.5 + 0.5 _a : Optional[Any] = input_image.clamp(0 , 1 ) _a : Any = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a : List[Any] = DiffusionPipeline.numpy_to_pil(UpperCAmelCase__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _lowercase ( self : int ) -> Any: _a : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : List[str] = self.get_dummy_components() _a : Any = StableUnCLIPImgaImgPipeline(**UpperCAmelCase__ ) _a : Tuple = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Tuple = self.get_dummy_inputs(UpperCAmelCase__ ) inputs.update({"""image_embeds""": None} ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : Dict = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowercase ( self : List[str] ) -> Dict: _a : str = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> str: _a : str = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self : str ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase__ ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Dict ) -> str: _a : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _a : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) _a : int = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _a : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _a : Optional[Any] = pipe(UpperCAmelCase__ , """anime turle""" , generator=UpperCAmelCase__ , output_type="""np""" ) _a : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _a : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) _a : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _a : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _a : Any = pipe(UpperCAmelCase__ , """anime turle""" , generator=UpperCAmelCase__ , output_type="""np""" ) _a : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: _a : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) _a : List[str] = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _a : int = pipe( UpperCAmelCase__ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) _a : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
294
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' _a : Optional[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _a : Tuple = 1 - (matter_density + radiation_density + dark_energy) _a : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _a : List[str] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _snake_case = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
294
1
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def lowerCAmelCase( __lowerCamelCase ): if hor == 128: __a = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') __a = (32, 128, 256) __a = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: __a = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') __a = (32, 64, 128, 256) __a = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') __a = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) __a = model.state_dict() __a = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_5536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } __a = UNetaDModel(**__lowerCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __a = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __a = state_dict.pop(__lowerCamelCase ) hf_value_function.load_state_dict(__lowerCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase( ): __a = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_5536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } __a = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) __a = model __a = UNetaDModel(**__lowerCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __a = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __a = state_dict.pop(__lowerCamelCase ) hf_value_function.load_state_dict(__lowerCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
197
from collections import defaultdict def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = first_str.lower().strip() __a = second_str.lower().strip() # Remove whitespace __a = first_str.replace(' ' , '' ) __a = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False # Default values for count should be 0 __a = defaultdict(__lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase_ : List[str] = input("""Enter the first string """).strip() lowerCamelCase_ : Optional[Any] = input("""Enter the second string """).strip() lowerCamelCase_ : str = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
197
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar snake_case_ : Any = TypeVar("KT") snake_case_ : Optional[int] = TypeVar("VT") class __a (Generic[KT, VT] ): def __init__( self : str , __magic_name__ : KT | str = "root" , __magic_name__ : VT | None = None ) -> Any: """simple docstring""" UpperCAmelCase_ : Tuple = key UpperCAmelCase_ : int = value UpperCAmelCase_ : list[Node[KT, VT]] = [] def __repr__( self : List[Any] ) -> str: """simple docstring""" return F"""Node({self.key}: {self.value})""" @property def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return len(self.forward ) class __a (Generic[KT, VT] ): def __init__( self : Optional[int] , __magic_name__ : float = 0.5 , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Node[KT, VT] = Node[KT, VT]() UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[Any] = p UpperCAmelCase_ : Tuple = max_level def __str__( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = list(self ) if len(__magic_name__ ) == 0: return F"""SkipList(level={self.level})""" UpperCAmelCase_ : List[Any] = max((len(str(__magic_name__ ) ) for item in items) , default=4 ) UpperCAmelCase_ : int = max(__magic_name__ , 4 ) + 4 UpperCAmelCase_ : Dict = self.head UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[Any] = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(__magic_name__ , '''-''' ) + '''* ''' * len(__magic_name__ ) ) lines.append(''' ''' * label_size + '''| ''' * len(__magic_name__ ) ) while len(node.forward ) != 0: UpperCAmelCase_ : Dict = node.forward[0] lines.append( F"""[{node.key}]""".ljust(__magic_name__ , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(__magic_name__ ) ) UpperCAmelCase_ : int = node.forward lines.append('''None'''.ljust(__magic_name__ ) + '''* ''' * len(__magic_name__ ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(__magic_name__ ) def __iter__( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCAmelCase_ : Any = node.forward[0] def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" UpperCAmelCase_ : int = [] UpperCAmelCase_ : Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCAmelCase_ : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__magic_name__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase__ ( self : Dict , __magic_name__ : KT ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._locate_node(__magic_name__ ) if node is not None: for i, update_node in enumerate(__magic_name__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCAmelCase_ : int = node.forward[i] else: UpperCAmelCase_ : Any = update_node.forward[:i] def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : KT , __magic_name__ : VT ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self._locate_node(__magic_name__ ) if node is not None: UpperCAmelCase_ : Dict = value else: UpperCAmelCase_ : Dict = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __magic_name__ ): update_vector.append(self.head ) UpperCAmelCase_ : Optional[int] = level UpperCAmelCase_ : List[Any] = Node(__magic_name__ , __magic_name__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__magic_name__ ) else: UpperCAmelCase_ : Optional[Any] = new_node def UpperCAmelCase__ ( self : Dict , __magic_name__ : VT ) -> VT | None: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._locate_node(__magic_name__ ) if node is not None: return node.value return None def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : Union[str, Any] = SkipList() skip_list.insert('''Key1''', 3 ) skip_list.insert('''Key2''', 12 ) skip_list.insert('''Key3''', 41 ) skip_list.insert('''Key4''', -19 ) UpperCAmelCase_ : Dict = skip_list.head UpperCAmelCase_ : List[Any] = {} while node.level != 0: UpperCAmelCase_ : int = node.forward[0] UpperCAmelCase_ : List[Any] = node.value assert len(SCREAMING_SNAKE_CASE__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def lowerCamelCase_ ( ) -> Tuple: UpperCAmelCase_ : List[str] = SkipList() skip_list.insert('''Key1''', 10 ) skip_list.insert('''Key1''', 12 ) skip_list.insert('''Key5''', 7 ) skip_list.insert('''Key7''', 10 ) skip_list.insert('''Key10''', 5 ) skip_list.insert('''Key7''', 7 ) skip_list.insert('''Key5''', 5 ) skip_list.insert('''Key10''', 10 ) UpperCAmelCase_ : str = skip_list.head UpperCAmelCase_ : Optional[int] = {} while node.level != 0: UpperCAmelCase_ : int = node.forward[0] UpperCAmelCase_ : str = node.value if len(SCREAMING_SNAKE_CASE__ ) != 4: print() assert len(SCREAMING_SNAKE_CASE__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def lowerCamelCase_ ( ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = SkipList() assert skip_list.find('''Some key''' ) is None def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : int = SkipList() skip_list.insert('''Key2''', 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''', 10 ) skip_list.insert('''Key2''', 8 ) skip_list.insert('''V''', 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : Union[str, Any] = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : Any = SkipList() skip_list.insert('''Key1''', 12 ) skip_list.insert('''V''', 13 ) skip_list.insert('''X''', 14 ) skip_list.insert('''Key2''', 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def lowerCamelCase_ ( ) -> List[str]: UpperCAmelCase_ : Optional[Any] = SkipList() skip_list.insert('''Key1''', 12 ) skip_list.insert('''V''', 13 ) skip_list.insert('''X''', 14 ) skip_list.insert('''Key2''', 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : Optional[Any] = SkipList() skip_list.insert('''Key1''', 12 ) skip_list.insert('''V''', 13 ) skip_list.insert('''X''', 142 ) skip_list.insert('''Key2''', 15 ) skip_list.delete('''X''' ) def traverse_keys(SCREAMING_SNAKE_CASE__ : str ): yield node.key for forward_node in node.forward: yield from traverse_keys(SCREAMING_SNAKE_CASE__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def lowerCamelCase_ ( ) -> Optional[Any]: def is_sorted(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return all(next_item >= item for item, next_item in zip(SCREAMING_SNAKE_CASE__, lst[1:] ) ) UpperCAmelCase_ : int = SkipList() for i in range(10 ): skip_list.insert(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) skip_list.insert(-12, -12 ) skip_list.insert(77, 77 ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) def lowerCamelCase_ ( ) -> Optional[Any]: for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowerCamelCase_ ( ) -> Optional[Any]: UpperCAmelCase_ : Tuple = SkipList() skip_list.insert(2, '''2''' ) skip_list.insert(4, '''4''' ) skip_list.insert(6, '''4''' ) skip_list.insert(4, '''5''' ) skip_list.insert(8, '''4''' ) skip_list.insert(9, '''4''' ) skip_list.delete(4 ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
125
'''simple docstring''' snake_case_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
125
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A : List[str] = logging.get_logger(__name__) __A : Optional[int] = {'vocab_file': 'spiece.model'} __A : Union[str, Any] = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<sep>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> None: lowerCamelCase_ =AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =3 lowerCamelCase_ =do_lower_case lowerCamelCase_ =remove_space lowerCamelCase_ =keep_accents lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowerCamelCase_ =jieba lowerCamelCase_ =str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self )-> Tuple: return len(self.sp_model ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ ={self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> str: lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[Any]: if self.remove_space: lowerCamelCase_ =""" """.join(inputs.strip().split() ) else: lowerCamelCase_ =inputs lowerCamelCase_ =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase_ =unicodedata.normalize("""NFKD""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""""".join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: lowerCamelCase_ =outputs.lower() return outputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =self.preprocess_text(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase_ =self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ =cur_pieces[1:] else: lowerCamelCase_ =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Dict: return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Any: return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ ="""""".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> List[int]: lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> List[int]: lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ =os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =super()._decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
351
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __A : int = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __A : Any = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __A : Union[str, Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="auto" , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=500 , _SCREAMING_SNAKE_CASE="gpt2-large" , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=25 , )-> List[str]: lowerCamelCase_ =compute_mauve( p_text=_SCREAMING_SNAKE_CASE , q_text=_SCREAMING_SNAKE_CASE , p_features=_SCREAMING_SNAKE_CASE , q_features=_SCREAMING_SNAKE_CASE , p_tokens=_SCREAMING_SNAKE_CASE , q_tokens=_SCREAMING_SNAKE_CASE , num_buckets=_SCREAMING_SNAKE_CASE , pca_max_data=_SCREAMING_SNAKE_CASE , kmeans_explained_var=_SCREAMING_SNAKE_CASE , kmeans_num_redo=_SCREAMING_SNAKE_CASE , kmeans_max_iter=_SCREAMING_SNAKE_CASE , featurize_model_name=_SCREAMING_SNAKE_CASE , device_id=_SCREAMING_SNAKE_CASE , max_text_length=_SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=_SCREAMING_SNAKE_CASE , mauve_scaling_factor=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE , ) return out
49
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( _lowercase ): a = (DDPMParallelScheduler,) def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase__: str ): lowerCamelCase__ : str = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**UpperCamelCase__ ) return config def lowerCamelCase_ ( self: Tuple ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): self.check_over_configs(thresholding=UpperCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def lowerCamelCase_ ( self: str ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : int = self.scheduler_classes[0] lowerCamelCase__ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase__ : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : int = self.scheduler_classes[0] lowerCamelCase__ : List[Any] = self.get_scheduler_config() lowerCamelCase__ : List[str] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : str = len(UpperCamelCase__ ) lowerCamelCase__ : str = self.dummy_model() lowerCamelCase__ : int = self.dummy_sample_deter lowerCamelCase__ : Optional[int] = self.dummy_sample_deter + 0.1 lowerCamelCase__ : Optional[int] = self.dummy_sample_deter - 0.1 lowerCamelCase__ : Union[str, Any] = samplea.shape[0] lowerCamelCase__ : Union[str, Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCamelCase__ : str = torch.arange(UpperCamelCase__ )[0:3, None].repeat(1 , UpperCamelCase__ ) lowerCamelCase__ : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCamelCase__ : Dict = scheduler.batch_step_no_noise(UpperCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowerCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[Any] = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : List[Any] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : List[Any] = len(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.dummy_model() lowerCamelCase__ : int = self.dummy_sample_deter lowerCamelCase__ : Optional[int] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual lowerCamelCase__ : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : Any = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowerCamelCase__ : List[str] = pred_prev_sample lowerCamelCase__ : List[Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase__ : Any = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase__ : Any = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : int = len(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.dummy_model() lowerCamelCase__ : List[Any] = self.dummy_sample_deter lowerCamelCase__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : List[str] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowerCamelCase__ : List[Any] = pred_prev_sample lowerCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Dict = self.scheduler_classes[0] lowerCamelCase__ : List[str] = self.get_scheduler_config() lowerCamelCase__ : Optional[int] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__ ) lowerCamelCase__ : Any = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase__ ): if i == len(UpperCamelCase__ ) - 1: lowerCamelCase__ : List[str] = -1 else: lowerCamelCase__ : int = timesteps[i + 1] lowerCamelCase__ : List[Any] = scheduler.previous_timestep(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = prev_t.item() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase__ : Any = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase__ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Tuple = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : str = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : Dict = [100, 87, 50, 1, 0] lowerCamelCase__ : List[str] = len(UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : Tuple = self.get_scheduler_config() lowerCamelCase__ : List[Any] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=UpperCamelCase__ )
41
from math import isclose, sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: __lowerCamelCase : Tuple = point_y / 4 / point_x __lowerCamelCase : Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCamelCase : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCamelCase : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCamelCase : Any = outgoing_gradient**2 + 4 __lowerCamelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCamelCase : str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 __lowerCamelCase : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCamelCase : Optional[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCamelCase : Optional[Any] = x_minus if isclose(lowerCamelCase__ , lowerCamelCase__ ) else x_plus __lowerCamelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1.4 , lowerCamelCase__ = -9.6 ) -> int: __lowerCamelCase : int = 0 __lowerCamelCase : float = first_x_coord __lowerCamelCase : float = first_y_coord __lowerCamelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = next_point(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
73
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (DDIMParallelScheduler,) UpperCAmelCase__ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self : int , **UpperCAmelCase__ : Any) ->List[str]: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] , **UpperCAmelCase__ : Tuple) ->Optional[Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) A__ , A__ = 10, 0.0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__) for t in scheduler.timesteps: A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase__) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1) A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase__ , eta=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.14771)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.32460)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ , A__ = 10, 0.0 scheduler.set_timesteps(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = self.dummy_sample_deter + 0.1 A__ = self.dummy_sample_deter - 0.1 A__ = samplea.shape[0] A__ = torch.stack([samplea, samplea, samplea] , dim=0) A__ = torch.arange(UpperCAmelCase__)[0:3, None].repeat(1 , UpperCAmelCase__) A__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) A__ = scheduler.batch_step_no_noise(UpperCAmelCase__ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase__) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 1147.7904) < 1e-2 assert abs(result_mean.item() - 0.4982) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = self.full_loop() A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 172.0067) < 1e-2 assert abs(result_mean.item() - 0.223967) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = self.full_loop(prediction_type='''v_prediction''') A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 52.5302) < 1e-2 assert abs(result_mean.item() - 0.0684) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 149.8295) < 1e-2 assert abs(result_mean.item() - 0.1951) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 149.0784) < 1e-2 assert abs(result_mean.item() - 0.1941) < 1e-3
367
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase_ ) A__ = checkpoints.load_tax_checkpoint(lowercase_ ) A__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": A__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": A__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): A__ = f"""layers_{str(lowercase_ )}""" # Self-Attention A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization A__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning A__ = flax_model.params['''encoder''']['''block'''][str(lowercase_ )]['''layer'''] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_global_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = tax_mlp_layer_norm A__ = flax_model_encoder_layer_block # Only for layer 0: A__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T A__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T A__ = tax_encoder_global_rel_embedding # Assigning A__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] A__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A__ = f"""layers_{str(lowercase_ )}""" # Self-Attention A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention A__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] A__ = tax_enc_dec_attention_module['''key''']['''kernel'''] A__ = tax_enc_dec_attention_module['''out''']['''kernel'''] A__ = tax_enc_dec_attention_module['''query''']['''kernel'''] A__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning A__ = flax_model.params['''decoder''']['''block'''][str(lowercase_ )]['''layer'''] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_pre_attention_layer_norm A__ = tax_enc_dec_attention_key A__ = tax_enc_dec_attention_out A__ = tax_enc_dec_attention_query A__ = tax_enc_dec_attention_value A__ = tax_cross_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = txa_mlp_layer_norm A__ = flax_model_decoder_layer_block # Decoder Normalization A__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] A__ = txa_decoder_norm # Only for layer 0: A__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T A__ = tax_decoder_rel_embedding # Token Embeddings A__ = tax_model['''target''']['''token_embedder''']['''embedding'''] A__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowercase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) _lowerCamelCase : Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
231
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '▁' UpperCAmelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCAmelCase__ = { 'google/pegasus-xsum': 5_1_2, } class a ( lowerCAmelCase_ ): _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : List[Any] = PegasusTokenizer _snake_case : Any = ['input_ids', 'attention_mask'] def __init__( self : int , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict="<pad>" , __lowerCAmelCase : int="</s>" , __lowerCAmelCase : str="<unk>" , __lowerCAmelCase : List[str]="<mask_2>" , __lowerCAmelCase : Any="<mask_1>" , __lowerCAmelCase : str=None , __lowerCAmelCase : Any=103 , **__lowerCAmelCase : Dict , ): _UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is''' f''' {type(lowerCAmelCase__ )}''' ) _UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCAmelCase__ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _UpperCAmelCase = additional_special_tokens_extended else: _UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Dict ): _UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : List , __lowerCAmelCase : Optional[List] = None , __lowerCAmelCase : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
289
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _a : def __init__( self : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : List[Any]=7, lowerCAmelCase__ : Optional[int]=True, lowerCAmelCase__ : Tuple=True, lowerCAmelCase__ : List[str]=9_9, lowerCAmelCase__ : Optional[Any]=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Optional[int]=4, lowerCAmelCase__ : Tuple=3_7, lowerCAmelCase__ : Any="gelu", lowerCAmelCase__ : str=0.1, lowerCAmelCase__ : Union[str, Any]=0.1, lowerCAmelCase__ : Optional[Any]=5_0, lowerCAmelCase__ : List[Any]=0.02, lowerCAmelCase__ : List[str]=True, lowerCAmelCase__ : int=None, ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : int = batch_size _UpperCamelCase : List[Any] = seq_length _UpperCamelCase : List[str] = is_training _UpperCamelCase : Union[str, Any] = use_input_mask _UpperCamelCase : Dict = vocab_size _UpperCamelCase : str = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Any = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : str = initializer_range _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : int = scope def snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : Optional[int] = None if self.use_input_mask: _UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def snake_case ( self : str ) -> List[str]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, ) def snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' ( _UpperCamelCase ) : Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase : List[Any] = True _UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], **lowerCAmelCase__ : Dict, ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : List[str] = BertGenerationEncoder(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[Any] = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__ ) _UpperCamelCase : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[Any], lowerCAmelCase__ : List[Any], lowerCAmelCase__ : str, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], **lowerCAmelCase__ : int, ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : str = True _UpperCamelCase : Union[str, Any] = BertGenerationEncoder(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[str] = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, ) _UpperCamelCase : Optional[Any] = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Dict, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Tuple, lowerCAmelCase__ : str, lowerCAmelCase__ : List[Any], **lowerCAmelCase__ : List[str], ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : List[str] = True _UpperCamelCase : List[Any] = True _UpperCamelCase : str = BertGenerationDecoder(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).eval() # first forward pass _UpperCamelCase : List[Any] = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, use_cache=lowerCAmelCase__, ) _UpperCamelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase : Union[str, Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) _UpperCamelCase : Any = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and _UpperCamelCase : List[str] = torch.cat([input_ids, next_tokens], dim=-1 ) _UpperCamelCase : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) _UpperCamelCase : Optional[Any] = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, output_hidden_states=lowerCAmelCase__, )['''hidden_states'''][0] _UpperCamelCase : Any = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, past_key_values=lowerCAmelCase__, output_hidden_states=lowerCAmelCase__, )['''hidden_states'''][0] # select random slice _UpperCamelCase : int = ids_tensor((1,), output_from_past.shape[-1] ).item() _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-3 ) ) def snake_case ( self : Optional[int], lowerCAmelCase__ : int, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Dict, *lowerCAmelCase__ : Dict, ) -> Dict: '''simple docstring''' _UpperCamelCase : Tuple = BertGenerationDecoder(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : str ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCamelCase = (BertGenerationDecoder,) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = BertGenerationEncoderTester(self ) _UpperCamelCase : str = ConfigTester(self, config_class=lowerCAmelCase__, hidden_size=3_7 ) def snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() _UpperCamelCase : Tuple = '''bert''' self.model_tester.create_and_check_model(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' ( _UpperCamelCase ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCamelCase : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) def snake_case ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) @slow def snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Dict = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase : Union[str, Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _UpperCamelCase : Any = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__ )[0] _UpperCamelCase : int = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape, lowerCAmelCase__ ) _UpperCamelCase : Any = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCAmelCase__, atol=1e-4 ) ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _UpperCamelCase : Union[str, Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): _UpperCamelCase : Tuple = model(lowerCAmelCase__ )[0] _UpperCamelCase : Any = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape, lowerCAmelCase__ ) _UpperCamelCase : List[str] = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCAmelCase__, atol=1e-4 ) )
358
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[str], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Any = False super().__init__(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.image_processor def __call__( self : str, lowerCAmelCase__ : ImageInput = None, lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False, lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : int = 0, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : Optional[bool] = None, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Optional[Union[str, TensorType]] = None, **lowerCAmelCase__ : Optional[Any], ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase : int = self.tokenizer _UpperCamelCase : List[str] = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) return text_encoding # add pixel_values _UpperCamelCase : List[str] = self.image_processor(lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) else: _UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self : List[Any], *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__, **lowerCAmelCase__ ) def snake_case ( self : List[Any], *lowerCAmelCase__ : Dict, **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__, **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
128
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") __a: Any = int(input("""Enter number: """).strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
198
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] = None ): __lowercase : List[Any] = tesseract_config if tesseract_config is not None else """""" # apply OCR __lowercase : Dict = to_pil_image(lowerCAmelCase_ ) __lowercase , __lowercase : Dict = pil_image.size __lowercase : Tuple = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="""dict""" , config=lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : int = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __lowercase : int = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __lowercase : Optional[int] = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : Optional[Any] = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __lowercase : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = ['''pixel_values'''] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = "" , **__a : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} __lowercase : int = get_size_dict(__a ) __lowercase : Optional[Any] = do_resize __lowercase : Tuple = size __lowercase : List[Any] = resample __lowercase : Any = apply_ocr __lowercase : int = ocr_lang __lowercase : List[str] = tesseract_config def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" __lowercase : Any = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) __lowercase : Any = (size["""height"""], size["""width"""]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Tuple = do_resize if do_resize is not None else self.do_resize __lowercase : Optional[int] = size if size is not None else self.size __lowercase : Optional[int] = get_size_dict(__a ) __lowercase : List[Any] = resample if resample is not None else self.resample __lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Optional[int] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. __lowercase : Tuple = [to_numpy_array(__a ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) __lowercase : Union[str, Any] = [] __lowercase : Union[str, Any] = [] for image in images: __lowercase , __lowercase : int = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: __lowercase : Optional[int] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : str = [flip_channel_order(__a ) for image in images] __lowercase : Dict = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=__a ) if apply_ocr: __lowercase : List[str] = words_batch __lowercase : Optional[Any] = boxes_batch return data
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github __lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def lowercase ( )-> List[str]: '''simple docstring''' a : Union[str, Any] = Github(os.environ["GITHUB_TOKEN"] ) a : Union[str, Any] = g.get_repo("huggingface/diffusers" ) a : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: a : str = sorted(issue.get_comments() , key=lambda A_ : i.created_at , reverse=A_ ) a : Tuple = comments[0] if len(A_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
40
"""simple docstring""" def lowercase ( A_ )-> str: '''simple docstring''' if isinstance(A_ , A_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A_ , A_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" a : Optional[Any] = False if num < 0: a : Tuple = True a : str = -num a : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
import os import string import sys _lowerCamelCase : List[Any] = 1 << 8 _lowerCamelCase : Union[str, Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 2_7, "up": 6_5 + ARROW_KEY_FLAG, "down": 6_6 + ARROW_KEY_FLAG, "right": 6_7 + ARROW_KEY_FLAG, "left": 6_8 + ARROW_KEY_FLAG, "mod_int": 9_1, "undefined": sys.maxsize, "interrupt": 3, "insert": 5_0, "delete": 5_1, "pg_up": 5_3, "pg_down": 5_4, } _lowerCamelCase : int = KEYMAP["up"] _lowerCamelCase : str = KEYMAP["left"] if sys.platform == "win32": _lowerCamelCase : Dict = [] _lowerCamelCase : Union[str, Any] = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(1_0): _lowerCamelCase : Union[str, Any] = ord(str(i)) def a__ ( ) -> Union[str, Any]: if os.name == "nt": import msvcrt UpperCAmelCase : Union[str, Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase ) == 0: # Read the keystroke UpperCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(UpperCAmelCase ) if ord(UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) UpperCAmelCase : Union[str, Any] = chr(KEYMAP['''esc'''] ) except KeyError: UpperCAmelCase : int = cha[1] else: UpperCAmelCase : Dict = ch.decode(UpperCAmelCase ) else: UpperCAmelCase : Any = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase : Union[str, Any] = sys.stdin.fileno() UpperCAmelCase : Optional[Any] = termios.tcgetattr(UpperCAmelCase ) try: tty.setraw(UpperCAmelCase ) UpperCAmelCase : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase , termios.TCSADRAIN , UpperCAmelCase ) return ch def a__ ( ) -> Any: UpperCAmelCase : Dict = get_raw_chars() if ord(UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase ) == KEYMAP["esc"]: UpperCAmelCase : Dict = get_raw_chars() if ord(UpperCAmelCase ) == KEYMAP["mod_int"]: UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
99
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[Any], __A : str, __A : List[str]=7, __A : List[str]=3, __A : Optional[int]=1_8, __A : List[Any]=3_0, __A : Tuple=4_0_0, __A : Tuple=True, __A : List[Any]=None, __A : str=True, __A : int=None, __A : Optional[Any]=True, __A : List[Any]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], __A : List[str]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], __A : Tuple=True, ): UpperCAmelCase : int = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} UpperCAmelCase : int = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Dict = image_size UpperCAmelCase : List[str] = min_resolution UpperCAmelCase : Optional[Any] = max_resolution UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Any = do_center_crop UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : List[str] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std UpperCAmelCase : List[Any] = do_convert_rgb def __magic_name__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __magic_name__ ( self : Optional[Any], __A : Any=False, __A : str=False, __A : List[Any]=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCAmelCase : Dict = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) ) else: UpperCAmelCase : Tuple = [] for i in range(self.batch_size ): UpperCAmelCase , UpperCAmelCase : Tuple = np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 ) image_inputs.append(np.random.randint(2_5_5, size=(self.num_channels, width, height), dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__A, 0, -1 ) ) for x in image_inputs] if torchify: UpperCAmelCase : str = [torch.from_numpy(__A ) for x in image_inputs] return image_inputs @require_torch @require_vision class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self : Dict ): UpperCAmelCase : Optional[Any] = ChineseCLIPImageProcessingTester(self, do_center_crop=__A ) @property def __magic_name__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Any ): UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A, '''do_resize''' ) ) self.assertTrue(hasattr(__A, '''size''' ) ) self.assertTrue(hasattr(__A, '''do_center_crop''' ) ) self.assertTrue(hasattr(__A, '''center_crop''' ) ) self.assertTrue(hasattr(__A, '''do_normalize''' ) ) self.assertTrue(hasattr(__A, '''image_mean''' ) ) self.assertTrue(hasattr(__A, '''image_std''' ) ) self.assertTrue(hasattr(__A, '''do_convert_rgb''' ) ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size, {'''height''': 1_8, '''width''': 1_8} ) UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size, {'''height''': 8_4, '''width''': 8_4} ) def __magic_name__ ( self : Union[str, Any] ): pass def __magic_name__ ( self : Tuple ): # Initialize image_processing UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A, Image.Image ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Any = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __magic_name__ ( self : Optional[Any] ): # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A, numpify=__A ) for image in image_inputs: self.assertIsInstance(__A, np.ndarray ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Dict = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __magic_name__ ( self : Any ): # Initialize image_processing UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A, torchify=__A ) for image in image_inputs: self.assertIsInstance(__A, torch.Tensor ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : List[str] = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) @require_torch @require_vision class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=__A ) UpperCAmelCase : Dict = 3 @property def __magic_name__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Dict ): UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A, '''do_resize''' ) ) self.assertTrue(hasattr(__A, '''size''' ) ) self.assertTrue(hasattr(__A, '''do_center_crop''' ) ) self.assertTrue(hasattr(__A, '''center_crop''' ) ) self.assertTrue(hasattr(__A, '''do_normalize''' ) ) self.assertTrue(hasattr(__A, '''image_mean''' ) ) self.assertTrue(hasattr(__A, '''image_std''' ) ) self.assertTrue(hasattr(__A, '''do_convert_rgb''' ) ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : Tuple ): # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A, Image.Image ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Tuple = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
99
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
1
from __future__ import annotations __UpperCamelCase : Union[str, Any] = 10 def _a ( SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Tuple = max(SCREAMING_SNAKE_CASE ) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase__ : list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE )] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase__ : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE ) # put each buckets' contents into list_of_ints UpperCamelCase__ : Optional[int] = 0 for b in range(SCREAMING_SNAKE_CASE ): for i in buckets[b]: UpperCamelCase__ : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
51
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Dict = image.size UpperCamelCase__ , UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ : Any = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCamelCase__ : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 UpperCamelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ : int = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : VQModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : int , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : Optional[int] = 100 , lowerCamelCase__ : Optional[float] = 0.0 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : int = 1 elif isinstance(lowerCamelCase__ , torch.Tensor ): UpperCamelCase__ : Dict = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase__ )}" ) if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : Any = preprocess(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype UpperCamelCase__ : Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) UpperCamelCase__ : Any = image.to(device=self.device , dtype=lowerCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) UpperCamelCase__ : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Optional[int] = {} if accepts_eta: UpperCamelCase__ : Union[str, Any] = eta for t in self.progress_bar(lowerCamelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCamelCase__ : Any = torch.cat([latents, image] , dim=1 ) UpperCamelCase__ : List[str] = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Dict = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Tuple = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCamelCase__ : Tuple = self.vqvae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = torch.clamp(lowerCamelCase__ , -1.0 , 1.0 ) UpperCamelCase__ : Any = image / 2 + 0.5 UpperCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : List[str] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
51
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :Dict ): A = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() A = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) A = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } A = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } A = tempfile.mkdtemp() A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) # load decoder from hub A = "hf-internal-testing/ngram-beam-search-decoder" def lowerCamelCase ( self :List[str] , **__UpperCamelCase :Tuple ): A = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , **__UpperCamelCase :int ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , **__UpperCamelCase :List[str] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCamelCase ) def lowerCamelCase ( self :List[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self :Optional[Any] ): A = self.get_tokenizer() A = self.get_feature_extractor() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCamelCase ) def lowerCamelCase ( self :Optional[Any] ): A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase ( self :Dict ): A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__UpperCamelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=__UpperCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase ( self :Tuple ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = floats_list((3, 10_00) ) A = feature_extractor(__UpperCamelCase , return_tensors="np" ) A = processor(__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase ( self :Tuple ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = "This is a test string" A = processor(text=__UpperCamelCase ) A = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :int=(2, 10, 16) , __UpperCamelCase :Optional[Any]=77 ): np.random.seed(__UpperCamelCase ) return np.random.rand(*__UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) A = processor.decode(__UpperCamelCase ) A = decoder.decode_beams(__UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def lowerCamelCase ( self :Any , __UpperCamelCase :Optional[int] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: A = processor.batch_decode(__UpperCamelCase ) else: with get_context(__UpperCamelCase ).Pool() as pool: A = processor.batch_decode(__UpperCamelCase , __UpperCamelCase ) A = list(__UpperCamelCase ) with get_context("fork" ).Pool() as p: A = decoder.decode_beams_batch(__UpperCamelCase , __UpperCamelCase ) A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCamelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__UpperCamelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCamelCase , decoded_processor.lm_score ) def lowerCamelCase ( self :Dict ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits() A = 15 A = -20.0 A = -4.0 A = processor.batch_decode( __UpperCamelCase , beam_width=__UpperCamelCase , beam_prune_logp=__UpperCamelCase , token_min_logp=__UpperCamelCase , ) A = decoded_processor_out.text A = list(__UpperCamelCase ) with get_context("fork" ).Pool() as pool: A = decoder.decode_beams_batch( __UpperCamelCase , __UpperCamelCase , beam_width=__UpperCamelCase , beam_prune_logp=__UpperCamelCase , token_min_logp=__UpperCamelCase , ) A = [d[0][0] for d in decoded_decoder_out] A = [d[0][2] for d in decoded_decoder_out] A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __UpperCamelCase ) self.assertTrue(np.array_equal(__UpperCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCamelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__UpperCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __UpperCamelCase , atol=1e-3 ) ) def lowerCamelCase ( self :int ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits() A = 2.0 A = 5.0 A = -20.0 A = True A = processor.batch_decode( __UpperCamelCase , alpha=__UpperCamelCase , beta=__UpperCamelCase , unk_score_offset=__UpperCamelCase , lm_score_boundary=__UpperCamelCase , ) A = decoded_processor_out.text A = list(__UpperCamelCase ) decoder.reset_params( alpha=__UpperCamelCase , beta=__UpperCamelCase , unk_score_offset=__UpperCamelCase , lm_score_boundary=__UpperCamelCase , ) with get_context("fork" ).Pool() as pool: A = decoder.decode_beams_batch( __UpperCamelCase , __UpperCamelCase , ) A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __UpperCamelCase ) A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = processor.decoder.model_container[processor.decoder._model_key] A = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() A = os.listdir(__UpperCamelCase ) A = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = snapshot_download("hf-internal-testing/processor_with_lm" ) A = WavaVecaProcessorWithLM.from_pretrained(__UpperCamelCase ) A = processor.decoder.model_container[processor.decoder._model_key] A = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() A = os.listdir(__UpperCamelCase ) A = os.listdir(__UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Union[str, Any] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) A = floats_list((3, 10_00) ) A = processor_wavaveca(__UpperCamelCase , return_tensors="np" ) A = processor_auto(__UpperCamelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) A = self._get_dummy_logits() A = processor_wavaveca.batch_decode(__UpperCamelCase ) A = processor_auto.batch_decode(__UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase ( self :Tuple ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def lowerCamelCase ( __UpperCamelCase :str , __UpperCamelCase :Optional[int] ): A = [d[key] for d in offsets] return retrieved_list def lowerCamelCase ( self :List[Any] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = self._get_dummy_logits()[0] A = processor.decode(__UpperCamelCase , output_word_offsets=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def lowerCamelCase ( self :List[Any] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = self._get_dummy_logits() A = processor.batch_decode(__UpperCamelCase , output_word_offsets=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__UpperCamelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase ( self :List[str] ): import torch A = load_dataset("common_voice" , "en" , split="train" , streaming=__UpperCamelCase ) A = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_60_00 ) ) A = iter(__UpperCamelCase ) A = next(__UpperCamelCase ) A = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) A = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train A = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): A = model(__UpperCamelCase ).logits.cpu().numpy() A = processor.decode(logits[0] , output_word_offsets=__UpperCamelCase ) A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate A = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] A = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__UpperCamelCase , "word" ) ) , __UpperCamelCase ) self.assertEqual(" ".join(self.get_from_offsets(__UpperCamelCase , "word" ) ) , output.text ) # output times A = torch.tensor(self.get_from_offsets(__UpperCamelCase , "start_time" ) ) A = torch.tensor(self.get_from_offsets(__UpperCamelCase , "end_time" ) ) # fmt: off A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=0.01 ) )
292
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Any = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Optional[Any] = "realm" def __init__( self , A=3_05_22 , A=7_68 , A=1_28 , A=12 , A=12 , A=8 , A=30_72 , A="gelu_new" , A=0.1 , A=0.1 , A=5_12 , A=2 , A=0.02 , A=1e-1_2 , A=2_56 , A=10 , A=1e-3 , A=5 , A=3_20 , A=13_35_37_18 , A=50_00 , A=1 , A=0 , A=2 , **A , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) # Common config lowerCamelCase = vocab_size lowerCamelCase = max_position_embeddings lowerCamelCase = hidden_size lowerCamelCase = retriever_proj_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = num_candidates lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = type_vocab_size lowerCamelCase = layer_norm_eps # Reader config lowerCamelCase = span_hidden_size lowerCamelCase = max_span_width lowerCamelCase = reader_layer_norm_eps lowerCamelCase = reader_beam_size lowerCamelCase = reader_seq_len # Retrieval config lowerCamelCase = num_block_records lowerCamelCase = searcher_beam_size
66
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 if start < end: lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase , lowerCamelCase = _in_place_partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += _in_place_quick_sort(lowerCamelCase__ , lowerCamelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCamelCase__ , p + 1 , lowerCamelCase__ ) return count def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase = start - 1 for index in range(lowerCamelCase__ , lowerCamelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCamelCase = new_pivot_index + 1 lowerCamelCase = a[new_pivot_index] lowerCamelCase = a[index] lowerCamelCase = temp lowerCamelCase = a[new_pivot_index + 1] lowerCamelCase = a[end] lowerCamelCase = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_00 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : Optional[int] = 0, 1 # mean and standard deviation UpperCAmelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[Any] = np.load(outfile) UpperCAmelCase : Optional[Any] = len(M) - 1 UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
66
1
from __future__ import annotations import requests _lowerCamelCase =set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def _a ( lowerCamelCase, lowerCamelCase = 1, lowerCamelCase = "new", lowerCamelCase = None ): lowerCamelCase : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCamelCase ) - valid_terms ) ): lowerCamelCase : Tuple = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(lowerCamelCase ) lowerCamelCase : Tuple = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''', headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError lowerCamelCase : List[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCamelCase )} lowerCamelCase : Dict = {} for id_ in range(lowerCamelCase ): lowerCamelCase : Dict = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
287
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowerCamelCase = logging.getLogger(__name__) class A__ ( _snake_case ): lowercase = "token-classification" def __init__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' if type(UpperCamelCase__ ) == dict: A_ = Namespace(**UpperCamelCase__ ) A_ = import_module("""tasks""" ) try: A_ = getattr(UpperCamelCase__ , hparams.task_type ) A_ = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) A_ = self.token_classification_task.get_labels(hparams.labels ) A_ = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase__ , len(self.labels ) , self.mode ) def snake_case_ ( self , **UpperCamelCase__ ) -> int: '''simple docstring''' return self.model(**UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": A_ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids A_ = self(**UpperCamelCase__ ) A_ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.hparams for mode in ["train", "dev", "test"]: A_ = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , UpperCamelCase__ ) A_ = torch.load(UpperCamelCase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) A_ = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase__ ) A_ = self.token_classification_task.convert_examples_to_features( UpperCamelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: '''simple docstring''' A_ = self._feature_file(UpperCamelCase__ ) logger.info("""Loading features from cached file %s""" , UpperCamelCase__ ) A_ = torch.load(UpperCamelCase__ ) A_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: A_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: A_ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) A_ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' """Compute validation""" "" A_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": A_ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids A_ = self(**UpperCamelCase__ ) A_ , A_ = outputs[:2] A_ = logits.detach().cpu().numpy() A_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = torch.stack([x["""val_loss"""] for x in outputs] ).mean() A_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) A_ = np.argmax(UpperCamelCase__ , axis=2 ) A_ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) A_ = dict(enumerate(self.labels ) ) A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) A_ = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(UpperCamelCase__ , UpperCamelCase__ ), """precision""": precision_score(UpperCamelCase__ , UpperCamelCase__ ), """recall""": recall_score(UpperCamelCase__ , UpperCamelCase__ ), """f1""": fa_score(UpperCamelCase__ , UpperCamelCase__ ), } A_ = dict(results.items() ) A_ = results return ret, preds_list, out_label_list def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ , A_ , A_ = self._eval_end(UpperCamelCase__ ) A_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ , A_ , A_ = self._eval_end(UpperCamelCase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 A_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=UpperCamelCase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=UpperCamelCase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=UpperCamelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowerCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() __lowerCamelCase = NERTransformer(args) __lowerCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowerCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
361
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=2 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=36 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=6 , UpperCamelCase__=6 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=1000 , ) -> Optional[int]: '''simple docstring''' A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = patch_size A_ = text_seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = coordinate_size A_ = shape_size A_ = num_labels A_ = num_choices A_ = scope A_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A_ = text_seq_length A_ = (image_size // patch_size) ** 2 + 1 A_ = self.text_seq_length + self.image_seq_length def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = t A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.text_seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image A_ = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A_ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = self.num_labels A_ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = self.num_labels A_ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = False lowercase = False lowercase = False lowercase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def snake_case_ ( self ) -> str: '''simple docstring''' A_ = LayoutLMvaModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' A_ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): A_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): A_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> Dict: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCamelCase__ ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) A_ = torch.tensor([[1, 2]] ) A_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A_ = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits A_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) A_ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
101
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Any: a_ : Tuple = parent a_ : int = batch_size a_ : Tuple = seq_length a_ : List[Any] = is_training a_ : List[str] = use_token_type_ids a_ : Dict = use_labels a_ : Any = vocab_size a_ : List[str] = hidden_size a_ : Tuple = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Dict = intermediate_size a_ : Any = hidden_act a_ : List[str] = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : List[Any] = type_vocab_size a_ : int = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : str = scope a_ : Tuple = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_token_type_ids: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : List[Any] = None a_ : Union[str, Any] = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: a_ : Dict = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: a_ : str = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : int = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Any = self.num_labels a_ : Dict = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Tuple = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ : Dict = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=False ) -> List[str]: a_ : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : str = inputs_dict['labels'] a_ : Optional[int] = inputs_dict['labels'] a_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : str = OpenAIGPTModelTester(self ) a_ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Dict = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is a_ : Tuple = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a_ : Dict = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
32
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , A : Optional[str] = None ): _UpperCAmelCase : Dict = ( os.path.join(A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCAmelCase : Union[str, Any] = Extractor def _A ( self : Tuple , A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCAmelCase : Dict = os.path.abspath(A ) return os.path.join(self.extract_dir , hash_url_to_filename(A ) ) def _A ( self : int , A : str , A : bool ): return force_extract or ( not os.path.isfile(A ) and not (os.path.isdir(A ) and os.listdir(A )) ) def _A ( self : Optional[int] , A : str , A : bool = False ): _UpperCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(A ) if not extractor_format: return input_path _UpperCAmelCase : Optional[Any] = self._get_output_path(A ) if self._do_extract(A , A ): self.extractor.extract(A , A , A ) return output_path class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod @abstractmethod def _A ( cls : str , A : Union[Path, str] , **A : Dict ): ... @staticmethod @abstractmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): ... class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: List[bytes] = [] @staticmethod def _A ( A : Union[Path, str] , A : int ): with open(A , "rb" ) as f: return f.read(A ) @classmethod def _A ( cls : Any , A : Union[Path, str] , A : bytes = b"" ): if not magic_number: _UpperCAmelCase : Any = max(len(A ) for cls_magic_number in cls.magic_numbers ) try: _UpperCAmelCase : int = cls.read_magic_number(A , A ) except OSError: return False return any(magic_number.startswith(A ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod def _A ( cls : str , A : Union[Path, str] , **A : List[Any] ): return tarfile.is_tarfile(A ) @staticmethod def _A ( A : Union[str, Any] , A : str ): def resolved(A : str ) -> str: return os.path.realpath(os.path.abspath(A ) ) def badpath(A : str , A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(A , A ) ).startswith(A ) def badlink(A : str , A : str ) -> bool: # Links are interpreted relative to the directory containing the link _UpperCAmelCase : List[str] = resolved(os.path.join(A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=A ) _UpperCAmelCase : Optional[int] = resolved(A ) for finfo in members: if badpath(finfo.name , A ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) _UpperCAmelCase : int = tarfile.open(A ) tar_file.extractall(A , members=TarExtractor.safemembers(A , A ) ) tar_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = [b"\x1F\x8B"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with gzip.open(A , "rb" ) as gzip_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _A ( cls : Dict , A : Union[Path, str] , A : bytes = b"" ): if super().is_extractable(A , magic_number=A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(A , "rb" ) as fp: _UpperCAmelCase : Tuple = _EndRecData(A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCAmelCase : Dict = fp.read(A ) # CD is where we expect it to be if len(A ) == sizeCentralDir: _UpperCAmelCase : Any = struct.unpack(A , A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) with zipfile.ZipFile(A , "r" ) as zip_file: zip_file.extractall(A ) zip_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with lzma.open(A ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(A , exist_ok=A ) _UpperCAmelCase : List[str] = rarfile.RarFile(A ) rf.extractall(A ) rf.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x28\xb5\x2F\xFD"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _UpperCAmelCase : Optional[Any] = zstd.ZstdDecompressor() with open(A , "rb" ) as ifh, open(A , "wb" ) as ofh: dctx.copy_stream(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x42\x5A\x68"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with bza.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(A , exist_ok=A ) with pyazr.SevenZipFile(A , "r" ) as archive: archive.extractall(A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = [b"\x04\x22\x4D\x18"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _A ( cls : List[Any] ): return max( len(A ) for extractor in cls.extractors.values() if issubclass(A , A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _A ( A : Union[Path, str] , A : int ): try: return MagicNumberBaseExtractor.read_magic_number(A , magic_number_length=A ) except OSError: return b"" @classmethod def _A ( cls : Optional[Any] , A : Union[Path, str] , A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=A , ) _UpperCAmelCase : Union[str, Any] = cls.infer_extractor_format(A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _A ( cls : Dict , A : Union[Path, str] ): # <Added version="2.4.0"/> _UpperCAmelCase : Optional[int] = cls._get_magic_number_max_length() _UpperCAmelCase : str = cls._read_magic_number(A , A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(A , magic_number=A ): return extractor_format @classmethod def _A ( cls : List[str] , A : Union[Path, str] , A : Union[Path, str] , A : Optional[str] = None , A : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(A ) , exist_ok=A ) # Prevent parallel extractions _UpperCAmelCase : Tuple = str(Path(A ).with_suffix(".lock" ) ) with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(A , A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=A , ) _UpperCAmelCase : Tuple = extractor if extractor != "deprecated" else extractor_format else: _UpperCAmelCase : Tuple = cls.extractors[extractor_format] return extractor.extract(A , A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(A ): return extractor.extract(A , A )
31
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a__ ( A__, A__, A__ ): if isinstance(_lowercase, torch.Tensor ): return image elif isinstance(_lowercase, PIL.Image.Image ): SCREAMING_SNAKE_CASE_ : int = [image] if isinstance(image[0], PIL.Image.Image ): SCREAMING_SNAKE_CASE_ : Dict = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE_ : Tuple = np.concatenate(_lowercase, axis=0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array(_lowercase ).astype(np.floataa ) / 2_55.0 SCREAMING_SNAKE_CASE_ : str = image.transpose(0, 3, 1, 2 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.from_numpy(_lowercase ) elif isinstance(image[0], torch.Tensor ): SCREAMING_SNAKE_CASE_ : str = torch.cat(_lowercase, dim=0 ) return image def a__ ( A__, A__, A__, A__=0.99_95 ): if not isinstance(_lowercase, np.ndarray ): SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Any = va.device SCREAMING_SNAKE_CASE_ : int = va.cpu().numpy() SCREAMING_SNAKE_CASE_ : Dict = va.cpu().numpy() SCREAMING_SNAKE_CASE_ : int = np.sum(va * va / (np.linalg.norm(_lowercase ) * np.linalg.norm(_lowercase )) ) if np.abs(_lowercase ) > DOT_THRESHOLD: SCREAMING_SNAKE_CASE_ : Dict = (1 - t) * va + t * va else: SCREAMING_SNAKE_CASE_ : str = np.arccos(_lowercase ) SCREAMING_SNAKE_CASE_ : Dict = np.sin(_lowercase ) SCREAMING_SNAKE_CASE_ : Optional[int] = theta_a * t SCREAMING_SNAKE_CASE_ : Dict = np.sin(_lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = np.sin(theta_a - theta_t ) / sin_theta_a SCREAMING_SNAKE_CASE_ : List[Any] = sin_theta_t / sin_theta_a SCREAMING_SNAKE_CASE_ : str = sa * va + sa * va if inputs_are_torch: SCREAMING_SNAKE_CASE_ : Any = torch.from_numpy(_lowercase ).to(_lowercase ) return va def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : str = F.normalize(_lowercase, dim=-1 ) SCREAMING_SNAKE_CASE_ : int = F.normalize(_lowercase, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a__ ( A__, A__ ): for param in model.parameters(): SCREAMING_SNAKE_CASE_ : int = value class __lowercase (a__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): """simple docstring""" super().__init__() self.register_modules( vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , clip_model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , coca_model=lowerCAmelCase__ , coca_tokenizer=lowerCAmelCase__ , coca_transform=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : str = ( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase__ ) set_requires_grad(self.clip_model , lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" self.enable_attention_slicing(lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = min(int(num_inference_steps * strength ) , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): """simple docstring""" if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase__ )}''' ) SCREAMING_SNAKE_CASE_ : int = image.to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase__ ) ] SCREAMING_SNAKE_CASE_ : Tuple = torch.cat(lowerCAmelCase__ , dim=0 ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.vae.encode(lowerCAmelCase__ ).latent_dist.sample(lowerCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE_ : Optional[int] = 0.18_215 * init_latents SCREAMING_SNAKE_CASE_ : int = init_latents.repeat_interleave(lowerCAmelCase__ , dim=0 ) SCREAMING_SNAKE_CASE_ : Tuple = randn_tensor(init_latents.shape , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) # get latents SCREAMING_SNAKE_CASE_ : Any = self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = init_latents return latents def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.coca_transform(lowerCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) SCREAMING_SNAKE_CASE_ : Any = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor.preprocess(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() SCREAMING_SNAKE_CASE_ : int = self.clip_model.get_image_features(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = image_embeddings_clip.repeat_interleave(lowerCAmelCase__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = latents.detach().requires_grad_() SCREAMING_SNAKE_CASE_ : int = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual SCREAMING_SNAKE_CASE_ : Optional[Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE_ : Tuple = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE_ : int = torch.sqrt(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = self.scheduler.sigmas[index] SCREAMING_SNAKE_CASE_ : Any = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 / 0.18_215 * sample SCREAMING_SNAKE_CASE_ : Optional[int] = self.vae.decode(lowerCAmelCase__ ).sample SCREAMING_SNAKE_CASE_ : Any = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : int = transforms.Resize(self.feature_extractor_size )(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.normalize(lowerCAmelCase__ ).to(latents.dtype ) SCREAMING_SNAKE_CASE_ : List[str] = self.clip_model.get_image_features(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = spherical_dist_loss(lowerCAmelCase__ , lowerCAmelCase__ ).mean() * clip_guidance_scale SCREAMING_SNAKE_CASE_ : int = -torch.autograd.grad(lowerCAmelCase__ , lowerCAmelCase__ )[0] if isinstance(self.scheduler , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = latents.detach() + grads * (sigma**2) SCREAMING_SNAKE_CASE_ : List[Any] = noise_pred_original else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = noise_pred_original - torch.sqrt(lowerCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 0.6 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = 7.5 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , lowerCAmelCase__ = 0.8 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , ): """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCAmelCase__ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(lowerCAmelCase__ , torch.Generator ) and batch_size > 1: SCREAMING_SNAKE_CASE_ : Optional[int] = [generator] + [None] * (batch_size - 1) SCREAMING_SNAKE_CASE_ : Optional[int] = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] SCREAMING_SNAKE_CASE_ : List[Any] = [x[0] for x in coca_is_none if x[1]] SCREAMING_SNAKE_CASE_ : str = ", ".join(lowerCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase__ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) SCREAMING_SNAKE_CASE_ : int = self.get_image_description(lowerCAmelCase__ ) if style_prompt is None: if len(lowerCAmelCase__ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_description(lowerCAmelCase__ ) # get prompt text embeddings for content and style SCREAMING_SNAKE_CASE_ : str = self.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE_ : Dict = slerp(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ : str = text_embeddings.repeat_interleave(lowerCAmelCase__ , dim=0 ) # set timesteps SCREAMING_SNAKE_CASE_ : Optional[int] = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {} if accepts_offset: SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 self.scheduler.set_timesteps(lowerCAmelCase__ , **lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ : Any = self.get_timesteps(lowerCAmelCase__ , lowerCAmelCase__ , self.device ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = timesteps[:1].repeat(lowerCAmelCase__ ) # Preprocess image SCREAMING_SNAKE_CASE_ : List[Any] = preprocess(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_latents( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , text_embeddings.dtype , self.device , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = preprocess(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_latents( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , text_embeddings.dtype , self.device , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = slerp(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE_ : List[str] = self.get_clip_image_embeddings(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_clip_image_embeddings(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = slerp( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE_ : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Dict = content_text_input.input_ids.shape[-1] SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer([''] , padding='max_length' , max_length=lowerCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ : Optional[int] = uncond_embeddings.repeat_interleave(lowerCAmelCase__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE_ : Optional[Any] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE_ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps SCREAMING_SNAKE_CASE_ : Tuple = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device='cpu' , dtype=lowerCAmelCase__ ).to( self.device ) else: SCREAMING_SNAKE_CASE_ : List[str] = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE_ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE_ : Dict = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE_ : Any = {} if accepts_eta: SCREAMING_SNAKE_CASE_ : Optional[int] = eta # check if the scheduler accepts generator SCREAMING_SNAKE_CASE_ : Optional[int] = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: SCREAMING_SNAKE_CASE_ : Union[str, Any] = generator with self.progress_bar(total=lowerCAmelCase__ ): for i, t in enumerate(lowerCAmelCase__ ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual SCREAMING_SNAKE_CASE_ : Any = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Any = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE_ : List[str] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.cond_fn( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 / 0.18_215 * latents SCREAMING_SNAKE_CASE_ : Tuple = self.vae.decode(lowerCAmelCase__ ).sample SCREAMING_SNAKE_CASE_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : int = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
363
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a__ ( ): raise RuntimeError('CUDA out of memory.' ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE_ : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE_ : str = nn.Linear(4 , 5 ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE_ : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
162
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''funnel''' SCREAMING_SNAKE_CASE_ : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self ,SCREAMING_SNAKE_CASE__=3_05_22 ,SCREAMING_SNAKE_CASE__=[4, 4, 4] ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=64 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu_new" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=1E-9 ,SCREAMING_SNAKE_CASE__="mean" ,SCREAMING_SNAKE_CASE__="relative_shift" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = vocab_size __SCREAMING_SNAKE_CASE :Union[str, Any] = block_sizes __SCREAMING_SNAKE_CASE :Optional[Any] = [1] * len(SCREAMING_SNAKE_CASE__ ) if block_repeats is None else block_repeats assert len(SCREAMING_SNAKE_CASE__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __SCREAMING_SNAKE_CASE :List[str] = num_decoder_layers __SCREAMING_SNAKE_CASE :Optional[int] = d_model __SCREAMING_SNAKE_CASE :Any = n_head __SCREAMING_SNAKE_CASE :List[Any] = d_head __SCREAMING_SNAKE_CASE :List[str] = d_inner __SCREAMING_SNAKE_CASE :List[Any] = hidden_act __SCREAMING_SNAKE_CASE :List[Any] = hidden_dropout __SCREAMING_SNAKE_CASE :List[str] = attention_dropout __SCREAMING_SNAKE_CASE :Dict = activation_dropout __SCREAMING_SNAKE_CASE :List[Any] = initializer_range __SCREAMING_SNAKE_CASE :Any = initializer_std __SCREAMING_SNAKE_CASE :List[Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __SCREAMING_SNAKE_CASE :List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __SCREAMING_SNAKE_CASE :Optional[int] = attention_type __SCREAMING_SNAKE_CASE :Optional[int] = separate_cls __SCREAMING_SNAKE_CASE :List[Any] = truncate_seq __SCREAMING_SNAKE_CASE :Union[str, Any] = pool_q_only super().__init__(**SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
191
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {} class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = '''llama''' SCREAMING_SNAKE_CASE_ : Optional[int] = ['''past_key_values'''] def __init__( self ,SCREAMING_SNAKE_CASE__=3_20_00 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=1_10_08 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__="silu" ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-6 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE :int = max_position_embeddings __SCREAMING_SNAKE_CASE :List[str] = hidden_size __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __SCREAMING_SNAKE_CASE :Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE :str = num_key_value_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE :List[str] = initializer_range __SCREAMING_SNAKE_CASE :Union[str, Any] = rms_norm_eps __SCREAMING_SNAKE_CASE :Dict = pretraining_tp __SCREAMING_SNAKE_CASE :Optional[Any] = use_cache __SCREAMING_SNAKE_CASE :Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.rope_scaling.get('''type''' ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.rope_scaling.get('''factor''' ,SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
191
1
from collections import defaultdict def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = first_str.lower().strip() UpperCamelCase__ = second_str.lower().strip() # Remove whitespace UpperCamelCase__ = first_str.replace(''' ''', '''''' ) UpperCamelCase__ = second_str.replace(''' ''', '''''' ) # Strings of different lengths are not anagrams if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): return False # Default values for count should be 0 UpperCamelCase__ = defaultdict(lowerCAmelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCAmelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowercase = input("""Enter the first string """).strip() lowercase = input("""Enter the second string """).strip() lowercase = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
351
lowercase = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : float ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
35
0
import random class UpperCAmelCase_ : @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : List[str] = [ord(lowerCamelCase__) for i in text] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = [] for i in plain: _lowerCAmelCase : Tuple = random.randint(1, 300) _lowerCAmelCase : Tuple = (i + k) * k cipher.append(lowerCamelCase__) key.append(lowerCamelCase__) return cipher, key @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for i in range(len(lowerCamelCase__)): _lowerCAmelCase : int = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowerCamelCase__)) return "".join(lowerCamelCase__) if __name__ == "__main__": _snake_case = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
36
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''ZinengTang/tvlt-base''' UpperCamelCase__ : int = tempfile.mkdtemp() def UpperCAmelCase__ ( self : int , **lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ : int = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase__ : List[str] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Optional[int] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase__ ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : List[Any] = self.get_feature_extractor() UpperCamelCase__ : Dict = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : Any = np.ones([12000] ) UpperCamelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : Any = processor(audio=lowerCamelCase__ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.get_image_processor() UpperCamelCase__ : Any = self.get_feature_extractor() UpperCamelCase__ : int = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : int = np.ones([3, 224, 224] ) UpperCamelCase__ : List[str] = image_processor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : str = processor(images=lowerCamelCase__ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : List[str] = np.ones([12000] ) UpperCamelCase__ : Tuple = np.ones([3, 224, 224] ) UpperCamelCase__ : Optional[Any] = processor(audio=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : str = self.get_feature_extractor() UpperCamelCase__ : Tuple = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
146
0
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> tuple[float, list[float]]: lowerCamelCase = list(range(len(snake_case__ ) ) ) lowerCamelCase = [v / w for v, w in zip(snake_case__ , snake_case__ )] index.sort(key=lambda snake_case__ : ratio[i] , reverse=snake_case__ ) lowerCamelCase = 0 lowerCamelCase = [0] * len(snake_case__ ) for i in index: if weight[i] <= capacity: lowerCamelCase = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = False, False, False @dataclass class __magic_name__ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __UpperCamelCase = field(default="Audio" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ): """simple docstring""" return self.pa_type def _lowerCAmelCase ( self , _a ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(_a , _a ): return {"bytes": None, "path": value} elif isinstance(_a , _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase = BytesIO() sf.write(_a , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: lowerCamelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 lowerCamelCase = BytesIO(bytes() ) sf.write(_a , _a , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowerCamelCase , lowerCamelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowerCamelCase = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowerCamelCase = token_per_repo_id or {} lowerCamelCase = path.split("""::""" )[-1] try: lowerCamelCase = string_to_dict(_a , config.HUB_DATASETS_URL )["""repo_id"""] lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase = None with xopen(_a , """rb""" , use_auth_token=_a ) as f: lowerCamelCase , lowerCamelCase = sf.read(_a ) else: lowerCamelCase , lowerCamelCase = sf.read(_a ) lowerCamelCase = array.T if self.mono: lowerCamelCase = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase = librosa.resample(_a , orig_sr=_a , target_sr=self.sampling_rate ) lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCAmelCase ( self ): """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _lowerCAmelCase ( self , _a ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowerCamelCase = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCamelCase = storage.field("""bytes""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCamelCase = storage.field("""path""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_a , self.pa_type ) def _lowerCAmelCase ( self , _a ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(_a , """rb""" ) as f: lowerCamelCase = f.read() return bytes_ lowerCamelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_a , self.pa_type )
168
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> Any: '''simple docstring''' UpperCamelCase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase__ )] ) UpperCamelCase__ = np.array(lowerCAmelCase__ ) UpperCamelCase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase__ ) ) , x.transpose() ) , lowerCAmelCase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _UpperCamelCase ( __A , __A , __A ) -> str: '''simple docstring''' UpperCamelCase__ = (1, 2, 1) UpperCamelCase__ = (1, 1, 0, 7) UpperCamelCase__ = SARIMAX( lowerCAmelCase__ , exog=lowerCAmelCase__ , order=lowerCAmelCase__ , seasonal_order=lowerCAmelCase__ ) UpperCamelCase__ = model.fit(disp=lowerCAmelCase__ , maxiter=600 , method="nm" ) UpperCamelCase__ = model_fit.predict(1 , len(lowerCAmelCase__ ) , exog=[test_match] ) return result[0] def _UpperCamelCase ( __A , __A , __A ) -> int: '''simple docstring''' UpperCamelCase__ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCamelCase__ = regressor.predict(lowerCAmelCase__ ) return y_pred[0] def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' train_user.sort() UpperCamelCase__ = np.percentile(lowerCAmelCase__ , 25 ) UpperCamelCase__ = np.percentile(lowerCAmelCase__ , 75 ) UpperCamelCase__ = qa - qa UpperCamelCase__ = qa - (iqr * 0.1) return low_lim def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 0 for i in list_vote: if i > actual_result: UpperCamelCase__ = not_safe + 1 else: if abs(abs(lowerCAmelCase__ ) - abs(lowerCAmelCase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) a__ : int = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] a__ : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) a__ : Tuple = Normalizer().fit_transform(data_input_df.values) # split data a__ : Union[str, Any] = normalize_df[:, 2].tolist() a__ : Tuple = normalize_df[:, 0].tolist() a__ : List[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) a__ : Optional[Any] = normalize_df[:, [1, 2]].tolist() a__ : str = x[: len(x) - 1] a__ : Dict = x[len(x) - 1 :] # for linear regression & sarimax a__ : Tuple = total_date[: len(total_date) - 1] a__ : Any = total_user[: len(total_user) - 1] a__ : str = total_match[: len(total_match) - 1] a__ : Optional[int] = total_date[len(total_date) - 1 :] a__ : int = total_user[len(total_user) - 1 :] a__ : Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting a__ : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data a__ : Dict = "" if data_safety_checker(res_vote, tst_user) else "not " print('Today\'s data is {not_str}safe.')
80
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ :str = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = '''huggingface/label-files''' lowercase = '''imagenet-1k-id2label.json''' lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = {v: k for k, v in idalabel.items()} lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if "stem.conv" in name: lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase = '''bit.encoder.''' + name return name def UpperCamelCase ( ): '''simple docstring''' lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_config(lowerCAmelCase__ ) # load original model from timm lowercase = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowercase = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowercase = transform.transforms lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase = prepare_img() lowercase = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowercase = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowercase = model(lowerCAmelCase__ ) lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowercase__ :List[str] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
101
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __lowerCamelCase ( a__ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ : ClassVar[Features] = Features({'text': Value('string' )} ) A_ : ClassVar[Features] = Features({'summary': Value('string' )} ) A_ : str = "text" A_ : str = "summary" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
153
0
snake_case_ : Optional[int] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def A (__A : bytes ) -> bytes: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(__A ) UpperCAmelCase_ = ''''''.join(bin(__A )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ = len(__A ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ = B'''=''' * ((6 - len(__A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__A ) % 6) else: UpperCAmelCase_ = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__A ) , 6 ) ).encode() + padding ) def A (__A : str ) -> bytes: """simple docstring""" if not isinstance(__A , __A ) and not isinstance(__A , __A ): UpperCAmelCase_ = ( '''argument should be a bytes-like object or ASCII string, ''' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(__A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__A , __A ): try: UpperCAmelCase_ = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ = encoded_data[:-padding] UpperCAmelCase_ = ''''''.join( bin(B64_CHARSET.index(__A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ = ''''''.join( bin(B64_CHARSET.index(__A ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__A ) , 8 ) ] return bytes(__A ) if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: _UpperCAmelCase : Union[str, Any] = self.column_names @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : Tuple = CsvConfig def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Tuple = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
145
0
"""simple docstring""" lowerCamelCase_ : Dict = [ (1_0_0_0, """M"""), (9_0_0, """CM"""), (5_0_0, """D"""), (4_0_0, """CD"""), (1_0_0, """C"""), (9_0, """XC"""), (5_0, """L"""), (4_0, """XL"""), (1_0, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def _A ( lowercase ): """simple docstring""" a ={'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} a =0 a =0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _A ( lowercase ): """simple docstring""" a =[] for arabic, roman in ROMAN: (a) =divmod(_snake_case , _snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : Any = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=10 , __A=160 , __A=8 , __A=0.0 , __A=4000 , __A=False , __A=True , ) -> Optional[Any]: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def SCREAMING_SNAKE_CASE ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> str: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__A ) for speech_input in speech_inputs_truncated] a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off a =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1E-3 ) )
215
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spm_char.model"} lowercase_ = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } lowercase_ = { "microsoft/speecht5_asr": 1_0_2_4, "microsoft/speecht5_tts": 1_0_2_4, "microsoft/speecht5_vc": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<pad>" , _a = None , **_a , ): __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def __UpperCAmelCase ( self ): return self.sp_model.get_piece_size() def __UpperCAmelCase ( self ): __a = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a = self.__dict__.copy() __a = None return state def __setstate__( self , _a ): __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , _a ): return self.sp_model.encode(_a , out_type=_a ) def __UpperCAmelCase ( self , _a ): return self.sp_model.piece_to_id(_a ) def __UpperCAmelCase ( self , _a ): __a = self.sp_model.IdToPiece(_a ) return token def __UpperCAmelCase ( self , _a ): __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token __a = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def __UpperCAmelCase ( self , _a , _a=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) __a = [1] if token_ids_a is None: return ([0] * len(_a )) + suffix_ones return ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def __UpperCAmelCase ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
45
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase : int = input("Enter image url: ").strip() print(F"""Downloading image from {url} ...""") lowerCamelCase : Tuple = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase : int = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase : Dict = requests.get(image_url).content lowerCamelCase : Optional[int] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
204
0
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=None ): a__ = None if token is not None: a__ = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' a__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json() a__ = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) a__ = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(__lowerCAmelCase ): a__ = requests.get(url + F'&page={i + 2}' , headers=__lowerCAmelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=None ): a__ = None if token is not None: a__ = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' a__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json() a__ = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) a__ = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(__lowerCAmelCase ): a__ = requests.get(url + F'&page={i + 2}' , headers=__lowerCAmelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict ): a__ = None if token is not None: a__ = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase , allow_redirects=__lowerCAmelCase ) a__ = result.headers['Location'] a__ = requests.get(__lowerCAmelCase , allow_redirects=__lowerCAmelCase ) a__ = os.path.join(__lowerCAmelCase , F'{artifact_name}.zip' ) with open(__lowerCAmelCase , 'wb' ) as fp: fp.write(response.content ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any]=None ): a__ = [] a__ = [] a__ = None with zipfile.ZipFile(__lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCAmelCase ) as f: for line in f: a__ = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs a__ = line[: line.index(': ' )] a__ = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed a__ = line[len('FAILED ' ) :] failed_tests.append(__lowerCAmelCase ) elif filename == "job_name.txt": a__ = line if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( F'`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCAmelCase )} for `errors` ' F'and {len(__lowerCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) a__ = None if job_name and job_links: a__ = job_links.get(__lowerCAmelCase , __lowerCAmelCase ) # A list with elements of the form (line of error, error, failed test) a__ = [x + [y] + [job_link] for x, y in zip(__lowerCAmelCase , __lowerCAmelCase )] return result def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=None ): a__ = [] a__ = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for p in os.listdir(__lowerCAmelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCAmelCase , job_links=__lowerCAmelCase ) ) return errors def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str]=None ): a__ = Counter() counter.update([x[1] for x in logs] ) a__ = counter.most_common() a__ = {} for error, count in counts: if error_filter is None or error not in error_filter: a__ = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} a__ = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=__lowerCAmelCase ) ) return r def __lowercase ( __lowerCAmelCase : int ): a__ = test.split('::' )[0] if test.startswith('tests/models/' ): a__ = test.split('/' )[2] else: a__ = None return test def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str]=None ): a__ = [(x[0], x[1], get_model(x[2] )) for x in logs] a__ = [x for x in logs if x[2] is not None] a__ = {x[2] for x in logs} a__ = {} for test in tests: a__ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) a__ = counter.most_common() a__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} a__ = sum(error_counts.values() ) if n_errors > 0: a__ = {'count': n_errors, 'errors': error_counts} a__ = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=__lowerCAmelCase ) ) return r def __lowercase ( __lowerCAmelCase : str ): a__ = '| no. | error | status |' a__ = '|-:|:-|:-|' a__ = [header, sep] for error in reduced_by_error: a__ = reduced_by_error[error]['count'] a__ = F'| {count} | {error[:1_0_0]} | |' lines.append(__lowerCAmelCase ) return "\n".join(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[Any] ): a__ = '| model | no. of errors | major error | count |' a__ = '|-:|-:|-:|-:|' a__ = [header, sep] for model in reduced_by_model: a__ = reduced_by_model[model]['count'] a__ , a__ = list(reduced_by_model[model]['errors'].items() )[0] a__ = F'| {model} | {count} | {error[:6_0]} | {_count} |' lines.append(__lowerCAmelCase ) return "\n".join(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') snake_case : Optional[int] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) snake_case : Union[str, Any] = get_job_links(args.workflow_run_id, token=args.token) snake_case : Optional[int] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: snake_case : int = k.find(''' / ''') snake_case : Tuple = k[index + len(''' / ''') :] snake_case : Dict = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) snake_case : List[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) snake_case : List[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error snake_case : Union[str, Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors snake_case : Optional[Any] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) snake_case : List[Any] = reduce_by_error(errors) snake_case : str = reduce_by_model(errors) snake_case : List[Any] = make_github_table(reduced_by_error) snake_case : Tuple = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
367
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Tuple = torch.device('''cpu''') def __lowercase ( ): a__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im def __lowercase ( __lowerCAmelCase : List[str] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : int ): a__ = [] for k in state_dict.keys(): a__ = k if ".pwconv" in k: a__ = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ = k_new.split('.' ) if ls[2].isdigit(): a__ = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ = 1_0_0_0 a__ = 'huggingface/label-files' a__ = 'imagenet-1k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ = [3, 3, 6, 4] a__ = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": a__ = [3, 3, 9, 6] a__ = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": a__ = [4, 3, 1_0, 5] a__ = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": a__ = [4, 4, 1_2, 6] a__ = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase ) else: a__ = torch.load(__lowerCAmelCase , map_location='cpu' ) a__ = checkpoint a__ = create_rename_keys(__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model a__ = SwiftFormerForImageClassification(__lowerCAmelCase ).eval() hf_model.load_state_dict(__lowerCAmelCase ) # prepare test inputs a__ = prepare_img() a__ = ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ = processor(images=__lowerCAmelCase , return_tensors='pt' ) # compare outputs from both models a__ = get_expected_output(__lowerCAmelCase ) a__ = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , __lowerCAmelCase , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') snake_case : Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase : Tuple = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""")) lowercase_ = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase_ , """src/transformers/models/bert/modeling_bert.py""") , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""") , ) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = """src/transformers""" shutil.rmtree(self.transformer_dir) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=None): """simple docstring""" lowercase_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) lowercase_ = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_) lowercase_ = os.path.join(self.transformer_dir , """new_code.py""") with open(lowerCAmelCase_ , """w""" , newline="""\n""") as f: f.write(lowerCAmelCase_) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_) with open(lowerCAmelCase_ , """r""") as f: self.assertTrue(f.read() , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""") self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCAmelCase_) , ) # Copy consistency with a really long name lowercase_ = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , lowerCAmelCase_ , lowerCAmelCase_) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCAmelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCAmelCase_) , ) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) lowercase_ , lowercase_ = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme["""format_model_list"""]) self.assertFalse(lowerCAmelCase_) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ , lowercase_ = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme["""format_model_list"""]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase_) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase_ , lowercase_ = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme["""format_model_list"""]) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
136
"""simple docstring""" from math import isqrt, loga def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]: '''simple docstring''' lowercase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __lowerCAmelCase , __lowerCAmelCase ): lowercase_ = False return [i for i in range(2 , __lowerCAmelCase ) if is_prime[i]] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 80_08_00 , __lowerCAmelCase = 80_08_00 ) -> int: '''simple docstring''' lowercase_ = degree * loga(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = calculate_prime_numbers(__lowerCAmelCase ) lowercase_ = 0 lowercase_ = 0 lowercase_ = len(__lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
136
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'yjernite/retribert-base-uncased': 5_12, } __UpperCAmelCase = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" UpperCAmelCase_ =VOCAB_FILES_NAMES UpperCAmelCase_ =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ =PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ =RetriBertTokenizer UpperCAmelCase_ =["input_ids", "attention_mask"] def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ) -> Tuple: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(_A , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**_A ) SCREAMING_SNAKE_CASE_ = do_lower_case def _UpperCamelCase ( self , _A , _A=None ) -> Tuple: SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self , _A , _A = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , _A , _A = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
359
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ): SCREAMING_SNAKE_CASE_ = 9 SCREAMING_SNAKE_CASE_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE_ = kruskal(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
257
0